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SOME PROPERTIES OF SUPER-GRAPH OF (%(R))"
AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA*

ABSTRACT. Let R be a commutative ring with identity 1 # 0. The
comaximal ideal graph of R is the simple, undirected graph whose
vertex set is the set of all proper ideals of the ring R not contained
in the Jacobson radical of R and two vertices I and J are adjacent
in this graph if and only if I + J = R. In this article, we have
discussed the graph G(R) whose vertex set is the set of all proper
ideals of ring R and two vertices I and J are adjacent in this graph
if and only if I + J # R. In this article, we have discussed some
interesting results about G(R) and its line graph.

1. INTRODUCTION

The rings considered in this article are commutative with identity
1 # 0 which are not fields. The idea of associating a graph with certain
subsets of a commutative ring and exploring the interplay between the
ring-theoretic properties of a ring and the graph-theoretic properties
of the graph associated with it began with the work of I. Beck in [7].

For a commutative ring R, we denote the set of all maximal ideals
of R by Max(R). I(R) denotes the set of all proper ideals of a ring
R. We denote the cardinality of a set A using the notation |A|. Let
R be a ring. In [26], M. Ye and T. Wu introduced and investigated a
graph called the comazimal ideal graph of R, denoted by € (R). It is an
undirected graph whose vertex set is the set of all proper ideals I of R
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such that I € J(R) and distinct vertices I, I are joined by an edge in
this graph if and only if I; + I, = R. In [26], M. Ye and T. Wu showed
that €' (R) is connected and diam (% (R)) < 3 and girth(¢(R)) < 4
if €(R) contains a cycle. They also studied the clique number and
chromatic number of ¥ (R) and the results proved in [20] on € (R)
demonstrated the influence of certain graph parameters of ¢ (R) on
the ring structure of R. Interesting research work has been done on
comaximal graph and comaximal ideal graph in [2, 11, 14, 15, 13, 16, 18,

, 23] and on annihilating-ideal graphs as well as zero-divisor graphs
in[l,3,4,8 9,12, 17, 19,22 24]. A. Gaur and A. Sharma have studied
the line graph associated to the maximal graph in [10, 21].

The graphs considered in this article are undirected. Let G = (V. E)
be a simple graph. Recall from [0] that the complement of G, denoted
by G¢ is a graph whose vertex set is V' and two distinct u,v € V are
joined by an edge in G° if and only if there exists no edge in G joining
u and v. Motivated by the results proved on € (R) in [25, 26], we have
considered a super graph of (¢'(R))¢ denoted by G(R) whose vertex set
is the set of all proper ideals of R and two distinct vertices I and J are
adjacent in G(R) if and only if I + J # R. So, G(R) is a super-graph
of (¥ (R))°. As any proper ideal of a ring is contained in at least one
maximal ideal, it follows that [; and I are adjacent in G(R) if and only
if there exists at least one maximal ideal m of R such that I + I C m.

It is useful to recall the following definitions and results from graph
theory. Let a,b € V', a # b. Recall that the distance between a and
b, denoted by d(a,b) is defined as the length of a shortest path in G
between a and b if such a path exists, otherwise d(a,b) = co. We define
d(a,a) = 0. A graph G is said to be connected if for any distinct vertices
a,b € V, there exists a path in G between a and b. Recall from [0] that
the diameter of a connected graph G = (V| E) denoted by diam(G)
is defined as diam(G) = sup{d(a,b)|a,b € V}. Let G = (V,E) be a
connected graph. Recall that G is a split graph if V(G) is the disjoint
union of two nonempty subsets K and S such that the subgraph of G
induced on K is complete and S is an independent set of G. Let G be
a simple undirected finite graph. Recall from [5] that line graph of G,
denoted as L(G) has its vertex set in 1-1 correspondence with the edge
set of G and two vertices of L(G) are joined by an edge if and only if
the corresponding edges of G are adjacent in G. If u — v is an edge in
G, then we denote the vertex uv of L(G) by [u, v].

Let G = (V, E) be a graph such that G contains a cycle. Recall from
[0] that the girth of G, denoted by girth(G) is defined as the length of
a shortest cycle in GG. If a graph G does not contain any cycle, then
we define girth(G) = oco. Let n € N. A complete graph on n vertices
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is denoted by K,. Let G = (V, E) be a graph. Then G is said to be
bipartite if the vertex set V' of G can be partitioned into two nonempty
subsets Vi and V5 such that each edge of G has one end in V; and the
other end in V5. A bipartite graph with vertex partition V; and V5 is
said to be complete, if each element of V] is adjacent to every element of
V,. Let m,n € N. Let G = (V, E) be a complete bipartite graph with
V =ViUV,. If |Vi] = m and |V| = n, then G is denoted by K, ,. A
star graph is a complete bipartite graph of the form K ,. Recall from
[6] that a subset V' of the vertex set V(G) of a connected graph G is a
verter cut of G if G\ V is disconnected; it is a k-vertex cut if |V| = k.
A vertex v of G is a cut vertex of G if {v} is a vertex cut of G. A
subset S of the vertex set V' of a graph G is called independent if no
two vertices of S are adjacent in G. S C V is a mazimum independent
set of G if G has no independent set Sy with |So| > |S|. Cardinality
of maximum independent set of G is called independence number. Let
G = (V, E) be a graph. Recall from [3] that two distinct vertices u, v
of G are said to be orthogonal, written as v L v if u and v are adjacent
in G and there is no vertex of G' which is adjacent to both u and v
in (G that is, the edge v — v is not an edge of any triangle in GG. Let
u € V. A vertex v of G is said to be a complement of u if u L v [3].
Moreover, we recall from [3] that G is complemented if each vertex of
G admits a complement in G.

