Journal of Algebraic Systems

Vol. 11, No. 1, (2023), pp 149-172

VARIETIES OF PERMUTATIVE SEMIGROUPS CLOSED UNDER DOMINIONS

H. MAQBOOL* AND M. Y. BHAT

Abstract

In this paper, we partially generalize a result of Isbell from the class of commutative semigroups to some generalized class of commutative semigroups by showing that dominion of such semigroups belongs to the same class by using Isbell's zigzag theorem.

1. Introduction and Preliminaries

Let U be a subsemigroup of a semigroup S. Following Isbell [5], we say that U dominates an element d of S if for every semigroup T and for all homomorphisms $\beta, \gamma: S \longrightarrow T$ and $u \beta=u \gamma$ for every u in U implies $d \beta=d \gamma$. The set of all elements of S dominated by U is called dominion of U in S and we denote it by $\operatorname{Dom}(U, S)$. It can be easily verified that $\operatorname{Dom}(U, S)$ is a subsemigroup of S containing U.

The following theorem provided by Isbell [5], known as Isbell's zigzag theorem, is a most useful characterization of semigroup dominions and is of basic importance to our investigations.

Theorem 1.1. ([5], Theorem 2.3) Let U be a subsemigroup of a semigroup S and let $d \in S$. Then $d \in \operatorname{Dom}(U, S)$ if and only if $d \in U$ or there exists a series of factorizations of d as follows:

$$
d=a_{0} t_{1}=y_{1} a_{1} t_{1}=y_{1} a_{2} t_{2}=y_{2} a_{3} t_{2}=\cdots=y_{m} a_{2 m-1} t_{m}=y_{m} a_{2 m}(1.1)
$$

DOI: 10.22044/JAS.2022.12018.1617.
MSC(2010): 20M07.
Keywords: Zigzag equations; Dominion; Varieties; Identity.
Received: 20 June 2022, Accepted: 15 September 2022.

* Corresponding author.
where $m \geq 1, a_{i} \in U(i=0,1, \ldots, 2 m), y_{i}, t_{i} \in S(i=1,2, \ldots, m)$, and

$$
\begin{array}{ll}
a_{0}=y_{1} a_{1}, & a_{2 m-1} t_{m}=a_{2 m} \\
a_{2 i-1} t_{i}=a_{2 i} t_{i+1}, & y_{i} a_{2 i}=y_{i+1} a_{2 i+1}
\end{array} \quad(1 \leq i \leq m-1) .
$$

Such a series of factorization is called a zigzag in S over U with value d, length m and spine $a_{0}, a_{1}, \ldots, a_{2 m}$.

The following result is from Khan [7] and is also necessary for our investigations.

Theorem 1.2. ([7], Result 3) Let U and S be semigroups with U as a subsemigroup of S. Take any $d \in S \backslash U$ such that $d \in \operatorname{Dom}(U, S)$. Let (1) be a zigzag of shortest possible length m over U with value d. Then $t_{j}, y_{j} \in S \backslash U$ for all $j=1,2, \ldots, m$.

Definition 1.3. Let

$$
\begin{equation*}
x_{1} x_{2} x_{3} x_{4}=x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1} x_{2} x_{3} x_{4} x_{5}=x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}} x_{j_{5}} \tag{1.3}
\end{equation*}
$$

be permutation identities, where i and j are nontrivial permutations of the sets $\{1,2,3,4\}$ and $\{1,2,3,4,5\}$ respectively. Then a semigroup satisfying (1.2) is called
(i) a medial semigroup if $i_{2}=3$ and $i_{3}=2$;
(ii) a right semi-commutative semigroup if $i_{3}=4$ and $i_{4}=3$;
(iii) a left semi-commutative semigroup if $i_{1}=2$ and $i_{2}=1$;
(iv) a right cyclic commutative semigroup if $i_{2}=3, i_{3}=4$ and $i_{4}=2$; (v) a left cyclic commutative semigroup if $i_{1}=2, i_{2}=3$ and $i_{3}=1$;
(vi) a right dual-cyclic commutative semigroup if $i_{2}=4, i_{3}=2$ and $i_{4}=3$;
(vii) a left dual-cyclic commutative semigroup if $i_{1}=3, i_{2}=1$ and $i_{3}=2$;
(viii) a right externally commutative semigroup if $i_{2}=4$ and $i_{4}=2$;
(ix) a left externally commutative semigroup if $i_{1}=3$ and $i_{3}=1$;
(x) a bi-commutative semigroup if $i_{1}=2, i_{2}=1, i_{3}=4$ and $i_{4}=3$.
while satisfying (1.3) is called
(i) a cyclic semi-normal commutative semigroup if $j_{2}=3, j_{3}=4$ and $j_{4}=2$;
(ii) a middle right semi-commutative semigroup if $j_{4}=5$ and $j_{5}=4$;
(iii) middle left cyclic commutative semigroup if $j_{1}=2, J_{2}=3$ and $j_{3}=1$;
(iv) a double right semi-commutative semigroup if $j_{2}=4, j_{3}=5$, $j_{4}=2$ and $j_{5}=3$;
(v) a double left semi-commutative semigroup if $j_{1}=3, j_{2}=4, j_{3}=1$ and $j_{4}=2$;
(vi) a middle right dual-cyclic commutative semigroup if $j_{3}=5, j_{4}=3$ and $j_{5}=4$;
(vii) a middle left dual-cyclic commutative semigroup if $j_{1}=3, j_{2}=1$ and $j_{3}=2$;
(viii) a dual right semi-commutative semigroup if $j_{2}=5, j_{3}=4, j_{4}=2$ and $j_{5}=3$;
(ix) a middle left externally commutative semigroup if $j_{1}=3$ and $j_{3}=1$;
(x) a left dual-cyclic right semi-commutative if $j_{1}=3, j_{2}=1, j_{3}=2$, $j_{4}=5$ and $j_{5}=4$.

