Document Type : Original Manuscript
Author
Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran.
Abstract
It is known that for a discrete valuation v of a field K with value group Z, an valued extension field (K′, v′) of (K, v) is generated by a root of an Eisenstein polynomial with respect to v having coefficients in K if and only if the extension (K′, v′)/(K, v) is totally ramified. The aim of this paper is to present the analogue of this result for valued field extensions generated by a root of an Eisenstein-Dumas polynomial with respect to a more general valuation (which is not necessarily discrete). This leads to classify such algebraic extensions of valued fields.
Keywords