FALTINGS’ LOCAL-GLOBAL PRINCIPLE FOR THE MINIMAXNESS OF LOCAL COHOMOLOGY MODULES DEFINED BY A SYSTEM OF IDEALS

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Islamic Azad University, Yazd branch, Yazd, Iran.

2 Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran.

Abstract

Let R be a commutative Noetherian ring with nonzero identity. Let φ be a system of ideals of R and let M, N two finitely generated R-modules. We prove that there are local- global principles for the finiteness and minimaxness of generalized local cohomology module H_φ^i (M, N) , in certain cases.

Keywords


1. M. Aghapournahr and L. Melkersson, Finiteness properties of minimax and coatomic local cohomology modules, Arch. Math. (Basel), 94 (2010), 519–528.
2. K. Bahmanpour, R. Naghipour, On the cofiniteness of local cohomology modules, Amer. Math. Soc., 136(7) (2005), 2359–2363.
3. M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasg. Math. J., 21(1) (1980), 173–181.
4. M. H. Bijan-Zadeh, Torsion theory and local cohomology over commutative Noetherian ring, J. Londan Math. Soc., 19(3) (1979), 402–410.
5. M. P. Brodmann and R. Y. sharp, Local cohomology: An algebraic introduction with geometric applications, Cammbridge. Univ. Press, 1998.
6. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in Advanced Mathematics 39, Revised edition, Cambridge University Press, 1998.
7. M. R, Doustimehr and R. Naghipour, On the generalization of Faltings; Annihilator Theorem, Arch. Math., 102(1) (2014), 15–23.
8. G. Faltings, Der endlichkeitssatz in der lokalen kohomomologie, Math. Ann., 255 (1981), 45–56.
9. A. Hajikarimi, Cofiniteness with respect to a serre subcategory, Math. Notes, 58(1) (2011), 121–130.
10. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc., 110(3) (1991), 421–429.
11. H. Matsumura, Commutative Ring Theory, Second edition, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989.
12. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285(1) (2005), 649–668.