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VARIETIES OF PERMUTATIVE SEMIGROUPS
CLOSED UNDER DOMINIONS

H. MAQBOOL∗ AND M. Y. BHAT

Abstract. In this paper, we partially generalize a result of
Isbell from the class of commutative semigroups to some
generalized class of commutative semigroups by showing that
dominion of such semigroups belongs to the same class by using
Isbell’s zigzag theorem.

1. Introduction and Preliminaries

Let U be a subsemigroup of a semigroup S. Following Isbell [5], we
say that U dominates an element d of S if for every semigroup T and
for all homomorphisms β, γ : S −→ T and uβ=uγ for every u in U
implies dβ=dγ. The set of all elements of S dominated by U is called
dominion of U in S and we denote it by Dom(U, S). It can be easily
verified that Dom(U, S) is a subsemigroup of S containing U .

The following theorem provided by Isbell [5], known as Isbell’s zigzag
theorem, is a most useful characterization of semigroup dominions and
is of basic importance to our investigations.

Theorem 1.1. ([5], Theorem 2.3) Let U be a subsemigroup of a semi-
group S and let d ∈ S. Then d ∈ Dom(U, S) if and only if d ∈ U or
there exists a series of factorizations of d as follows:
d = a0t1 = y1a1t1 = y1a2t2 = y2a3t2 = · · · = yma2m−1tm = yma2m (1.1)
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where m ≥ 1, ai ∈ U (i = 0, 1, . . . , 2m), yi, ti ∈ S (i = 1, 2, . . . ,m),
and

a0 = y1a1, a2m−1tm = a2m,

a2i−1ti = a2iti+1, yia2i = yi+1a2i+1 (1 ≤ i ≤ m− 1).

Such a series of factorization is called a zigzag in S over U with
value d, length m and spine a0, a1, . . . , a2m.

The following result is from Khan [7] and is also necessary for our
investigations.
Theorem 1.2. ([7], Result 3) Let U and S be semigroups with U as a
subsemigroup of S. Take any d ∈ S\U such that d ∈ Dom(U, S). Let
(1) be a zigzag of shortest possible length m over U with value d. Then
tj, yj ∈ S\U for all j = 1, 2, . . . ,m.

Definition 1.3. Let
x1x2x3x4 = xi1xi2xi3xi4 (1.2)

and
x1x2x3x4x5 = xj1xj2xj3xj4xj5 (1.3)

be permutation identities, where i and j are nontrivial permutations
of the sets {1, 2, 3, 4} and {1, 2, 3, 4, 5} respectively. Then a semigroup
satisfying (1.2) is called

(i) a medial semigroup if i2 = 3 and i3 = 2;
(ii) a right semi-commutative semigroup if i3 = 4 and i4 = 3;
(iii) a left semi-commutative semigroup if i1 = 2 and i2 = 1;
(iv) a right cyclic commutative semigroup if i2 = 3, i3 = 4 and i4 = 2;
(v) a left cyclic commutative semigroup if i1 = 2, i2 = 3 and i3 = 1;
(vi) a right dual-cyclic commutative semigroup if i2 = 4, i3 = 2 and
i4 = 3;
(vii) a left dual-cyclic commutative semigroup if i1 = 3, i2 = 1 and
i3 = 2;
(viii) a right externally commutative semigroup if i2 = 4 and i4 = 2;
(ix) a left externally commutative semigroup if i1 = 3 and i3 = 1;
(x) a bi-commutative semigroup ifi1 = 2, i2 = 1, i3 = 4 and i4 = 3.