A ring R is said to be local if R has a unique maximal ideal. Recall
that a principal ideal ring R is said to be a special principal ideal ring
(SPIR) if R admits only one prime ideal. If m is the only prime ideal of
R, then m is necessarily nilpotent. If R is a special principal ideal ring
with m as its only prime ideal, then we describe it using the notation
that (R,m) is a SPIR. Let m be a nonzero maximal ideal of a ring
R such that m is principal and is nilpotent. Let n > 2 be the least
positive integer with the property that m”™ = (0). Then it follows from
[5] that {m‘|i € {1,...,n — 1}} is the set of all nonzero proper ideals
of R. As each ideal of R is principal with m as its only prime ideal, it
follows that (R, m) is a SPIR.

Now, we give brief of the theorems proved in this article. In
Theorem 2.1, for a ring R we have proved that G(R) is connected
and diam(G(R)) < 2. In Theorem 2.2, we have proved that if
|Max(R)| > 3, then G(R) is not a star graph. In Theorem 2.3 (resp.
Theorem 2.4), we have classified rings R with |Max(R)| = 2 (resp.
|Max(R)| = 1) such that G(R) is a star graph. A necessary and
sufficient condition for G(R) to be a star graph is provided in
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Theorem 2.5. In Theorem 2.6, a classification of rings R is provided
for which
diam(L(G(R))) < diam(G(R)).

We have proved in Theorem 2.7 that if |[Maz(R)| > 4, then
diam(L(G(R))) = 3. In Theorem 2.8, we have proved that for a ring R
with |[Max(R)| = 3, diam(L(G(R))) = 3 if and only if R 2 Fy X F5y X Fy,
where Fi, Fy, F3 are fields. In Theorem 2.9, we have classified the rings
R with |[Max(R)| = 2 for which diam(L(G(R))) = 2. In Theorem
2.10, we have classified the rings for which L(G(R)) is complete. In
Theorem 2.11, we have proved for a reduced ring R = [[\_, R;, where
R; is a finite local ring, diam(L(G(R))) = diam(G(R)) = 2 if and only
lngZQ XZQ XZQ.

In Theorem 3.1, we have proved that for a ring R, if
|Max(R)| > 4, then G(R) is not a split graph. Classification of
rings R with |[Maz(R)| = 3 (resp. |Max(R)| = 2) for which G(R)
is a split graph is provided in Theorem 3.2 (resp. Theorem 3.3). In
Theorem 3.4, we have proved that if (R, M) is a local ring which is not
a field, then G(R) is a split graph. In Theorem 3.5, we have proved
that G(R) admits a cut-vertex if and only if R = F; x Fy; where
Fy and Fy are fields. In Lemma 3.6, we have showed that if R is a
ring which is not a field then girth(G(R)) € {3,00}. Necessary and
sufficient conditions for which girth(G(R)) = 3 (resp.co) is provided
in Theorem 3.7 (resp. Theorem 3.8). Independence number of G(R)
has been discussed in Theorem 3.9. In Theorem 3.10, we have proved
that for a non-zero commutative ring R, G(R) is complemented if and
only if R = F} x Fy; where F} and F} are fields or (R, M) is SPIR with
M # (0) but M? = (0).

2. DIAMETER OF L(G(R))

Theorem 2.1. Let R be a ring which is not a field. Then G(R) is
connected and diam(G(R)) < 2.

Proof. Let R be a ring which is not a field. Then for any two non-
adjacent vertices I, J in G(R), there is a path I — (0) — J of length two
between them. So, G(R) is connected and diam(G(R)) < 2. O]

Theorem 2.2. Let R be a ring. If |[Max(R)| > 3, then G(R) is not a
star graph.

Proof. Let My, My, M3 € Max(R). Note that M; My # (0). Suppose
that M1M2 = (0) Then (0) Q Mg. SO, M1 Q M3 or M2 Q M3 which
is not possible. So, M;M, # (0). Suppose that M;M,; = M;. Then
M, C M, which is again a contradiction. So, MMy # M. So, we
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have a cycle MMy — (0) — My — M;M,. Hence, G(R) is not a star
graph. Hence, if [Maz(R)| > 3, then G(R) is not a star graph. O

Theorem 2.3. Let R be a ring with |Max(R)| = 2. Then G(R) is
a star graph if and only if R = Fy x Fy; where Fy and Fy are fields.
Indeed, in this case G(R) is K.

Proof. Let Max(R) = {M, Ms}. Suppose that G(R) is a star graph.
Note that M; My # M;; for any i € {1,2}. Suppose that M; M, # (0).
Then (0) — MMy — M; — (0) is a cycle. So, G(R) is not a star graph.
Hence, we have M;M; = (0). Therefore, by the Chinese Remainder
Theorem [5, Proposirion 1.10(ii), (iii)],

R= R/J(R) = R/Ml X R/M2 = F1 X FQ,

where F; and Fy are fields.
Conversely, suppose that R = I x F5. Note that

V(G(R)) = {F1 x (0),(0) x F,(0) x (0)}.
Hence, G(R) is the star graph K 5 given by
F1 x (0) = (0) x (0) — (0) x Fy.
O

Theorem 2.4. Let R be a ring which is not a field with |Maz(R)| = 1.
Then G(R) is a star graph if and only if R is SPIR with M # (0) but
M? = (0). Indeed, in this case G(R) = K1 ;.