The semigroup theoretic notations and conventions of Clifford and Preston [3] and Howie [4] will be used throughout without explicit mention.

2. Dominions and some generalized classes of COMMUTATIVE SEMIGROUPS

Isbell [5], Corollary 2.5, showed that the dominion of a commutative semigroup is commutative. But in [6], Khan gave a counter-example to show that this stronger result is false for each (nontrivial) permutation identity other than commutativity. Recently Alam, Higgins and Khan [2] generalized Isbell's result from commutative semigroups to \mathcal{H} commutative semigroups. Also, Abbas and Ashraf in [1], found some generalized classes of commutative semigroups for which this stronger result is true in some weaker form. Further, in the same direction, I found some more permutative semigroups for which $\operatorname{Dom}(U, S)$ satisfies the identity of U.

Theorem 2.1. Let U be a medial sub-semigroup of a cyclic seminormal commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is medial semigroup.

Proof. Let U be a medial sub-semigroup of a cyclic semi-normal commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$
is also medial semigroup.
Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m}\left(a_{2 m} d_{2} d_{3} d_{4}\right) \text { (by zigzag equations) } \\
& =y_{m} a_{2 m} d_{3} d_{2} d_{4} \text { (since } U \text { is medial semigroup) } \\
& =d_{1} d_{3} d_{2} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
& =d_{1} t_{1} d_{3} a_{o} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{3} x_{4} x_{2} x_{5}\right) \\
& =d_{1} t_{1} d_{3}\left(y_{1} a_{1}\right) d_{4} \text { (by zigzag equations) } \\
& \left.=d_{1} d_{3} y_{1} a_{1} t_{1} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{3} x_{4} x_{2} x_{5}\right) \\
& =d_{1} d_{3} y_{1} a_{2} t_{2} d_{4} \text { (by zigzag equations) } \\
& =d_{1} d_{3} y_{2} a_{3} t_{2} d_{4} \text { (by zigzag equations) } \\
& \vdots \\
& =d_{1} d_{3} y_{m} a_{2 m-1} t_{m} d_{4} \\
& =d_{1} d_{3} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
& =d_{1} d_{3} d_{2} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} a_{o} t_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{1} d_{2}\left(y_{1} a_{1}\right) t_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{1} y_{1} a_{1} t_{1} d_{2} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{3} x_{4} x_{2} x_{5}\right) \\
& =d_{1} y_{1} a_{2} t_{2} d_{2} d_{4} \text { (by zigzag equations) } \\
& =d_{1} y_{2} a_{3} t_{2} d_{2} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

$$
\begin{aligned}
& =d_{1} y_{m} a_{2 m-1} t_{m} d_{2} d_{4} \\
& =d_{1} y_{m} a_{2 m} d_{2} d_{4} \text { (by zigzag equations) } \\
& =d_{1} d_{3} d_{2} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{o}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{1} d_{3} d_{2} a_{o} t_{1}(\text { by case }(\text { iv })) \\
& =d_{1} d_{3} d_{2} d_{4} \text { (by zigzag equations) },
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.2. Let U be a right semi-commutative sub-semigroup of a middle right semi-commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is right semi-commutative semigroup.

Proof. Let U be a right semi-commutative sub-semigroup of a middle right semi-commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also right semi-commutative semigroup.
Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m} a_{2 m} d_{2} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=y_{m} a_{2 m} d_{2} d_{4} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right) \\
& =d_{1} d_{2} d_{4} d_{3}(\text { by zigzag equations) }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=d_{1} a_{o} t_{1} d_{4} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right) \\
& =d_{1} d_{2} d_{4} d_{3} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.

Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
& \left.=d_{1} d_{2} y_{m} d_{4} a_{2 m} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right) \\
& =\left(d_{1} d_{2} y_{m} d_{4} a_{2 m-1}\right) t_{m} \text { (by zigzag equations) } \\
& =d_{1} d_{2} y_{m} a_{2 m-1} d_{4} t_{m}
\end{aligned}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right)
$$

$$
=\left(d_{1} d_{2} y_{m-1} a_{2 m-2} d_{4}\right) t_{m}(\text { by zigzag equations })
$$

$$
=d_{1} d_{2} y_{m-1} d_{4} a_{2 m-2} t_{m}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right)
$$

$$
=\left(d_{1} d_{2} y_{m-1} d_{4} a_{2 m-3}\right) t_{m-1} \text { (by zigzag equations) }
$$

$$
=d_{1} d_{2} y_{m-1} a_{2 m-3} d_{4} t_{m-1}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right)
$$

$$
\vdots
$$

$$
=d_{1} d_{2} y_{1} a_{1} d_{4} t_{1}
$$

$$
=\left(d_{1} d_{2} a_{o} d_{4}\right) t_{1} \text { (by zigzag equations) }
$$

$$
=d_{1} d_{2} d_{4} a_{o} t_{1}(\text { by case }(\mathrm{iii}))
$$

$$
=d_{1} d_{2} d_{4} d_{3} \text { (by zigzag equations), }
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{0}\right) t_{1} \text { (by zigzag equations) } \\
& =d_{1} d_{2} a_{o} d_{3} t_{1}(\text { by case (iv)) } \\
& =d_{1} d_{2} a_{o} t_{1} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3} x_{5} x_{4}\right) \\
& =d_{1} d_{2} d_{4} d_{3} \text { (by zigzag equations) },
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.3. Let U be a left semi-commutative sub-semigroup of a middle left cyclic commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is left semi-commutative semigroup.
Proof. Let U be a left semi-commutative sub-semigroup of a middle left cylic commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also left semi-commutative semigroup.