while satisfying (1.3) is called

(i) a cyclic semi-normal commutative semigroup if j2 = 3, j3 = 4 and
j4 = 2;
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(ii) a middle right semi-commutative semigroup if j4 = 5 and j5 = 4;
(iii) middle left cyclic commutative semigroup if j1 = 2, J2 = 3 and
j3 = 1;
(iv) a double right semi-commutative semigroup if j2 = 4, j3 = 5,
j4 = 2 and j5 = 3;
(v) a double left semi-commutative semigroup if j1 = 3, j2 = 4, j3 = 1
and j4 = 2;
(vi) a middle right dual-cyclic commutative semigroup if j3 = 5, j4 = 3
and j5 = 4;
(vii) a middle left dual-cyclic commutative semigroup if j1 = 3, j2 = 1
and j3 = 2;
(viii) a dual right semi-commutative semigroup if j2 = 5, j3 = 4, j4 = 2
and j5 = 3;
(ix) a middle left externally commutative semigroup if j1 = 3 and
j3 = 1;
(x) a left dual-cyclic right semi-commutative if j1 = 3, j2 = 1, j3 = 2,
j4 = 5 and j5 = 4.

The semigroup theoretic notations and conventions of Clifford and
Preston [3] and Howie [4] will be used throughout without explicit
mention.

2. Dominions and some generalized classes of
commutative semigroups

Isbell [5], Corollary 2.5, showed that the dominion of a commutative
semigroup is commutative. But in [6], Khan gave a counter-example
to show that this stronger result is false for each (nontrivial) permuta-
tion identity other than commutativity. Recently Alam, Higgins and
Khan [2] generalized Isbell’s result from commutative semigroups to H-
commutative semigroups. Also, Abbas and Ashraf in [1], found some
generalized classes of commutative semigroups for which this stronger
result is true in some weaker form. Further, in the same direction, I
found some more permutative semigroups for which Dom(U, S) satis-
fies the identity of U .

Theorem 2.1. Let U be a medial sub-semigroup of a cyclic semi-
normal commutative semigroup S. Then Dom(U, S) is medial semi-
group.

Proof. Let U be a medial sub-semigroup of a cyclic semi-normal
commutative semigroup S. Then we have to show that Dom(U, S)
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is also medial semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = ym(a2md2d3d4) (by zigzag equations)
= yma2md3d2d4 (since U is medial semigroup)
= d1d3d2d4 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1aot1d3d4 (by zigzag equations)
= d1t1d3aod4 (as S satisfies x1x2x3x4x5 = x1x3x4x2x5)

= d1t1d3(y1a1)d4 (by zigzag equations)
= d1d3y1a1t1d4 (as S satisfies x1x2x3x4x5 = x1x3x4x2x5)

= d1d3y1a2t2d4 (by zigzag equations)
= d1d3y2a3t2d4 (by zigzag equations)
...
= d1d3yma2m−1tmd4

= d1d3yma2md4 (by zigzag equations)
= d1d3d2d4 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2aot1d4 (by zigzag equations)
= d1d2(y1a1)t1d4 (by zigzag equations)
= d1y1a1t1d2d4 (as S satisfies x1x2x3x4x5 = x1x3x4x2x5)

= d1y1a2t2d2d4 (by zigzag equations)
= d1y2a3t2d2d4 (by zigzag equations)
...
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= d1yma2m−1tmd2d4

= d1yma2md2d4 (by zigzag equations)
= d1d3d2d4 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3ao)t1 (by zigzag equations)
= d1d3d2aot1 (by case (iv))
= d1d3d2d4 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □

Theorem 2.2. Let U be a right semi-commutative sub-semigroup of a
middle right semi-commutative semigroup S. Then Dom(U, S) is right
semi-commutative semigroup.

Proof. Let U be a right semi-commutative sub-semigroup of a
middle right semi-commutative semigroup S. Then we have to show
that Dom(U, S) is also right semi-commutative semigroup.
Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = yma2md2d3d4 (by zigzag equations)
= yma2md2d4d3 (as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= d1d2d4d3(by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1aot1d3d4 (by zigzag equations)
= d1aot1d4d3 (as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= d1d2d4d3 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
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Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1d2yma2md4 (by zigzag equations)

= d1d2ymd4a2m (as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= (d1d2ymd4a2m−1)tm (by zigzag equations)
= d1d2yma2m−1d4tm

(as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= (d1d2ym−1a2m−2d4)tm (by zigzag equations)
= d1d2ym−1d4a2m−2tm