Proof. Let Max(R) = {M}. Suppose that G(R) is a star graph. Let
x € M~ {0}. Clearly, Rx # (0). If M # Rx, then (0)— Rx— M —(0) is
a cycle. So, G(R) is not a star graph which is a contradiction. Hence,
M = Rz. Suppose that M? = M. Since, M = J(R) and M = Rz,
we have from the Nakayama’s lemma [5, Proposition 2.6], M = {0}.
Hence, R is a field which is a contradiction to the assumption. So,
M? = M. If M? # (0), then again (0) — M — M?— (0) is a cycle which
is not possible. So, M? = (0). Let P be any prime ideal. Note that
M? = (0) C P. So, M C P. Hence, M = P. So, P = M is the only
prime ideal of R. So, (R, M) is a SPIR with M # (0) but M? = (0).
Conversely suppose that (R, M) is SPIR with M # (0) and
M?* = (0). Note that V(G(R)) = {(0), M}. So, G(R) is K given
by M — (0). O

Theorem 2.5. Let R be a ring which is not a field. Then G(R) is a
star graph if and only if R is isomorphic to one of the following rings.

(i) (R, M) is SPIR with M # (0) and M?* = (0).



98 PUROHIT AND PAREJIYA

(i) Fy X Fy; where Fy and Fy are fields.
Indeed, if (i) or (ii) holds, then G(R) is either K11 or K.

Proof. Proof follows from Theorems 2.2, 2.3 and 2.4. OJ

Theorem 2.6. Let R be a ring. Then diam(L(G(R))) < diam(G(R))
if and only if one of the following holds.

(i) R = Fy X Fy where Fy and Fy are fields.

(ii) (R, M) is SPIR with M as its unique mazximal ideal such that
M # (0) but M?* = (0).

Proof. Suppose that diam(L(G(R))) < diam(G(R)). By Theorem 2.1,
G(R) is connected and diam(G(R)) < 2. Since, R is not a field, it
has at least one maximal ideal M # (0). Hence, diam(G(R)) = 1
or 2. If diam(G(R)) = 1 then G(R) is a complete graph. Since
diam(L(G(R))) < diam(G(R)) = 1, we have diam(L(G(R))) = 0.
Now, G(R) is connected. So by [21, Proposition 2.2], we have L(G(R))
is also connected. Thus,L(G(R)) = K;. Hence, G(R) = K; ;. Hence,
by Theorem 2.4, (R, M) is a SPIR with M as its unique maximal
ideal such that M # (0) but M? = (0). If diam(G(R)) = 2, then
diam(L(G(R))) = 0 or 1. If diam(L(G(R))) = 0, then G(R) = K.
So, diam(G(R)) = 1 which is a contradiction. So, diam(L(G(R))) = 1.
Therefore, L(G(R)) = K,; n € N. Now, if L(G(R)) = Kj, then
G(R) = K3 or K;3. Note that from Theorem 2.5, G(R) # K;3. So,
G(R) = Ks3. Then diam(G(R)) = 1 which is not possible. Hence,
L(G(R)) # Ks. So, L(G(R)) = K,; n € N,n # 3. Hence, G(R) is
a star graph. By Theorem 2.5, R = F} x F,; where F; and F; are
fields or (R, M) is SPIR with M as its unique maximal ideal such that
M # (0) but M? = (0).

Conversely, assume that R = F} x Fy; where F; and F3 are fields.
Then by Theorem 2.3, G(R) = K; 2 and so L(G(R)) = K1 1. Therefore,

1 = diam(L(G(R))) < diam(G(R)) = 2.

Now, let (R, M) be SPIR with M as its unique maximal ideal such
that M # (0) but M? = (0). Then by Theorem 2.4, G(R) = K ;. So,
L(G(R)) is a null graph. Therefore,

0 = diam(L(G(R))) < diam(G(R)) = 1.

Theorem 2.7. Let R be a ring with |Max(R)| > 4. Then
diam(L(G(R))) = 3.
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Proof. Let My, My, M3, My € Max(R). Note that [M;, My M,] and
[Ms, M3M,] are non-adjacent in L(G(R)). Suppose that there
exists a path of length two between [M;, My M,] and [Ms, M3M,], say
[MI; MlMQ] — [[, J] [Mg, M3M4] for some [I J] € V(L(G(R))) Then
[I, J] = [Ml, Mg] or [Ml, M3M4] or [MlMQ, M3] or [MlMg, M3M4]. But,
M1+M3:R, M1+M3M4:R, M1M2+M3:R,

MMy + MsM, = R.

So, no such [I,J] exists in V(L(G(R))). Hence, the length of path
between [M;, My Ms] and [Ms, M3M,] is of atleast three. By Theorem
2.1 and [21, Proposition 2.2], diam(L(G(R))) < 3. Hence,
diam(L(G(R))) = 3.
0

Theorem 2.8. Let R be a finite ring with |Max(R)| = 3. Then
diam(L(G(R))) = 3 if and only if R 22 Fy x Fy x F3; where Fy, Fy and
F3 are fields.

