SOME PROPERTIES OF SUPER-GRAPH OF $(\mathscr{C}(R))^c$ AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA*

ABSTRACT. Let R be a commutative ring with identity $1 \neq 0$. The comaximal ideal graph of R is the simple, undirected graph whose vertex set is the set of all proper ideals of the ring R not contained in the Jacobson radical of R and two vertices I and J are adjacent in this graph if and only if I + J = R. In this article, we have discussed the graph G(R) whose vertex set is the set of all proper ideals of ring R and two vertices I and J are adjacent in this graph if and only if I + J = R. In this article, we have discussed the graph G(R) whose vertex set is the set of all proper ideals of ring R and two vertices I and J are adjacent in this graph if and only if $I + J \neq R$. In this article, we have discussed some interesting results about G(R) and its line graph.

1. INTRODUCTION

The rings considered in this article are commutative with identity $1 \neq 0$ which are not fields. The idea of associating a graph with certain subsets of a commutative ring and exploring the interplay between the ring-theoretic properties of a ring and the graph-theoretic properties of the graph associated with it began with the work of I. Beck in [7].

For a commutative ring R, we denote the set of all maximal ideals of R by Max(R). I(R) denotes the set of all proper ideals of a ring R. We denote the cardinality of a set A using the notation |A|. Let R be a ring. In [26], M. Ye and T. Wu introduced and investigated a graph called the *comaximal ideal graph* of R, denoted by $\mathscr{C}(R)$. It is an undirected graph whose vertex set is the set of all proper ideals I of R

DOI: 10.22044/JAS.2022.12098.1628.

MSC(2010): Primary: 13A15; Secondary: 05C25.

Keywords: G(R); SPIR; Line graph.

Received: 16 July 2022, Accepted: 21 October 2022.

^{*}Corresponding author.

such that $I \not\subseteq J(R)$ and distinct vertices I_1, I_2 are joined by an edge in this graph if and only if $I_1 + I_2 = R$. In [26], M. Ye and T. Wu showed that $\mathscr{C}(R)$ is connected and $diam(\mathscr{C}(R)) \leq 3$ and $girth(\mathscr{C}(R)) \leq 4$ if $\mathscr{C}(R)$ contains a cycle. They also studied the clique number and chromatic number of $\mathscr{C}(R)$ and the results proved in [26] on $\mathscr{C}(R)$ demonstrated the influence of certain graph parameters of $\mathscr{C}(R)$ on the ring structure of R. Interesting research work has been done on comaximal graph and comaximal ideal graph in [2, 11, 14, 15, 13, 16, 18, 20, 23] and on annihilating-ideal graphs as well as zero-divisor graphs in [1, 3, 4, 8, 9, 12, 17, 19, 22, 24]. A. Gaur and A. Sharma have studied the line graph associated to the maximal graph in [10, 21].

The graphs considered in this article are undirected. Let G = (V, E)be a simple graph. Recall from [6] that the *complement of* G, denoted by G^c is a graph whose vertex set is V and two distinct $u, v \in V$ are joined by an edge in G^c if and only if there exists no edge in G joining u and v. Motivated by the results proved on $\mathscr{C}(R)$ in [25, 26], we have considered a super graph of $(\mathscr{C}(R))^c$ denoted by G(R) whose vertex set is the set of all proper ideals of R and two distinct vertices I and J are adjacent in G(R) if and only if $I + J \neq R$. So, G(R) is a super-graph of $(\mathscr{C}(R))^c$. As any proper ideal of a ring is contained in at least one maximal ideal, it follows that I_1 and I_2 are adjacent in G(R) if and only if there exists at least one maximal ideal \mathfrak{m} of R such that $I_1 + I_2 \subseteq \mathfrak{m}$.

It is useful to recall the following definitions and results from graph theory. Let $a, b \in V$, $a \neq b$. Recall that the distance between a and b, denoted by d(a, b) is defined as the length of a shortest path in G between a and b if such a path exists, otherwise $d(a, b) = \infty$. We define d(a, a) = 0. A graph G is said to be *connected* if for any distinct vertices $a, b \in V$, there exists a path in G between a and b. Recall from [6] that the diameter of a connected graph G = (V, E) denoted by diam(G)is defined as $diam(G) = sup\{d(a, b) | a, b \in V\}$. Let G = (V, E) be a connected graph. Recall that G is a split graph if V(G) is the disjoint union of two nonempty subsets K and S such that the subgraph of Ginduced on K is complete and S is an independent set of G. Let G be a simple undirected finite graph. Recall from [5] that line graph of G, denoted as L(G) has its vertex set in 1-1 correspondence with the edge set of G and two vertices of L(G) are joined by an edge if and only if the corresponding edges of G are adjacent in G. If u - v is an edge in G, then we denote the vertex uv of L(G) by [u, v].