(as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= (d1d2ym−1d4a2m−3)tm−1 (by zigzag equations)
= d1d2ym−1a2m−3d4tm−1

(as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

...
= d1d2y1a1d4t1

= (d1d2aod4)t1 (by zigzag equations)
= d1d2d4aot1 (by case (iii))
= d1d2d4d3 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3a0)t1 (by zigzag equations)
= d1d2aod3t1 (by case (iv))
= d1d2aot1d3 (as S satisfies x1x2x3x4x5 = x1x2x3x5x4)

= d1d2d4d3 (by zigzag equations),
as required. Thus the proof of the theorem is completed. □
Theorem 2.3. Let U be a left semi-commutative sub-semigroup of a
middle left cyclic commutative semigroup S. Then Dom(U, S) is left
semi-commutative semigroup.
Proof. Let U be a left semi-commutative sub-semigroup of a middle left
cylic commutative semigroup S. Then we have to show that Dom(U, S)
is also left semi-commutative semigroup.
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Case (i): d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = yma2md2d3d4 (by zigzag equations)

= a2md2ymd3d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= a2m−1tm(d2ym)d3d4 (by zigzag equations)
= tmd2yma2m−1d3d4

(as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= tmd2(ym−1a2m−2)d3d4 (by zigzag equations)
= d2ym−1a2m−2tmd3d4

(as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= d2ym−1a2m−3tm−1d3d4 (by zigzag equations)
...
= d2y1a1t1d3d4

= d2aot1d3d4 (by zigzag equations)
= d2d1d3d4 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1aot1d3d4 (by zigzag equations)
= aot1d1d3d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= d2d1d3d4 (by zigzag equations),
as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1d2aot1d4 (by zigzag equations)

= d2aod1t1d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= (d2y1)a1d1t1d4 (by zigzag equations)
= a1d1(d2y1)t1d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= d1d2y1a1t1d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)
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= d1d2(y1a2)t2d4 (by zigzag equations)
= d2y1a2d1t2d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= d2y2a3(d1t2)d4 (by zigzag equations)
= (y2a3)d2d1t2d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

= d2d1y2a3t2d4 (as S satisfies x1x2x3x4x5 = x2x3x1x4x5)

...
= d2d1yma2m−1tmd4

= d2d1yma2md4 (by zigzag equations)
= d2d1d3d4 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3a0)t1 (by zigzag equations)
= d2d1d3aot1 (by Case (iv))
= d2d1d3d4 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □

Theorem 2.4. Let U be a right cyclic commutative sub-semigroup of a
double right semi-commutative semigroup S. Then Dom(U, S) is right
cyclic commutative semigroup.

Proof. Let U be a right cyclic commutative sub-semigroup of a
double right semi-commutative semigroup S. Then we have to show
that Dom(U, S) is also right cyclic commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = ym(a2md2d3d4) (by zigzag equations)
= yma2md3d4d2 (by Case (i))
= d1d3d4d2 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
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Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1aot1d3d4 (by zigzag equations)
= d1d3d4aot1 (as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1d3d4d2 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2yma2md4 (by zigzag equations)
= d1a2md4d2ym (as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1(a2m−1tm)d4d2ym (by zigzag equations)
= d1d2yma2m−1tmd4

(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1d2ym−1(a2m−2tm)d4 (by zigzag equations)
= d1a2m−2tmd4d2ym−1

(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1a2m−3tm−1(d4d2)ym−1 (by zigzag equations)
= d1d4d2ym−1a2m−3tm−1

(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

...
= d1d4d2y1a1t1

= d1d4d2aot1 (by zigzag equations)
= d1aot1d4d2 (as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1d3d4d2 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2d3yma2m (by zigzag equations)
= d1yma2md2d3 (as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1(yma2m−1)tmd2d3 (by zigzag equations)
= d1d2d3yma2m−1tm
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(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1(d2d3)ym−1a2m−2tm (by zigzag equations)
= d1a2m−2tmd2d3ym−1

(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

= d1(a2m−3tm−1)d2d3ym−1 (by zigzag equations)
= d1d3ym−1a2m−3tm−1d2

(as S satisfies x1x2x3x4x5 = x1x4x5x2x3)

...
= d1d3y1a1t1d2

= d1d3aot1d2 (by zigzag equations)
= d1d3d4d2 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □

Theorem 2.5. Let U be a left cyclic commutative sub-semigroup of
a double left semi-commutative semigroup S. Then Dom(U, S) is left
cyclic commutative semigroup.