Proof. Let R be a ring with |[Maxz(R)| = 3. Let
Max(R) = { My, My, M3}.
Assume that diam(L(G(R))) = 3. Let if possible
R = Fy x Fy x F3;
where I}, F5 and Fj are fields. Note that

V(L(G(R))) = {f1 (0), My], I = [(0), My], I3 = [(0), M3],
(0), M1M2] I5 = [(0), My M;],

(0), MaMs), Ir = [My, My My,
My, My Ms], Iy = [My, My M),

[10 = [Ms, MyMs), 111 = [M3, M Ms],

Ly = [M3, My Ms), I3 = [M; My, My Mj),
Ly = [My My, My M), Is = [MyMs, My Msl}.

[
= |
[
= |

From the following figure and distance matrix of the graph
G(F) x Fy x Fy), it is clear that

dzam(L(G(Fl X Fy x Fg))) = 2.
Hence, R 22 F} x Fy x F3; where F}, Fy and Fj3 are fields.
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Figure.l: L(G(Fy x Fy X F3))
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Conversely, assume that R 2 F; x Fy x F3; where Fy, Fy, and Fj
are fields. Let x; € M; ~ (M; U My); for distinct ,5,k € {1,2,3}.
If Rx; # M, then [Rx;, M;] and [M;, M;My] are non-adjacent vertices
in L(G(R)). Suppose that there exists a path of length two between
them, say [Rxz;, M;] — [K, P] — [M;, M;M]. Then [K, P] = [Rx;, M,;]
or [R.’L’z, M]Mk] or [Ml, M]] or [MZ,M]Mk] Bllt, R,I‘l and Mj, Rl’l and
M;My, M; and M;, M; and M jM, are non-adjacent in G(R). So, no
such [K, P] exists in V(L(G(R))). Thus,




SOME PROPERTIES OF SUPER-GRAPH OF (%(R))° ... 101

diam(L(G(R))) > 3.

By Theorem 2.1 and [21, Proposition 2.2], diam(L(G(R))) < 3. Hence,
diam(L(G(R))) = 3. Suppose that Rx; = M; for each i € {1,2,3}.
Suppose that M? # M;. Let

x € M?~ (M; U M,);

for distinct 4,7,k € {1,2,3}. Then, Rx C M? # M, But as
r € M; ~ (M; U M), we have Rx = M; which is a contradiction.
So, M? = M;; for all i € {1,2,3}. Then

J(R) == M1M2M3 == Rl‘ll’gl’g

and (J(R))? = J(R). By the Nakayama’s lemma [5, Proposition 2.6],
J(R) = (0). Thus, by the Chinese Remainder Theorem [J,
Proposition 1.10(ii), (iii)],

Rgﬁg—X—QXMigF&XFQXFg;

where [}, F5 and Fj are fields.
O

Theorem 2.9. Let R be an Artinian ring with |Max(R)| = 2. Then
diam(L(G(R))) = 2 if and only if R = Ry x Ray; where (R, m1) and
(Ry,ms) are local rings, R;a = m; for some a € R; and m? = my; for
atleast one i € {1,2}.

Proof. Since |Max(R)| = 2 and R is an Artinian ring, R = R; X Ry;
where (R;,m;) is a local ring for all ¢ € {1,2}. Note that

MCZ.CE(R) = {Ml mq X RQ,MQ Rl X m2}

Assume that diam(L(G(R))) = 2. Suppose that m? # m; and
m3 # my. So, M? # M, and M2 # M,. Note that

(M, M7], [Ma, M3] € V(L(G(R)))

are non-adjacent. Let if possible, there exists a path of length two
between [My, M?] and [My, M3, say [My, M?]— I, J]—[Ms, M3]. Now,
[I,J] = [My, Ms] or [My, MZ] or [M?, M) or [M?, M3]. But, M
and My, M, and M3, M? and M,, M? and M3 are not adjacent
in G(R). So, no such [I,J] exists in V(L(G(R))). So, the length
of the path between [M;, M?] and [M,, MZ] is atleast three. Thus,
M} = M, or M2 = M,. Without loss of generality, we may assume that
M} = M. So, m? =m;. Let x; € M; ~ (0). Suppose that Rz, = M.
If ;1 = (a,1); for some a € Ry then m; = Rja. Suppose that
Rxy # M. Let M2 # M,. Suppose that there exists a path of length
two between [le,Ml] and [My, M3], say [Rxy, My] — (I, J] — [Ma, M3].
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Then [I,J] = [Rxy1, Ms] or [Rxy, M3] or [My, Ms] or [My, M3]. But,
Rxy and My, Rxy and M2, My and M,, M; and M2 are not adjacent
in G(R). So, in any case such [I,J] does not exist in V(L(G(R))).
Thus, the length of path between [Rxy, M| and [My, M2] is atleast
three. Hence, M2 = M,. Let o € My ~ (0). If Rxy # My, then
again by similar argument, the length of the path between [M;, Rx1]
and [My, Rxs] is atleast three. So, My = Rx,. Hence, M3 = M, and
Ms = Ruxo; for some xo € My, If 5 = (1,b); for some b € Ry, then
mo = Rgb

Conversely, assume that R = Ry X Ry; where (Ry,m1) and (Rs, ms)
are local rings, R;a = m; for some a € R; and m? = my; for atleast one
i € {1,2}. Let Ria = my; for some a € Ry and m? = my. V(L(G(R)))
contains vertices of the form [Mi,I] and [K, P]; where I C J(R)
and K, P C M,. Non-adjacent vertices in L(G(R)) are either of the
form [My,I] and [K, P]; where I C J(R), K, P C M, or of the form
(K1, Pi] and [K,, Py]; where Ky, P, Ko, P, C M, are distinct vertices in
G(R). Let [My,I] and [K, P] be two non-adjacent vertices in L(G(R));
I C J(R) and K, P C M,. Then, [M,I] —[I,K] — [K, P] is a path of
length two between them as I C J(R) implies I C K. Now, let [K, P]
and [Ksy, P»] be non-adjacent vertices in L(G(R)); where Ky, Py, C M,.
Thus, [Ki, Pi| — [K1, Ps] — [K3, P] is a path of length two between
[Ky, P1] and Ky, Py in L(G(R)). Hence, diam(L(G(R))) = 2. O

Theorem 2.10. Let R be a ring. Then L(G(R)) is complete if and
only if R is isomorphic to one of the following rings:

(i) [y X Fy; where Fy and Fy are fields.