Case (i): $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m} a_{2 m} d_{2} d_{3} d_{4}(\text { by zigzag equations) } \\
& =a_{2 m} d_{2} y_{m} d_{3} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& =a_{2 m-1} t_{m}\left(d_{2} y_{m}\right) d_{3} d_{4} \text { (by zigzag equations) } \\
& =t_{m} d_{2} y_{m} a_{2 m-1} d_{3} d_{4}
\end{aligned}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right)
$$

$$
=t_{m} d_{2}\left(y_{m-1} a_{2 m-2}\right) d_{3} d_{4}(\text { by zigzag equations })
$$

$$
=d_{2} y_{m-1} a_{2 m-2} t_{m} d_{3} d_{4}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right)
$$

$$
=d_{2} y_{m-1} a_{2 m-3} t_{m-1} d_{3} d_{4} \text { (by zigzag equations) }
$$

$$
=d_{2} y_{1} a_{1} t_{1} d_{3} d_{4}
$$

$$
=d_{2} a_{o} t_{1} d_{3} d_{4} \text { (by zigzag equations) }
$$

$$
=d_{2} d_{1} d_{3} d_{4} \text { (by zigzag equations), }
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=a_{o} t_{1} d_{1} d_{3} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& =d_{2} d_{1} d_{3} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} a_{o} t_{1} d_{4}(\text { by zigzag equations }) \\
& =d_{2} a_{o} d_{1} t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& =\left(d_{2} y_{1}\right) a_{1} d_{1} t_{1} d_{4} \text { (by zigzag equations) } \\
& =a_{1} d_{1}\left(d_{2} y_{1}\right) t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& =d_{1} d_{2} y_{1} a_{1} t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d_{1} d_{2}\left(y_{1} a_{2}\right) t_{2} d_{4} \text { (by zigzag equations) } \\
& =d_{2} y_{1} a_{2} d_{1} t_{2} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& =d_{2} y_{2} a_{3}\left(d_{1} t_{2}\right) d_{4} \text { (by zigzag equations) } \\
& \left.=\left(y_{2} a_{3}\right) d_{2} d_{1} t_{2} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& \left.=d_{2} d_{1} y_{2} a_{3} t_{2} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{2} x_{3} x_{1} x_{4} x_{5}\right) \\
& \vdots \\
& =d_{2} d_{1} y_{m} a_{2 m-1} t_{m} d_{4} \\
& =d_{2} d_{1} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
& =d_{2} d_{1} d_{3} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{0}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{2} d_{1} d_{3} a_{o} t_{1}(\text { by Case (iv) }) \\
& =d_{2} d_{1} d_{3} d_{4}(\text { by zigzag equations }),
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.4. Let U be a right cyclic commutative sub-semigroup of a double right semi-commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is right cyclic commutative semigroup.

Proof. Let U be a right cyclic commutative sub-semigroup of a double right semi-commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also right cyclic commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m}\left(a_{2 m} d_{2} d_{3} d_{4}\right) \quad \text { (by zigzag equations) } \\
& =y_{m} a_{2 m} d_{3} d_{4} d_{2} \quad \text { (by Case (i)) } \\
& =d_{1} d_{3} d_{4} d_{2}(\text { by zigzag equations) },
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.

Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4}(\text { by zigzag equations }) \\
& =d_{1} d_{3} d_{4} a_{o} t_{1}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
& =d_{1} d_{3} d_{4} d_{2} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
= & d_{1} a_{2 m} d_{4} d_{2} y_{m}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
= & d_{1}\left(a_{2 m-1} t_{m}\right) d_{4} d_{2} y_{m} \quad(\text { by zigzag equations) } \\
= & d_{1} d_{2} y_{m} a_{2 m-1} t_{m} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
= & d_{1} d_{2} y_{m-1}\left(a_{2 m-2} t_{m}\right) d_{4} \text { (by zigzag equations) } \\
= & d_{1} a_{2 m-2} t_{m} d_{4} d_{2} y_{m-1} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
= & d_{1} a_{2 m-3} t_{m-1}\left(d_{4} d_{2}\right) y_{m-1} \text { (by zigzag equations) } \\
= & d_{1} d_{4} d_{2} y_{m-1} a_{2 m-3} t_{m-1}
\end{aligned}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right)
$$

$$
\vdots
$$

$$
=d_{1} d_{4} d_{2} y_{1} a_{1} t_{1}
$$

$$
=d_{1} d_{4} d_{2} a_{o} t_{1} \text { (by zigzag equations) }
$$

$$
=d_{1} a_{o} t_{1} d_{4} d_{2}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right)
$$

$$
=d_{1} d_{3} d_{4} d_{2} \text { (by zigzag equations), }
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} d_{3} y_{m} a_{2 m}(\text { by zigzag equations }) \\
& =d_{1} y_{m} a_{2 m} d_{2} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
& =d_{1}\left(y_{m} a_{2 m-1}\right) t_{m} d_{2} d_{3} \text { (by zigzag equations) } \\
& =d_{1} d_{2} d_{3} y_{m} a_{2 m-1} t_{m}
\end{aligned}
$$

$$
\begin{aligned}
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
&= d_{1}\left(d_{2} d_{3}\right) y_{m-1} a_{2 m-2} t_{m} \quad \text { (by zigzag equations) } \\
&= d_{1} a_{2 m-2} t_{m} d_{2} d_{3} y_{m-1} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
&= d_{1}\left(a_{2 m-3} t_{m-1}\right) d_{2} d_{3} y_{m-1} \text { (by zigzag equations) } \\
&= d_{1} d_{3} y_{m-1} a_{2 m-3} t_{m-1} d_{2} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{4} x_{5} x_{2} x_{3}\right) \\
& \vdots \\
&= d_{1} d_{3} y_{1} a_{1} t_{1} d_{2} \\
&= d_{1} d_{3} a_{o} t_{1} d_{2} \text { (by zigzag equations) } \\
&= d_{1} d_{3} d_{4} d_{2} \text { (by zigzag equations), }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.5. Let U be a left cyclic commutative sub-semigroup of a double left semi-commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is left cyclic commutative semigroup.