Proof. Let U be a left cyclic commutative sub-semigroup of a
double left semi-commutative semigroup S. Then we have to show
that Dom(U, S) is also left cyclic commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = aot1d2d3d4 (by zigzag equations)
= d2d3aot1d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= d2d3d1d4 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1aot1d3d4 (by zigzag equations)
= t1d3d1aod4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= t1d3d1(y1a1)d4 (by zigzag equations)
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= d1y1a1t1d3d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= d1(y1a2)t2d3d4 (by zigzag equations)
= t2d3d1y1a2d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= t2(d3d1)y2a3d4 (by zigzag equations)
= y2a3t2d3d1d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

...
= yma2m−1tmd3d1d4

= yma2md3d1d4 (by zigzag equations)
= d2d3d1d4 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1d2aot1d4 (by zigzag equations)

= aot1d1d2d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= y1a1t1(d1d2)d4 (by zigzag equations)
= t1d1d2(y1a1)d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= d2y1a1t1d1d4 (as S satisfies x1x2x3x4x5 = x3x4x1x2x5)

= d2y1a2t2d1d4 (by zigzag equations)
= d2y2a3t2d1d4 (by zigzag equations)
...
= d2yma2m−1tmd1d4

= d2yma2md1d4 (by zigzag equations)
= d2d3d1d4 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3ao)t1 (by zigzag equations)
= d2d3d1aot1 (by Case (iv))
= d2d3d1d4 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □
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Theorem 2.6. Let U be a right dual-cyclic commutative sub-semigroup
of a middle right dual-cyclic commutative semigroup S. Then Dom(U, S)
is right dual-cyclic commutative semigroup.

Proof. Let U be a right dual-cyclic commutative sub-semigroup of a
middle right dual-cyclic commutative semigroup S. Then we have to
show that Dom(U, S) is also right dual-cyclic commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = yma2md2d3d4 (by zigzag equations)

= yma2md4d2d3 (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d4d2d3 (by zigzag equations),
as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1yma2md3d4 (by zigzag equations)

= d1ymd4a2md3 (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1(ymd4a2m−1tmd3) (by zigzag equations)
= (d1ymd4d3a2m−1)tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1yma2m−1d4d3tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1ym−1a2m−2d4(d3tm) (by zigzag equations)
= d1(ym−1d3tma2m−2d4)

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1(ym−1d3d4tma2m−2)

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= (d1ym−1d3a2m−2d4)tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1ym−1d4d3a2m−2tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)
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= (d1ym−1d4d3a2m−3)tm−1 (by zigzag equations)
= d1ym−1a2m−3d4d3tm−1

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

...
= d1y1a1d4d3t1

= (d1a0d4d3)t1 (by zigzag equations)
= (d1d3a0d4)t1 (by case (ii))
= d1d4d3a0t1 (by case (ii))
= d1d4t1d3a0 (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d4a0t1d3 (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d4d2d3 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2yma2md4 (by zigzag equations)
= d1d2d4yma2m (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= (d1d2d4yma2m−1)tm (by zigzag equations)
= (d1d2a2m−1d4ym)tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d2yma2m−1d4tm (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= (d1d2ym−1a2m−2d4)tm (by zigzag equations)
= d1d2d4ym−1a2m−2tm

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= (d1d2d4ym−1a2m−3)tm−1 (by zigzag equations)
= (d1d2a2m−3d4ym−1)tm−1