(ii) (R, M) is SPIR with M # (0) but M?* = (0).

(iii) (R, M) is SPIR with M?* # (0) but M3 = (0).

Proof. Suppose L(G(R)) is complete. Let L(G(R)) = K,; n € N. If
n # 3, then G(R) is a star graph. Hence, by Theorem 2.5,
R = F; X Fy; where Fy and Fy are fields or (R, M) is SPIR with
M # (0) but M? = (0). If L(G(R)) = Kj, then G(R) = Kj or
K 3. But, by Theorem 2.5, G(R) # K;3. So, G(R) = Kj. Suppose
|Max(R)| > 2. Let My, My € Max(R). Then M; and M, are not
adjacent in G(R). So, G(R) # K3 which is a contradiction to the
assumption. So, |[Maz(R)| = 1. Let Max(R) = {M}. As R is not
a field, M # (0). Let x € M ~ (0). Suppose that M # Rzx. Let
y € M \ Rx. Then it is clear that Ry # Rx. Also, Ry # (0) as y # 0.
Now, if M # Ry, then M, Rz, Ry, (0) € V(G(R)) forms K, which is
not possible. Hence, M = Ry. Suppose that M? = (0). Now, let P
be any prime ideal. Then M? = (0) C P. So, M C P. Thus M = P.
Hence, (R, M) is SPIR with M # (0) but M? = (0). Then G(R) = K,
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which is not possible. So, M? # (0). Let if possible, M? = M. Since
M = Ry and M? = M, by the Nakayama’s lemma [5, Proposition 2.6],
we have M = (0). This is not possible. So, M? # M. Hence, M? # (0)
and M? # M. As M = Ry, we have M? = Ry?. Now, if M3 = M?,
then by the Nakayama’s lemma [5, Proposition 2.6], M = (0). So,
M3 £ M?. If M3 # (0), then M, M?, M3,(0) € V(G(R)) which is also
not possible. So, M? = (0). Let P be any prime ideal of R. Then
M3 = (0) C P. So, M C P. So, M = P. Thus, (R, M) is SPIR with
M? # (0) but M3 = (0).

Conversely, assume that R = I} x Fy; where F; and F, are fields.
Then by Theorem 2.3, G(R)) = K;i5. So, L(G(R))) = K. Now, we
assume that (R, M) is SPIR with M # (0) but M? = (0). Then by
Theorem 2.4, G(R) = Ki11. So, L(G(R)) = K;. If (R, M) is SPIR
with M? # (0) but M? = (0) then G(R) is K3 given by

(0) = M — M? — (0)
and so L(G(R)) = K. O

Theorem 2.11. Let R = [[_, R; be a reduced ring with mazimal
ideals My, My, ..., M, ; for some n € N where R; is a finite local ring
with maximal ideals ny, ng, ...,n,. Then diam(L(G(R))) = diam(G(R))
=2 if and only if R = 7o X Zy X Zs.

Proof. Assume that diam(L(G(R))) = diam(G(R)) = 2. As R is a
finite reduced ring, it is a direct product of finitely many fields. Let
R = Fy X Fy x...x F,; where Fj is a field for each n € N. Let if possible,

MU,

> 2;
for some i € {1,2,...,n}. Recall from [2], Remark 2.9],
N
‘Mz ~U i M;

> 2
for atleast (n-1) i’s. Choose s,t € M; ~\ |Jj_, M; and

u,v € My~ |UJ j;;nM]
Take Vi = [Rs, Rt] and V3 = [Ru, Rv]. Then V;,V;, € V(L(G(R))).

Clearly, V; and V5 are not adjacent in L(G(R)). Let if possible,
Vi = [RSaRt] - [I7 ‘]] - [RU’RU] =V

be a path between V; and V5. Without loss of generality, we may
assume that [ = Rs and J = Rv. So, [Rs, Rv] € V(L(G(R))). So,
Rs and Rv are adjacent in G(R). Thus, there exists a maximal ideal,
say M that contains both Rs and Rv which is not possible. So, the
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path between V; and V5, is atleast of length three which contradicts

the hypothesis. So, we have ’M N U;;n J‘ = 1; for all i. Hence,
F; = Z,; for each i E {1,2,...,n}. Let if possible, n > 4. Choose
s € M; U?:Q ; (Ml ﬂMg) Ljnf3 ou € Ms U?’—l

and v € (M; OM4) U = M;. Then [Rs, Rt] and [Ru, Rv] are not

adjacent in L(G(R)). Let 1f possible, [Rs, Rt] — [I,J] — [Ru, Rv] be
a path between [Rs, Rt] and [Ru, Rv] in L(G(R)). Without loss of
generality, we may assume that I = Rs and J = Rv. So, Rs and Rv
are adjacent in G(R) which is not true by the choice of s and v. So,
the path between [Rs, Rt| and [Ru, Rv] is atleast of length three which
again contradicts the hypothesis. So, |[Max(R)| < 3. Let R = Zy X Zs.
Then

V(R) = {Zy x (0),(0) x Zs, (0) x (0)}.