Proof. Let U be a left cyclic commutative sub-semigroup of a double left semi-commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also left cyclic commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =a_{o} t_{1} d_{2} d_{3} d_{4} \text { (by zigzag equations) } \\
& =d_{2} d_{3} a_{o} t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =d_{2} d_{3} d_{1} d_{4} \text { (by zigzag equations) },
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=t_{1} d_{3} d_{1} a_{o} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =t_{1} d_{3} d_{1}\left(y_{1} a_{1}\right) d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

$$
\begin{aligned}
& =d_{1} y_{1} a_{1} t_{1} d_{3} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =d_{1}\left(y_{1} a_{2}\right) t_{2} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=t_{2} d_{3} d_{1} y_{1} a_{2} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =t_{2}\left(d_{3} d_{1}\right) y_{2} a_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=y_{2} a_{3} t_{2} d_{3} d_{1} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& \vdots \\
& =y_{m} a_{2 m-1} t_{m} d_{3} d_{1} d_{4} \\
& =y_{m} a_{2 m} d_{3} d_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{2} d_{3} d_{1} d_{4} \text { (by zigzag equations) },
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} a_{o} t_{1} d_{4}(\text { by zigzag equations }) \\
& =a_{o} t_{1} d_{1} d_{2} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =y_{1} a_{1} t_{1}\left(d_{1} d_{2}\right) d_{4} \text { (by zigzag equations) } \\
& =t_{1} d_{1} d_{2}\left(y_{1} a_{1}\right) d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& \left.=d_{2} y_{1} a_{1} t_{1} d_{1} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{4} x_{1} x_{2} x_{5}\right) \\
& =d_{2} y_{1} a_{2} t_{2} d_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{2} y_{2} a_{3} t_{2} d_{1} d_{4} \text { (by zigzag equations) } \\
& \vdots \\
& =d_{2} y_{m} a_{2 m-1} t_{m} d_{1} d_{4} \\
& =d_{2} y_{m} a_{2 m} d_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{2} d_{3} d_{1} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{o}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{2} d_{3} d_{1} a_{o} t_{1}(\text { by Case (iv) }) \\
& =d_{2} d_{3} d_{1} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.

Theorem 2.6. Let U be a right dual-cyclic commutative sub-semigroup of a middle right dual-cyclic commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is right dual-cyclic commutative semigroup.

Proof. Let U be a right dual-cyclic commutative sub-semigroup of a middle right dual-cyclic commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also right dual-cyclic commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m} a_{2 m} d_{2} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=y_{m} a_{2 m} d_{4} d_{2} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
& =d_{1} d_{4} d_{2} d_{3} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & d_{1} y_{m} a_{2 m} d_{3} d_{4} \text { (by zigzag equations) } \\
= & \left.d_{1} y_{m} d_{4} a_{2 m} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & d_{1}\left(y_{m} d_{4} a_{2 m-1} t_{m} d_{3}\right) \text { (by zigzag equations) } \\
= & \left(d_{1} y_{m} d_{4} d_{3} a_{2 m-1}\right) t_{m} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & d_{1} y_{m} a_{2 m-1} d_{4} d_{3} t_{m} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & d_{1} y_{m-1} a_{2 m-2} d_{4}\left(d_{3} t_{m}\right) \text { (by zigzag equations) } \\
= & d_{1}\left(y_{m-1} d_{3} t_{m} a_{2 m-2} d_{4}\right) \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & d_{1}\left(y_{m-1} d_{3} d_{4} t_{m} a_{2 m-2}\right) \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & \left(d_{1} y_{m-1} d_{3} a_{2 m-2} d_{4}\right) t_{m} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
= & d_{1} y_{m-1} d_{4} d_{3} a_{2 m-2} t_{m} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\left(d_{1} y_{m-1} d_{4} d_{3} a_{2 m-3}\right) t_{m-1} \quad \text { (by zigzag equations) } \\
&= d_{1} y_{m-1} a_{2 m-3} d_{4} d_{3} t_{m-1} \\
& \quad\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
& \vdots \\
&= d_{1} y_{1} a_{1} d_{4} d_{3} t_{1} \\
&=\left(d_{1} a_{0} d_{4} d_{3}\right) t_{1} \text { (by zigzag equations) } \\
&=\left(d_{1} d_{3} a_{0} d_{4}\right) t_{1} \text { (by case (ii)) } \\
&= d_{1} d_{4} d_{3} a_{0} t_{1}(\text { by case (ii)) } \\
&= d_{1} d_{4} t_{1} d_{3} a_{0}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&= d_{1} d_{4} a_{0} t_{1} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&= d_{1} d_{4} d_{2} d_{3} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
& d_{1} d_{2} d_{3} d_{4}= d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
&= d_{1} d_{2} d_{4} y_{m} a_{2 m}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&=\left(d_{1} d_{2} d_{4} y_{m} a_{2 m-1}\right) t_{m}(\text { by zigzag equations }) \\
&=\left(d_{1} d_{2} a_{2 m-1} d_{4} y_{m}\right) t_{m} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&= d_{1} d_{2} y_{m} a_{2 m-1} d_{4} t_{m}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&=\left(d_{1} d_{2} y_{m-1} a_{2 m-2} d_{4}\right) t_{m} \text { (by zigzag equations) } \\
&= d_{1} d_{2} d_{4} y_{m-1} a_{2 m-2} t_{m} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&=\left(d_{1} d_{2} d_{4} y_{m-1} a_{2 m-3}\right) t_{m-1} \quad \text { (by zigzag equations) } \\
&=\left(d_{1} d_{2} a_{2 m-3} d_{4} y_{m-1}\right) t_{m-1} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
&= d_{1} d_{2} y_{m-1} a_{2 m-3} d_{4} t_{m-1} \\
&\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
& \vdots \\
&= d_{1} d_{2} y_{1} a_{1} d_{4} t_{1} \\
&=\left(d_{1} d_{2} a_{0} d_{4}\right) t_{1} \text { (by zigzag equations) }
\end{aligned}
$$