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d2ym−1a2m−3d4tm−1

(as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

...
= d1d2y1a1d4t1

= (d1d2a0d4)t1 (by zigzag equations)
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= d1d4d2a0t1 (by case (iii))
= d1d4d2d3 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3ao)t1 (by zigzag equations)
= d1a0d2d3t1 (by Case (iv))
= d1a0t1d2d3 (as S satisfies x1x2x3x4x5 = x1x2x5x3x4)

= d1d4d2d3 (by zigzag equations),
as required. Thus the proof of the theorem is completed. □
Theorem 2.7. Let U be a left dual-cyclic commutative sub-semigroup
of a middle left dual-cyclic commutative semigroup S. Then Dom(U, S)
is left dual-cyclic commutative semigroup.
Proof. Let U be a left dual-cyclic commutative sub-semigroup of a
middle left dual-cyclic commutative semigroup S. Then, we have to
show that Dom(U, S) is also left dual-cyclic commutative semigroup.
Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = ym(a2md2d3d4) (by zigzag equations)
= ymd3a2md2d4 (by case (i))
= (ymd3)a2m−1tmd2d4 (by zigzag equations)
= tmymd3(a2m−1d2)d4

(as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3tmyma2m−1d2d4

(as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3tm(ym−1a2m−2)d2d4 (by zigzag equations)
= ym−1a2m−2d3tm(d2d4)

(as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3ym−1a2m−2tmd2d4

(as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3ym−1a2m−3tm−1d2d4 (by zigzag equations)
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...
= d3y1a1t1d2d4

= d3aot1d2d4 (by zigzag equations)
= d3d1d2d4 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1aot1d3d4 (by zigzag equations)

= t1d1aod3d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= t1d1(y1a1)d3d4 (by zigzag equations)
= y1a1t1d1d3d4(as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= y1a2t2d1d3d4 (by zigzag equations)
= y2a3(t2d1)d3d4 (by zigzag equations)
= (t2d1)y2a3d3d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= a3t2d1y2(d3d4) (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d1a3t2y2d3d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

...
= d1a2m−1tmymd3d4

= d1a2mymd3d4 (by zigzag equations)
= ym(d1a2md3d4) (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= ymd3d1a2md4 (by case (ii))
= d1ymd3a2md4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3d1yma2md4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3d1d2d4 (by zigzag equations),
as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1d2aot1d4 (by zigzag equations)

= aod1d2t1d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= y1a1(d1d2)t1d4 (by zigzag equations)
= d1d2y1a1t1d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)
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= d1d2(y1a2)t2d4 (by zigzag equations)
= y1a2d1d2t2d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= y2a3(d1d2)t2d4 (by zigzag equations)
= d1d2y2a3t2d4 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

...
= d1d2yma2m−1tmd4

= d1d2yma2md4 (by zigzag equations)
= ym(d1d2a2md4) (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= yma2md1d2d4 (by case (iii))
= d3d1d2d4 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2d3aot1 (by zigzag equations)
= d3d1d2aot1 (as S satisfies x1x2x3x4x5 = x3x1x2x4x5)

= d3d1d2d4 (by zigzag equations),
as required. Thus the proof of the theorem is completed. □
Theorem 2.8. Let U be a right externally commutative sub-semigroup
of a dual right semi-commutative semigroup S. Then Dom(U, S) is
right externally commutative semigroup.
Proof. Let U be a right externally commutative sub-semigroup of a
dual right semi-commutative semigroup S. Then we have to show that
Dom(U, S) is also right externally commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = ym(a2md2d3d4) (by zigzag equations)
= yma2md4d3d2 (by case (i))
= d1d4d3d2 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
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Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1yma2md3d4 (by zigzag equations)

= d1d4d3yma2m (as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1d4d3d2 (by zigzag equations),
as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1d2yma2md4 (by zigzag equations)

= d1d4a2md2ym (as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1(d4a2m−1tmd2ym) (by zigzag equations)
= (d1d4ymd2a2m−1)tm

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1a2m−1d2d4(ymtm)