Note that G(Zy x Zy) = K9 and so L(G(Zy X Zs)) = K,. Hence,
diam(L(G(Zy x Z3))) = 1 which contradicts the hypothesis. So,
R= ZQ X ZQ X ZQ.

Conversely, assume that R = Zy X Zg X Zo. Note that

V(G(R)) = {0 = (0) x (0) x (0), My = (0) X Z3 X Z,
22 X (0) X Zo, M3 = 7y x Zsy x (0),
M1M2 (0) X (0) X Zy, My M3z = (0) x Zg x (0),
MyMs = Zy x (0) x (0)}.

From the following Figure.2, it is clear that diam(G(R)) = 2. Note
that

V(L(G(R))) = {5 = [(0), Mi], I =[(0), Mo],

I3 = [(0), Ms], Iy = [(0), My M),

Iy = [(0), MM, 1y = [(0), Moy,
I7 = [My, M1 M,), Iy = [My, My Ms],
Iy = [My, M1 Ms), Ip = [May, My Ms],
Iy = [M3, M1 Ms), o = [M37M2M3]}

From Figure.1, it is clear that diam(V (L(G(R)))) = 2. Hence,

diam(G(R)) = 2 = diam(L(G(R))).
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M,

M M; MM,

MM

Figure.2 : G(Zy X Zy X Zs)

3. SOME MORE RESULTS ON G(R)

Theorem 3.1. Let R be a ring with |Max(R)| > 4. Then G(R) is not
a split graph.

Proof. Let G(R) be a split graph. Let V(G(R)) = K U S; where the
subgraph of G(R) induced on K is complete, S is an independent set
of G(R) and K NS = (). Let

Ml,MQ, M3, M4 S MCLJ?(R)

Suppose that (0) € S. Then M; ¢ S; for i € {1,2,3,4} as (0)
is adjacent to each M;; for i € {1,2,3,4}. So, M; € K; for all
i € {1,2,3,4} which is not possible as any two distinct maximal ideals
are not adjacent in G(R). So, (0) € K. Note that at most one of
the maximal ideal can be in K. Without loss of generality, we may
assume that M; € K. Hence, My, M3, My € S. If MyMs = (0),
then M2M3 = (O) g Ml. SO7 MQ = M1 or M3 = M1 which is not
possible.  Hence, My;M; # (0). Also, MyM; # M;; for any
i €{1,2,3,4} asif MyM3 = M;; for some i € {1,2, 3,4}, then My = M;
or M3 = M; which is not possible. Since M, € S and MsM; is
adjacent to M, in G(R), we have MyM; ¢ S. Also, My + MyM; = R.
So, MyMs ¢ K. Thus, Max(R) C S. Note that M;M; is adjacent
with M;; for any distinct ¢,j € {1,2,3,4}. Hence, M;M; € K; for
distinet 4,7 € {1,2,3,4}. So, we have MiM,, Ms;M, € K. But,
then MM, + M3sM, = R. So, MiMs; and M3M, are not adjacent
in G(R). Hence, G(R) is not a split graph. This is a contradiction. So,
|Maz(R)| < 3. O
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Theorem 3.2. Let R be a ring with |Max(R)| = 3. Then G(R) is a
split graph if and only if R = F} x Fy x F3; where Fy, Fy and F3 are
fields.

Proof. Suppose that R = I x Fy x F3; where Fi, F5 and F3 are fields.
Note that

V(G(R)) ={(0) x (0) x (0), My = (0) x Fy x F3,
My = Fy x (0) x F3, My = Fy x F5 x (0),
My My, My Ms, My Ms}.

Let K = {MlMQ,MgMg, .1\41.]\437 (0)} and S = {Ml, MQ, Mg} Then we
have V(G(R)) = K U S, where the subgraph of G(R) induced on K is
complete, S is an independent set of G(R) and K NS = (). Therefore,
G(R) is a split graph.

Conversely, assume that G(R) is a split graph. Let

V(G(R)) = K U S;

where the subgraph of G(R) induced on K is complete, S is an inde-
pendent set of G(R) and KNS = (. Let

MCLCL’(R) = {Ml, MQ, Mg}

Note that M;M; # (0); for any 7,5 € {1,2,3}. As M; + M; = R; for
i# jandi,j € {1,2,3}, we have at most one M; € K, fori € {1,2,3}.
Let My € K and My, M3 € S. Now, My and MsMj are adjacent in
G(R) SO, M2M3 ¢ S. AISO, M1 + MgMg = R. SO, MQMg ¢ K.
So, Max(R) C S. Since,(0) is adjacent to all other vertices, we have
(0) € K. Note that MyM; # (0). Observe that MyM; and M, are
adjacent in G(R). As My € S, we have MyM; € K. Let

x e Ml AN (MQUMQ,)