$$
\begin{aligned}
& =d_{1} d_{4} d_{2} a_{0} t_{1}(\text { by case }(\mathrm{iii})) \\
& =d_{1} d_{4} d_{2} d_{3} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{o}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{1} a_{0} d_{2} d_{3} t_{1}(\text { by Case (iv)) } \\
& =d_{1} a_{0} t_{1} d_{2} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5} x_{3} x_{4}\right) \\
& =d_{1} d_{4} d_{2} d_{3} \text { (by zigzag equations), }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.7. Let U be a left dual-cyclic commutative sub-semigroup of a middle left dual-cyclic commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is left dual-cyclic commutative semigroup.

Proof. Let U be a left dual-cyclic commutative sub-semigroup of a middle left dual-cyclic commutative semigroup S. Then, we have to show that $\operatorname{Dom}(U, S)$ is also left dual-cyclic commutative semigroup.
Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & y_{m}\left(a_{2 m} d_{2} d_{3} d_{4}\right) \text { (by zigzag equations) } \\
= & y_{m} d_{3} a_{2 m} d_{2} d_{4} \text { (by case (i)) } \\
= & \left(y_{m} d_{3}\right) a_{2 m-1} t_{m} d_{2} d_{4} \text { (by zigzag equations) } \\
= & t_{m} y_{m} d_{3}\left(a_{2 m-1} d_{2}\right) d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
= & d_{3} t_{m} y_{m} a_{2 m-1} d_{2} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
= & d_{3} t_{m}\left(y_{m-1} a_{2 m-2}\right) d_{2} d_{4} \text { (by zigzag equations) } \\
= & y_{m-1} a_{2 m-2} d_{3} t_{m}\left(d_{2} d_{4}\right) \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
= & d_{3} y_{m-1} a_{2 m-2} t_{m} d_{2} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
= & d_{3} y_{m-1} a_{2 m-3} t_{m-1} d_{2} d_{4}(\text { by zigzag equations })
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& =d_{3} y_{1} a_{1} t_{1} d_{2} d_{4} \\
& =d_{3} a_{o} t_{1} d_{2} d_{4} \text { (by zigzag equations) } \\
& =d_{3} d_{1} d_{2} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} a_{o} t_{1} d_{3} d_{4}(\text { by zigzag equations }) \\
& =t_{1} d_{1} a_{o} d_{3} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =t_{1} d_{1}\left(y_{1} a_{1}\right) d_{3} d_{4} \text { (by zigzag equations) } \\
& =y_{1} a_{1} t_{1} d_{1} d_{3} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =y_{1} a_{2} t_{2} d_{1} d_{3} d_{4}(\text { by zigzag equations) } \\
& =y_{2} a_{3}\left(t_{2} d_{1}\right) d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=\left(t_{2} d_{1}\right) y_{2} a_{3} d_{3} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =a_{3} t_{2} d_{1} y_{2}\left(d_{3} d_{4}\right)\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =d_{1} a_{3} t_{2} y_{2} d_{3} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& \vdots \\
& =d_{1} a_{2 m-1} t_{m} y_{m} d_{3} d_{4} \\
& =d_{1} a_{2 m} y_{m} d_{3} d_{4}(\text { by zigzag equations }) \\
& =y_{m}\left(d_{1} a_{2 m} d_{3} d_{4}\right)\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =y_{m} d_{3} d_{1} a_{2 m} d_{4}(\text { by case (ii) }) \\
& \left.=d_{1} y_{m} d_{3} a_{2 m} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& \left.=d_{3} d_{1} y_{m} a_{2 m} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =d_{3} d_{1} d_{2} d_{4}(\text { by zigzag equations) },
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} a_{o} t_{1} d_{4} \text { (by zigzag equations) } \\
& =a_{o} d_{1} d_{2} t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =y_{1} a_{1}\left(d_{1} d_{2}\right) t_{1} d_{4}(\text { by zigzag equations }) \\
& =d_{1} d_{2} y_{1} a_{1} t_{1} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d_{1} d_{2}\left(y_{1} a_{2}\right) t_{2} d_{4} \text { (by zigzag equations) } \\
& =y_{1} a_{2} d_{1} d_{2} t_{2} d_{4}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =y_{2} a_{3}\left(d_{1} d_{2}\right) t_{2} d_{4} \text { (by zigzag equations) } \\
& \left.=d_{1} d_{2} y_{2} a_{3} t_{2} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& \vdots \\
& =d_{1} d_{2} y_{m} a_{2 m-1} t_{m} d_{4} \\
& =d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
& \left.=y_{m}\left(d_{1} d_{2} a_{2 m} d_{4}\right) \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =y_{m} a_{2 m} d_{1} d_{2} d_{4} \text { (by case (iii)) } \\
& =d_{3} d_{1} d_{2} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} d_{3} a_{o} t_{1} \text { (by zigzag equations) } \\
& \left.=d_{3} d_{1} d_{2} a_{o} t_{1} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{4} x_{5}\right) \\
& =d_{3} d_{1} d_{2} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.8. Let U be a right externally commutative sub-semigroup of a dual right semi-commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is right externally commutative semigroup.

