INTUITIONISTIC FALLING SHADOWS APPLIED TO COMMUTATIVE IDEALS IN BCK-ALGEBRAS

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

2 School of Mathematics, Northwest University, P.O. Box 710127, Xi’an, China.

3 Department of Mathematics Education, Gyeongsang National University, P.O. Box 52828, Jinju, Korea.

Abstract

The notion of commutative falling intuitionistic fuzzy ideal of a BCK-algebra is introduced and related properties are investigated. We verify that every commutative intuitionistic fuzzy ideal is a commutative falling intuitionistic fuzzy ideal, and provide example to show that a commutative falling intuitionistic fuzzy ideal is not a commutative intuitionistic fuzzy ideal. Relations between a falling intuitionistic fuzzy ideal and a commutative falling intuitionistic fuzzy ideal are considered, and a condition for a falling intuitionistic fuzzy ideal to be a commutative falling intuitionistic fuzzy ideal is provided.

Keywords


1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96.
2. R. A. Borzooei and M. Aaly Kologani, Minimal prime ideals in hoops, Journal of Algebraic Hyperstructures and Logical Algebras, 2(3) (2021), 109–120.
3. R. A. Borzooei, X. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, 10(8), (2018), Article
ID: 350.
4. I. R. Goodman, Fuzzy sets as equivalence classes of random sets, in “Recent Developments in Fuzzy Sets and Possibility Theory”(R. Yager, Ed.), Pergamon, New York 1982, pp. 327–343.
5. Y. Huang, BCI-Algebra, Science Press, Beijing, 2006.
6. Y. B. Jun and M. S. Kang, Falling fuzzy commutative ideals of BCK-algebras, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(1) (2011), 41–50.
7. Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Internat. J. Math. Math. Sci., 24(12) (2000), 839–849.
8. Y. B. Jun, D. S. Lee and C. H. Park, Intuitionistic fuzzy commutative ideals of BCK-algebras, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 15(1)
(2008), 73–84.
9. Y. B. Jun and C. H. Park, Falling shadows applied to subalgebras and ideals of BCK=BCI-algebras, Honam Math. J., 34(2) (2012), 135–144.
10. Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets and Systems, 64 (1994), 401–405.
11. Y. B. Jun, S. Z. Song and K. J. Lee, Intuitionistic falling shadow theory with application in BCK=BCI-algebras, Mathematics, 6(8) (2018), Article ID: 138.
12. J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in Chinese), 9 (1991), 49–53.
13. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
14. S. Z. Song, Implicative soju ideals of BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 2(3) (2021), 29–40.
15. S. K. Tan, P. Z. Wang and E. S. Lee, Fuzzy set operations based on the theory of falling shadows, J. Math. Anal. Appl., 174 (1993), 242–255.
16. S. K. Tan, P. Z. Wang and X. Z. Zhang, Fuzzy inference relation based on the theory of falling shadows, Fuzzy Sets and Systems, 53 (1993), 179–188.
17. P. Z. Wang, Fuzzy Sets and Falling Shadows of Random Sets, Beijing Normal Univ. Press (In Chinese), People’s Republic of China, 1985.
18. P. Z. Wang and E. Sanchez, Treating a fuzzy subset as a projectable random set, in: “Fuzzy Information and Decision” (M. M. Gupta, E. Sanchez, Eds.), Pergamon, New York, 1982, pp. 212–219.