Let if possible, Rx # M. As Rz is adjacent to M; in G(R), Rz ¢ S.
Also, Rx + MyM;3; = R. So, Rx ¢ K. Hence, Rx = M;. Similarly,
M, = Ry; for some y € My~ (M; U M3) and M3 = Rz; for some
2 € M3~ (M, U M,). Thus, J(R) = Rryz. Let if possible, M? = (0).
Then M} = (0) € M,. This implies that M; = M, which is not
possible. So, M? # (0). If M? # M,, then M? + MyM3 = R. So, M}
cannot be in K. Also, M} and M, are adjacent in G(R). So, M} ¢ S.
Hence, M? = M. By similar argument, M3 = M, and MZ = Mj. So,
(J(R))? = J(R). Since, J(R) is principal, by the Nakayama’s lemma
[0, Proposition 2.6], we have J(R) = (0). So, by the Chinese Remainder
Theorem [5, Proposition 1.10(ii), (iii)],
X

o B B~ .
T(R) . My X M —F1 X FQ X Fg,
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where I, F5 and Fj are fields. ]

Theorem 3.3. Let R be an Artinian ring with |Max(R)| = 2. Then
G(R) is a split graph if and only if R = Ry X Ry; where (Ry,my) and
(Ry,my) are local rings, R;a = m; for some a € R; and m? = my; for
at least one i € {1,2}.

Proof. Since R is an Artinian ring, R = Ry X Rs; where (Ry,m;) and
(R, my) are local rings [5, Proposition 8.7]. Note that

MCLCC(R) = {Ml =my X RQ,MQ = Rl X mg}.

Assume that G(R) is a split graph. Let V(G(R)) = K U S; where
the subgraph induced on K is complete, S is an independent set of
G(R) and KNS = 0. If (0) € S, then My, M, € K which is not
possible as M; + My = R. So, (0) € K. Note that any two distinct
maximal ideals are not adjacent in G(R). So, atmost one of M; or
M, can be placed in K. Without loss of generality, we may assume
that My € K. Thus, My € S. Let 1 € My ~ M,. Let if possible,
Rxy # M;. Then, Rx, + My = R. So, Rz is not adjacent to M.
So, Rxy ¢ K. Also, Rz is adjacent to M; in G(R). So, Rz, ¢ S.
Thus, Rr; = M;. Note that M? # (0). Let if possible, M? # M;.
Then M} ¢ K as M} + M, = R. Also, M} is adjacent to M; in
G(R). So, M} ¢ S. Thus, M? = M,. Let 1 = (a,1); for some
a € Ry. Then Ria = m; and m? = m;. Suppose that My, My € S.
Let 1 € My ~ Ms. Let if possible Rx; # M;, then Rx; is adjacent to
M. SO, Raxq g S. SO, Rxy € K. Let z9 € My~ M. If M, 7é RZL‘Q,
then Rxy ¢ S as Rxs is adjacent to Ms. Also, Rxy + Rxs = R. So,
Rxy ¢ K. Thus, Rry = My. If M2 # My, then M3 ¢ S as M3 and M,
are adjacent. Also, Rxy+ M3 = R. So, M3 ¢ K. Thus, M3 = M. Let
xy = (1,b); for some b € Ry. Then Ryb = my and m3 = my. Suppose
Rxy = M, and if M? # M;, then M? € K. By similar argument as
above, m3 = my and Rb = my; for some b € Ry.

Conversely, assume that R = Ry X Ry; where (Ry,m;) and (R, ms)
are local rings, R;a = m; for some a € R; and m? = m;; for atleast one
i € {1,2}. Suppose that Ria = my; for some a € R; and m? = m;.
Let

K ={(0), My} U{I € I(R): I C My}
and S = {M;}. Hence, G(R) is a split graph. O

Theorem 3.4. Let (R, M) be a local ring which is not a field. Then
G(R) is a split graph.

Proof. Proof is clear. 0
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Theorem 3.5. G(R) admits a cut-vertezx if and only if R = F} X Fy;
where Fy and Fy are fields.

Proof. Suppose that G(R) has a cut-vertex, say K. Now, G(R) admits
a cut-vertex K if and only if there exists I and J € V(G(R)) such that
there is exactly one path I — K — J between [ and J in G(R). Note
that I, .J # (0) as (0) is adjacent to all the vertices in G(R). If K # (0),
then there is another path I —(0) —J between [ and J in G(R). Hence,
K = (0). Let M, M’ € Maz(R) such that I C M and J C M’'. As
I and J are not adjacent in G(R), M # M'. Let x € M N M'; where
x # 0. Then I — Rx — J is another path between I and J which is not
possible. So, M N M’ = (0). Let if possible, M” be a maximal ideal
distinct from M and M’. Then M N M’ = (0) C M”. But then either
M = M" or M’ = M" which is also not possible. So, |Maz(R)| < 2. If
|Max(R)| = 1, then G(R) is a complete graph. So, it will never admit
a cut-vertex. So, |[Max(R)| = 2. Let

Max(R) = { M, Ms}.

As M; N My = (0), by the Chinese Remainder Theorem [5,
Proposition 1.10(ii), (iii)],
~ R ~ R R ~ .
R:m:EXE:F]_XFQ,

where F; and F) are fields.

Conversely, assume that R = F; x F; for some fields F; and F5.
Then R = F; X Fy is a path graph F; x (0) — (0) x (0) — (0) x Fy and
clearly (0) x (0) is a cut-vertex.

O

Lemma 3.6. Let R be a ring which is not a field. Then
girth(G(R)) € {3, 00}.

Proof. Assume that |Max(R)| > 3. Let My, My, M3 € Maz(R).
Suppose that My My = (0). Then, MM, = (0) € M3. So, My = M;
or My = M3 which is not possible. So, MMy # (0). Suppose that
MMy = M;. Then M; C M, which is not possible. So, M1 My # M.
Thus, we have a cycle MMy — (0) — My — M1 M, in G(R) of length
three. Hence, girth(G(R)) = 3.