Proof. Let U be a right externally commutative sub-semigroup of a dual right semi-commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also right externally commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m}\left(a_{2 m} d_{2} d_{3} d_{4}\right)(\text { by zigzag equations }) \\
& =y_{m} a_{2 m} d_{4} d_{3} d_{2}(\text { by case }(\mathrm{i})) \\
& =d_{1} d_{4} d_{3} d_{2}(\text { by zigzag equations })
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.

Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} y_{m} a_{2 m} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=d_{1} d_{4} d_{3} y_{m} a_{2 m} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right) \\
& =d_{1} d_{4} d_{3} d_{2} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} y_{m} a_{2 m} d_{4}(\text { by zigzag equations) } \\
& =d_{1} d_{4} a_{2 m} d_{2} y_{m}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right) \\
& =d_{1}\left(d_{4} a_{2 m-1} t_{m} d_{2} y_{m}\right) \text { (by zigzag equations) } \\
& =\left(d_{1} d_{4} y_{m} d_{2} a_{2 m-1}\right) t_{m}
\end{aligned}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=d_{1} a_{2 m-1} d_{2} d_{4}\left(y_{m} t_{m}\right)
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=d_{1} y_{m} t_{m}\left(d_{4} a_{2 m-1}\right) d_{2}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=\left(d_{1} d_{2} d_{4} a_{2 m-1} y_{m}\right) t_{m}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=d_{1} y_{m} a_{2 m-1} d_{2} d_{4} t_{m}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=\left(d_{1} y_{m-1} a_{2 m-2} d_{2} d_{4}\right) t_{m} \text { (by zigzag equations) }
$$

$$
=d_{1} d_{4} d_{2} y_{m-1} a_{2 m-2} t_{m}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=d_{1} d_{4} d_{2} y_{m-1}\left(a_{2 m-3} t_{m-1}\right) \text { (by zigzag equations) }
$$

$$
=\left(d_{1} a_{2 m-3} t_{m-1} y_{m-1} d_{4}\right) d_{2}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
=d_{1} d_{4} y_{m-1} a_{2 m-3} t_{m-1} d_{2}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right)
$$

$$
\vdots
$$

$$
=d_{1} d_{4} y_{1} a_{1} t_{1} d_{2}
$$

$$
=d_{1} d_{4} a_{0} t_{1} d_{2} \text { (by zigzag equations) }
$$

$=d_{1} d_{4} d_{3} d_{2}$ (by zigzag equations),
as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} d_{3} a_{0} t_{1} \text { (by zigzag equations) } \\
& \left.=d_{1} t_{1} a_{o} d_{2} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right) \\
& =d_{1} t_{1}\left(y_{1} a_{1}\right) d_{2} d_{3} \text { (by zigzag equations) } \\
& \left.=d_{1} d_{3} d_{2} t_{1} y_{1} a_{1} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right) \\
& =d_{1} d_{3} d_{2} t_{1} a_{0} \text { (by zigzag equations) } \\
& =d_{1} a_{0} t_{1} d_{3} d_{2}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{1} x_{5} x_{4} x_{2} x_{3}\right) \\
& =d_{1} d_{4} d_{3} d_{2} \text { (by zigzag equations), }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.9. Let U be a left externally commutative sub-semigroup of a middle left externally commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is left externally commutative semigroup.
Proof. Let U be a left externally commutative sub-semigroup of a middle left externally commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also left externally commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & y_{m}\left(a_{2 m} d_{2} d_{3} d_{4}\right) \quad \text { (by zigzag equations) } \\
= & y_{m} d_{3} d_{2} a_{2 m} d_{4}(\text { by case (i)) } \\
= & y_{m}\left(d_{3} d_{2} a_{2 m-1} t_{m} d_{4}\right) \text { (by zigzag equations) } \\
= & y_{m} a_{2 m-1} d_{2} d_{3} t_{m} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right) \\
= & \left(y_{m-1} a_{2 m-2}\right) d_{2} d_{3} t_{m} d_{4} \text { (by zigzag equations) } \\
= & d_{3} d_{2} y_{m-1} a_{2 m-2} t_{m} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right) \\
= & d_{3} d_{2} y_{m-1} a_{2 m-3} t_{m-1} d_{4} \text { (by zigzag equations) }
\end{aligned}
$$

$$
\begin{aligned}
& =d_{3} d_{2} y_{1} a_{1} t_{1} d_{4} \\
& =d_{3} d_{2} a_{o} t_{1} d_{4} \text { (by zigzag equations) } \\
& =d_{3} d_{2} d_{1} d_{4} \text { (by zigzag equations), }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & d_{1} y_{m} a_{2 m} d_{3} d_{4} \text { (by zigzag equations) } \\
= & \left.a_{2 m} y_{m} d_{1} d_{3} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right) \\
= & a_{2 m-1}\left(t_{m} y_{m}\right) d_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
= & d_{1} t_{m} y_{m}\left(a_{2 m-1} d_{3}\right) d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right) \\
= & y_{m} t_{m}\left(d_{1} a_{2 m-1} d_{3} d_{4}\right)
\end{aligned}
$$

$$
\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right)
$$

$$
=y_{m} t_{m} d_{3}\left(a_{2 m-1} d_{1}\right) d_{4}(\text { by case }(\mathrm{ii}))
$$

$$
=d_{3} t_{m} y_{m} a_{2 m-1} d_{1} d_{4}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right)
$$

$$
=d_{3} t_{m} y_{m-1}\left(a_{2 m-2} d_{1}\right) d_{4} \text { (by zigzag equations) }
$$