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1ymtm(d4a2m−1)d2

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= (d1d2d4a2m−1ym)tm

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1yma2m−1d2d4tm

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= (d1ym−1a2m−2d2d4)tm (by zigzag equations)
= d1d4d2ym−1a2m−2tm

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1d4d2ym−1(a2m−3tm−1) (by zigzag equations)
= (d1a2m−3tm−1ym−1d4)d2

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1d4ym−1a2m−3tm−1d2

(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

...
= d1d4y1a1t1d2

= d1d4a0t1d2 (by zigzag equations)
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= d1d4d3d2 (by zigzag equations),
as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2d3a0t1 (by zigzag equations)
= d1t1aod2d3 (as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1t1(y1a1)d2d3 (by zigzag equations)
= d1d3d2t1y1a1 (as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1d3d2t1a0 (by zigzag equations)
= d1a0t1d3d2(as S satisfies x1x2x3x4x5 = x1x5x4x2x3)

= d1d4d3d2 (by zigzag equations),
as required. Thus the proof of the theorem is completed. □
Theorem 2.9. Let U be a left externally commutative sub-semigroup
of a middle left externally commutative semigroup S. Then Dom(U, S)
is left externally commutative semigroup.
Proof. Let U be a left externally commutative sub-semigroup of a mid-
dle left externally commutative semigroup S. Then we have to show
that Dom(U, S) is also left externally commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = ym(a2md2d3d4) (by zigzag equations)
= ymd3d2a2md4 (by case (i))
= ym(d3d2a2m−1tmd4) (by zigzag equations)
= yma2m−1d2d3tmd4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= (ym−1a2m−2)d2d3tmd4 (by zigzag equations)
= d3d2ym−1a2m−2tmd4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d3d2ym−1a2m−3tm−1d4 (by zigzag equations)
...
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= d3d2y1a1t1d4

= d3d2aot1d4 (by zigzag equations)
= d3d2d1d4 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now
d1d2d3d4 = d1yma2md3d4 (by zigzag equations)

= a2mymd1d3d4 (as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= a2m−1(tmym)d1d3d4 (by zigzag equations)
= d1tmym(a2m−1d3)d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ymtm(d1a2m−1d3d4)

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ymtmd3(a2m−1d1)d4 (by case (ii))
= d3tmyma2m−1d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d3tmym−1(a2m−2d1)d4 (by zigzag equations)
= ym−1tm(d3a2m−2)d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d3a2m−2tmym−1d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= (d3a2m−3tm−1ym−1d1)d4 (by zigzag equations)
= tm−1a2m−3(d3ym−1)d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d3ym−1a2m−3tm−1d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

...
= d3y1a1t1d1d4

= d3aot1d1d4 (by zigzag equations)
= d3d2d1d4 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
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Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2yma2md4 (by zigzag equations)
= ymd2d1a2md4 (as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= (ymd2)d1a2m−1tmd4 (by zigzag equations)
= a2m−1(d1ymd2tmd4)

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= a2m−1d2(ymd1)tmd4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ymd1d2a2m−1tmd4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ym(d1d2a2md4) (by zigzag equations)
= yma2md2d1d4 (by case (iii))
= (yma2m−1)tmd2d1d4 (by zigzag equations)
= a2m−1(ymd2tmd1d4)

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= (d2tm)yma2m−1d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= a2m−1(tmd2)ymd1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ymtmd2(a2m−1d1)d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d2tmyma2m− 1d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= d2tm(ym− 1a2m−2)d1d4 (by zigzag equations)
= ym−1a2m−2tmd2d1d4

(as S satisfies x1x2x3x4x5 = x3x2x1x4x5)

= ym−1a2m−3tm−1d2d1d4 (by zigzag equations)
...
= y1a1t1d2d1d4

= aot1d2d1d4 (by zigzag equations)
= d3d2d1d4 (by zigzag equations),
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as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3a0)t1 (by zigzag equations)
= d3d2d1aot1 (by Case (iv))
= d3d2d1d4 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □

Theorem 2.10. Let U be a bi-commutative sub-semigroup of a left
dual-cyclic right semi-commutative semigroup S. Then Dom(U, S) is
bi-commutative semigroup.