Let |Max(R)| = 2. Let Max(R) = {M;, My}. If

MlMQ - J(R) = (O),
then by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],
R= R/J(R) = R/M1 X R/M2 = F1 X F27
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where Fy and F; are fields. Then G(R) is K 5 and so girth(G(R)) = oo.
If J(R) = MMy # (0), then My — MMy — (0) — M, forms a cycle of
length 3. Hence, girth(G(R)) = 3.

Assume that (R, M) is a local ring. Let z € M ~ (0). If Rx # M,
then we have a cycle (0) — Rz — M — (0) in G(R). So, girth(G(R)) = 3.
Let Rx = M. Let if possible, M? = (0). Let P be any prime ideal
of R. Then as M? = (0), we have M C P. Thus, M = P. So,
P = M is the only prime ideal of R. So, (R, M) is SPIR with M # (0)
but M? = (0). Hence, girth(G(R)) = oo. Let M?* # (0). Also, let
if possible M? = M. Then M = J(R) and M = Rz. So, by the
Nakayama’s lemma [5, Proposition 2.6], we have M = {0}, which is
not possible as R is not a field. Hence, R is a field which is contradiction
to the assumption. So, M2 # M. Hence, (0) — M?— M — (0) is a cycle
of length three in G(R). So, girth(G(R)) = 3. O
Theorem 3.7. Let R be a ring which is not a field. Then

girth(G(R)) = 3
if and only if one of the following conditions hold.

(1) |Mazx(R)| >3

(ii) |Max(R)| =2 and J(R) # (0).

(iii) (R, M) is a local ring which is not isomorphic to SPIR (S, M);
where M # (0) but M? = (0).

Proof. Proof follows from Theorem 3.6. OJ

Theorem 3.8. Let R be a ring which is not a field. Then
girth(G(R)) = o0
if and only if one of the following conditions hold.
(i) R = Fy X Fy; where Fy and Fy are fields.
(ii) (R, M) is SPIR with M # (0) but M? = (0).

Proof. Proof follows from Theorem 3.6. 0

Theorem 3.9. Let R be a ring. Then a(G(R)) = n if and only if
|Max(R)| = n; for somen € N.

Proof. Assume that a(G(R)) = n; for some n € N. Let
MCL%(R) = {Ml, MQ, ey Mm};

for some m € N. It is clear that Maz(R) is an independent set in
G(R). So, m < n. Let W = {1, 1, ...,I,} be an independent set of
G(R) with |W| = n. Since W is an independent set, I; is not adjacent
to any of the I’s; for i # j and 4,5 € {1,2,...,n}. Let I; C M;; for
some i € {1,2,...,n}. Let if possible, M; = M; for some i # j and
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i,j €{1,2,...,n}. Then I; and I; will be adjacent in G(R) which is not
possible. Hence, M; # M;; for Vi,j € {1,2,...,n}. Therefore, m > n.
Hence, m = n.

Conversely, asssume that |Max(R)| = n. Since, Max(R) forms an
independent set in G(R), a(G(R)) > n. Let if possible, a(G(R)) > n.
Then there exists an independent set, say W = {1, I, ..., I, ..., I };
where t > n,t € N. Let I; C M;; for some i € {1,2,...,t}. Now, t > n.
So, by the Pigeon-hole principle, there exists a maximal ideal M,; for
some r € {1,2,...,n} and 4, j € {1,2, ..., t} such that I;, [; C M, which
is not possible. So, a(G(R)) = n. O

Theorem 3.10. Let R be a ring. Then G(R) is complemented if and
only if one of the following conditions hold.

(i) R = Fy X Fy; where Fy and Fy are fields.

(ii) (R, M) is SPIR with M # (0) but M? = (0).

Proof. Suppose that G(R) is complemented. Let I # (0) be any ver-
tex of G(R). Since G(R) is complemented, there exists a vertex J in
G(R) such that I L J. If J # (0), then I — J — (0) — I forms a
triangle which is not possible. So, J = (0). Now, I C M; for some
M € Max(R). If I C M, then I — (0) — M — I forms a triangle
which is not possible. So, I = M. Suppose that, |Maz(R)| > 3. Let
My, My, M3 € Max(R). Let I = M;. Note that M; M, # (0) and
MM, 7& M27 for ¢ € {172} Observe that (O) — M, — MM,y — (0)
forms a triangle which is not possible. So, |[Maxz(R)| < 2. Suppose
that [Maz(R)| = 2. Let J(R) # (0). Then (0) — J(R) — M — (0) forms
a triangle which is not possible. So, J(R) = (0). Hence, by the Chinese
Remainder Theorem [5, Proposition 1.10(ii),(iii)],

~ R ~ R R ~ .
R_J(R)_Mlng_F1XF2’

where Fy and F; are fields. Let (R, M) be a local ring which is not a
field. Let z € M \ (0). If Rx # M, then (0) — Rx — M — (0) forms a
triangle which is not possible. So, Rz = M. If M? # (0) and M? # M,
then (0) — M — M? — (0) forms a triangle which is not possible. So,
M? = (0) or M? = M. If M? = M, then by the Nakayama’s lemma
[5, Proposition 2.6], M = (0). So, M? # M. Hence, M? = (0). Let
P be any prime ideal of R. Now, M? = (0) C P which implies that
M C P. As M is maximal, P = M = Rz. Thus, (R, M) is SPIR with
M # (0) but M? = (0). O
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