$$
=y_{m-1} t_{m}\left(d_{3} a_{2 m-2}\right) d_{1} d_{4}
$$

(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)

$$
=d_{3} a_{2 m-2} t_{m} y_{m-1} d_{1} d_{4}
$$

$$
\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right)
$$

$$
=\left(d_{3} a_{2 m-3} t_{m-1} y_{m-1} d_{1}\right) d_{4} \text { (by zigzag equations) }
$$

$$
=t_{m-1} a_{2 m-3}\left(d_{3} y_{m-1}\right) d_{1} d_{4}
$$

(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)

$$
=d_{3} y_{m-1} a_{2 m-3} t_{m-1} d_{1} d_{4}
$$

$$
\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right)
$$

$$
\vdots
$$

$$
=d_{3} y_{1} a_{1} t_{1} d_{1} d_{4}
$$

$$
=d_{3} a_{o} t_{1} d_{1} d_{4} \text { (by zigzag equations) }
$$

$$
=d_{3} d_{2} d_{1} d_{4} \text { (by zigzag equations), }
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.

Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
& \left.=y_{m} d_{2} d_{1} a_{2 m} d_{4} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}\right) \\
& =\left(y_{m} d_{2}\right) d_{1} a_{2 m-1} t_{m} d_{4} \text { (by zigzag equations) } \\
& =a_{2 m-1}\left(d_{1} y_{m} d_{2} t_{m} d_{4}\right)
\end{aligned}
$$

(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=a_{2 m-1} d_{2}\left(y_{m} d_{1}\right) t_{m} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=y_{m} d_{1} d_{2} a_{2 m-1} t_{m} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=y_{m}\left(d_{1} d_{2} a_{2 m} d_{4}\right)$ (by zigzag equations)
$=y_{m} a_{2 m} d_{2} d_{1} d_{4}$ (by case (iii))
$=\left(y_{m} a_{2 m-1}\right) t_{m} d_{2} d_{1} d_{4}$ (by zigzag equations)
$=a_{2 m-1}\left(y_{m} d_{2} t_{m} d_{1} d_{4}\right)$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=\left(d_{2} t_{m}\right) y_{m} a_{2 m-1} d_{1} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=a_{2 m-1}\left(t_{m} d_{2}\right) y_{m} d_{1} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=y_{m} t_{m} d_{2}\left(a_{2 m-1} d_{1}\right) d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=d_{2} t_{m} y_{m} a 2 m-1 d_{1} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=d_{2} t_{m}\left(y m-1 a_{2 m-2}\right) d_{1} d_{4}$ (by zigzag equations)
$=y_{m-1} a_{2 m-2} t_{m} d_{2} d_{1} d_{4}$
(as S satisfies $x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{2} x_{1} x_{4} x_{5}$)
$=y_{m-1} a_{2 m-3} t_{m-1} d_{2} d_{1} d_{4}$ (by zigzag equations)
\vdots
$=y_{1} a_{1} t_{1} d_{2} d_{1} d_{4}$
$=a_{o} t_{1} d_{2} d_{1} d_{4}$ (by zigzag equations)
$=d_{3} d_{2} d_{1} d_{4}$ (by zigzag equations),
as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{0}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{3} d_{2} d_{1} a_{o} t_{1}(\text { by Case }(\text { iv })) \\
& =d_{3} d_{2} d_{1} d_{4}(\text { by zigzag equations }),
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.
Theorem 2.10. Let U be a bi-commutative sub-semigroup of a left dual-cyclic right semi-commutative semigroup S. Then $\operatorname{Dom}(U, S)$ is bi-commutative semigroup.

Proof. Let U be a bi-commutative sub-semigroup of a left dual-cyclic right semi-commutative semigroup S. Then we have to show that $\operatorname{Dom}(U, S)$ is also bi-commutative semigroup.

Case (i): If $d_{1}, d_{2}, d_{3}, d_{4} \in U$, then the result holds trivially.
Case (ii): $d_{1} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{2}, d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{1} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =y_{m} a_{2 m} d_{2} d_{3} d_{4} \text { (by zigzag equations) } \\
& \left.=d_{2} y_{m} a_{2 m} d_{4} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
& =d_{2} d_{1} d_{4} d_{3} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (iii): $d_{1}, d_{2} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{3}, d_{4} \in U$.
Then, by Theorem 1.1, d_{2} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & d_{1} y_{m} a_{2 m} d_{3} d_{4} \text { (by zigzag equations) } \\
= & \left.a_{2 m} d_{1} y_{m} d_{4} d_{3} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & \left(a_{2 m-1} t_{m}\right) d_{1} y_{m} d_{4} d_{3} \text { (by zigzag equations) } \\
= & y_{m} a_{2 m-1} t_{m} d_{1} d_{3} d_{4} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & y_{m-1}\left(a_{2 m-2} t_{m}\right) d_{1} d_{3} d_{4} \text { (by zigzag equations) } \\
= & d_{1} y_{m-1} a_{2 m-2} t_{m} d_{4} d_{3} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right)
\end{aligned}
$$

$$
=d_{1} y_{m-1}\left(a_{2 m-3} t_{m-1}\right) d_{4} d_{3} \text { (by zigzag equations) }
$$

$$
=\left(a_{2 m-3} t_{m-1}\right) d_{1} y_{m-1} d_{3} d_{4}
$$

$$
\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right)
$$

$$
=y_{m-1} a_{2 m-3} t_{m-1} d_{1} d_{4} d_{3}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right)
$$