Proof. Let U be a bi-commutative sub-semigroup of a left dual-cyclic
right semi-commutative semigroup S. Then we have to show that
Dom(U, S) is also bi-commutative semigroup.

Case (i): If d1, d2, d3, d4 ∈ U , then the result holds trivially.

Case (ii): d1 ∈ Dom(U, S)\U and d2, d3, d4 ∈ U .
Then, by Theorem 1.1, d1 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = yma2md2d3d4 (by zigzag equations)
= d2yma2md4d3 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1d4d3 (by zigzag equations),

as required.
Case (iii): d1, d2 ∈ Dom(U, S)\U and d3, d4 ∈ U .
Then, by Theorem 1.1, d2 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1yma2md3d4 (by zigzag equations)
= a2md1ymd4d3 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= (a2m−1tm)d1ymd4d3 (by zigzag equations)
= yma2m−1tmd1d3d4

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= ym−1(a2m−2tm)d1d3d4 (by zigzag equations)
= d1ym−1a2m−2tmd4d3

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)
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= d1ym−1(a2m−3tm−1)d4d3 (by zigzag equations)
= (a2m−3tm−1)d1ym−1d3d4

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= ym−1a2m−3tm−1d1d4d3

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

...
= y1a1t1d1d4d3

= a0t1d1d4d3 (by zigzag equations)
= d2d1d4d3 (by zigzag equations),

as required.
Case (iv): d1, d2, d3 ∈ Dom(U, S)\U and d4 ∈ U .
Then, by Theorem 1.1, d3 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = d1d2yma2md4 (by zigzag equations)
= ymd1d2d4a2m (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= (ymd1d2d4a2m−1)tm (by zigzag equations)
= (d2ymd1a2m−1d4)tm

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d1(d2ymd4a2m−1tm)

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= (d1d4d2ymtm)a2m−1

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1d4tmyma2m−1

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1d4tm(ym−1a2m−2) (by zigzag equations)
= d4d2d1ym−1a2m−2tm

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d4d2d1(ym−1a2m−3)tm−1 (by zigzag equations)
= d1d4d2tm−1ym−1a2m−3

(as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

...
= d1d4d2t1y1a1
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= d1d4d2t1a0 (by zigzag equations)
= d2d1d4a0t1 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1d4d3 (by zigzag equations),

as required.
Case (v): d1, d2, d3, d4 ∈ Dom(U, S)\U .
Then, by Theorem 1.1, d4 has zigzag equations of type (1.1) in S over
U of length m. Now

d1d2d3d4 = (d1d2d3ao)t1 (by zigzag equations)
= d2d1aod3t1 (by Case (iv))
= a0d2d1t1d3 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= (y1a1)d2d1t1d3 (by zigzag equations)
= d1(y1a1)d2d3t1 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1y1a1t1d3 (as S satisfies x1x2x3x4x5 = x3x1x2x5x4)

= d2d1a0t1d3 (by zigzag equations)
= d2d1d4d3 (by zigzag equations),

as required. Thus the proof of the theorem is completed. □
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VARIETIES OF PERMUTATIVE SEMIGROUPS
CLOSED UNDER DOMINIONS

H. MAQBOOL AND M. Y. BHAT

بسته قلمروها تحت جایگشتی نیم گروه های انواع

بهات٢ یونس محمد و مقبول١ حمیرا

هند پولواما، کشمیر، اسلامی صنعت و علم دانشگاه ریاضی، علوم ١,٢گروه

را جابجایی نیم گروه های کلاس در ایزابل نتایج از یکی ایزابل، زیگزاگی قضیه از استفاده با مقاله این در
کنیم. می ثابت احاطه گر مجموعه از استفاده با جابجایی نیم گروه های از تعمیم یافته کلاسی برای

همانی. انواع، قلمرو، زیگ زاگی، معادلات کلیدی: کلمات
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