$$
\vdots
$$

$$
=y_{1} a_{1} t_{1} d_{1} d_{4} d_{3}
$$

$$
=a_{0} t_{1} d_{1} d_{4} d_{3} \text { (by zigzag equations) }
$$

$$
=d_{2} d_{1} d_{4} d_{3} \text { (by zigzag equations), }
$$

as required.
Case (iv): $d_{1}, d_{2}, d_{3} \in \operatorname{Dom}(U, S) \backslash U$ and $d_{4} \in U$.
Then, by Theorem 1.1, d_{3} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4}= & d_{1} d_{2} y_{m} a_{2 m} d_{4} \text { (by zigzag equations) } \\
= & \left.y_{m} d_{1} d_{2} d_{4} a_{2 m} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & \left(y_{m} d_{1} d_{2} d_{4} a_{2 m-1}\right) t_{m} \text { (by zigzag equations) } \\
= & \left(d_{2} y_{m} d_{1} a_{2 m-1} d_{4}\right) t_{m} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & d_{1}\left(d_{2} y_{m} d_{4} a_{2 m-1} t_{m}\right) \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & \left(d_{1} d_{4} d_{2} y_{m} t_{m}\right) a_{2 m-1} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & d_{2} d_{1} d_{4} t_{m} y_{m} a_{2 m-1} \\
& \left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
= & d_{2} d_{1} d_{4} t_{m}\left(y_{m-1} a_{2 m-2}\right) \text { (by zigzag equations) } \\
= & d_{4} d_{2} d_{1} y_{m-1} a_{2 m-2} t_{m}
\end{aligned}
$$

$$
\text { (as } \left.S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right)
$$

$$
=d_{4} d_{2} d_{1}\left(y_{m-1} a_{2 m-3}\right) t_{m-1} \text { (by zigzag equations) }
$$

$$
=d_{1} d_{4} d_{2} t_{m-1} y_{m-1} a_{2 m-3}
$$

$$
\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right)
$$

$$
\vdots
$$

$$
=d_{1} d_{4} d_{2} t_{1} y_{1} a_{1}
$$

$$
\begin{aligned}
& =d_{1} d_{4} d_{2} t_{1} a_{0} \text { (by zigzag equations) } \\
& \left.=d_{2} d_{1} d_{4} a_{0} t_{1} \text { (as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
& =d_{2} d_{1} d_{4} d_{3} \text { (by zigzag equations) }
\end{aligned}
$$

as required.
Case (v): $d_{1}, d_{2}, d_{3}, d_{4} \in \operatorname{Dom}(U, S) \backslash U$.
Then, by Theorem 1.1, d_{4} has zigzag equations of type (1.1) in S over U of length m. Now

$$
\begin{aligned}
d_{1} d_{2} d_{3} d_{4} & =\left(d_{1} d_{2} d_{3} a_{o}\right) t_{1}(\text { by zigzag equations }) \\
& =d_{2} d_{1} a_{o} d_{3} t_{1}(\text { by Case (iv)) } \\
& =a_{0} d_{2} d_{1} t_{1} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
& =\left(y_{1} a_{1}\right) d_{2} d_{1} t_{1} d_{3} \text { (by zigzag equations) } \\
& =d_{1}\left(y_{1} a_{1}\right) d_{2} d_{3} t_{1}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
& =d_{2} d_{1} y_{1} a_{1} t_{1} d_{3}\left(\text { as } S \text { satisfies } x_{1} x_{2} x_{3} x_{4} x_{5}=x_{3} x_{1} x_{2} x_{5} x_{4}\right) \\
& =d_{2} d_{1} a_{0} t_{1} d_{3} \text { (by zigzag equations) } \\
& =d_{2} d_{1} d_{4} d_{3} \text { (by zigzag equations) }
\end{aligned}
$$

as required. Thus the proof of the theorem is completed.

Acknowledgments

This work is supported by the Research Grant (No. JKST\&IC/SRE/J/35760) provided by JKSTIC, Govt. of Jammu and Kashmir, India.

References

1. S. Abbas, W. Ashraf and A. H. Shah, On dominions and varieties of bands, Asian Eur. J. Math., 14(8) (2021), Article ID: 2150140.
2. N. Alam, P. M. Higgins and N. M. Khan, Epimorphisms, dominions and $\mathcal{H}-$ commutative semigroups, Semigroup Forum, 100 (2020), 349-363.
3. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys and Monographs, Vol. 7, No. 1. American Mathematical Society (1961, 1967)).
4. J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
5. J. R. Isbell, Epimorphisms and dominions, In: Proceedings of the conference on Categorical Algebra, La Jolla, (1965), 232-246. Lange and Springer, Berlin (1966).
6. N. M. Khan, Epimorphically closed permutative varieties, Trans. Amer. Math. Soc., 287 (1985), 507-528.
7. N. M. Khan, On saturated permutative varieties and consequences of permutation identities. J. Aust. Math. Soc.(Ser. A), 38(1985), 186-197.
8. A. Nagy, Special Classes of Semigroups, Springer, 2001.

Humaira Maqbool

Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, P.O. Box 192122, Pulwama, India.
Email: hemimaqbool@gmail.com

Mohammad Younus Bhat

Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, P.O. Box 192122, Pulwama, India.
Email: gyounusg@gmail.com

Journal of Algebraic Systems

VARIETIES OF PERMUTATIVE SEMIGROUPS

CLOSED UNDER DOMINIONS
H. MAQBOOL AND M. Y. BHAT

انواع نيبگروههاى جايگشتى تحت قلمروها بسته
حميرا مقبول' و محمد يونس بهات「
「,اگروه علوم رياضى، دانشگاه علم و صنعت اسلامى كشمير، پولواما، هند
 براى كلاسى تعميميافته از نيمگروههاى جابجايى با استفاده از مجموعه احاطهكر ثابت مى كنيم. كلمات كليدى: معادلات زيگزاگى، قلمرو، انواع، همانى.