Let G = (V, E) be a graph such that G contains a cycle. Recall from [6] that the girth of G, denoted by girth(G) is defined as the length of a shortest cycle in G. If a graph G does not contain any cycle, then we define $girth(G) = \infty$. Let $n \in \mathbb{N}$. A complete graph on n vertices is denoted by K_n . Let G = (V, E) be a graph. Then G is said to be *bipartite* if the vertex set V of G can be partitioned into two nonempty subsets V_1 and V_2 such that each edge of G has one end in V_1 and the other end in V_2 . A bipartite graph with vertex partition V_1 and V_2 is said to be *complete*, if each element of V_1 is adjacent to every element of V_2 . Let $m, n \in \mathbb{N}$. Let G = (V, E) be a complete bipartite graph with $V = V_1 \cup V_2$. If $|V_1| = m$ and $|V_2| = n$, then G is denoted by $K_{m,n}$. A star graph is a complete bipartite graph of the form $K_{1,n}$. Recall from [6] that a subset V' of the vertex set V(G) of a connected graph G is a *vertex cut* of G if $G \setminus V$ is disconnected; it is a k-vertex cut if |V| = k. A vertex v of G is a *cut vertex* of G if $\{v\}$ is a vertex cut of G. A subset S of the vertex set V of a graph G is called *independent* if no two vertices of S are adjacent in G. $S \subseteq V$ is a maximum independent set of G if G has no independent set S_0 with $|S_0| > |S|$. Cardinality of maximum independent set of G is called *independence number*. Let G = (V, E) be a graph. Recall from [3] that two distinct vertices u, vof G are said to be *orthogonal*, written as $u \perp v$ if u and v are adjacent in G and there is no vertex of G which is adjacent to both u and vin G; that is, the edge u - v is not an edge of any triangle in G. Let $u \in V$. A vertex v of G is said to be a complement of u if $u \perp v$ [3]. Moreover, we recall from [3] that G is complemented if each vertex of G admits a complement in G.

A ring R is said to be *local* if R has a unique maximal ideal. Recall that a principal ideal ring R is said to be a *special principal ideal ring* (SPIR) if R admits only one prime ideal. If \mathfrak{m} is the only prime ideal of R, then \mathfrak{m} is necessarily nilpotent. If R is a special principal ideal ring with \mathfrak{m} as its only prime ideal, then we describe it using the notation that (R, \mathfrak{m}) is a SPIR. Let \mathfrak{m} be a nonzero maximal ideal of a ring R such that \mathfrak{m} is principal and is nilpotent. Let $n \geq 2$ be the least positive integer with the property that $\mathfrak{m}^n = (0)$. Then it follows from [5] that $\{\mathfrak{m}^i | i \in \{1, \ldots, n-1\}\}$ is the set of all nonzero proper ideals of R. As each ideal of R is principal with \mathfrak{m} as its only prime ideal, it follows that (R, \mathfrak{m}) is a SPIR.

Now, we give brief of the theorems proved in this article. In Theorem 2.1, for a ring R we have proved that G(R) is connected and $diam(G(R)) \leq 2$. In Theorem 2.2, we have proved that if $|Max(R)| \geq 3$, then G(R) is not a star graph. In Theorem 2.3 (resp. Theorem 2.4), we have classified rings R with |Max(R)| = 2 (resp. |Max(R)| = 1) such that G(R) is a star graph. A necessary and sufficient condition for G(R) to be a star graph is provided in Theorem 2.5. In Theorem 2.6, a classification of rings R is provided for which

diam(L(G(R))) < diam(G(R)).

We have proved in Theorem 2.7 that if $|Max(R)| \geq 4$, then diam(L(G(R))) = 3. In Theorem 2.8, we have proved that for a ring R with |Max(R)| = 3, diam(L(G(R))) = 3 if and only if $R \ncong F_1 \times F_2 \times F_3$, where F_1, F_2, F_3 are fields. In Theorem 2.9, we have classified the rings R with |Max(R)| = 2 for which diam(L(G(R))) = 2. In Theorem 2.10, we have classified the rings for which L(G(R)) = 2. In Theorem 2.11, we have proved for a reduced ring $R = \prod_{i=1}^{n} R_i$, where R_i is a finite local ring, diam(L(G(R))) = diam(G(R)) = 2 if and only if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

In Theorem 3.1, we have proved that for a ring R, if |Max(R)| > 4, then G(R) is not a split graph. Classification of rings R with |Max(R)| = 3 (resp. |Max(R)| = 2) for which G(R)is a split graph is provided in Theorem 3.2 (resp. Theorem 3.3). In Theorem 3.4, we have proved that if (R, M) is a local ring which is not a field, then G(R) is a split graph. In Theorem 3.5, we have proved that G(R) admits a cut-vertex if and only if $R \cong F_1 \times F_2$; where F_1 and F_2 are fields. In Lemma 3.6, we have showed that if R is a ring which is not a field then $girth(G(R)) \in \{3,\infty\}$. Necessary and sufficient conditions for which girth(G(R)) = 3 $(resp.\infty)$ is provided in Theorem 3.7 (resp. Theorem 3.8). Independence number of G(R)has been discussed in Theorem 3.9. In Theorem 3.10, we have proved that for a non-zero commutative ring R, G(R) is complemented if and only if $R \cong F_1 \times F_2$; where F_1 and F_2 are fields or (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$.

2. Diameter of L(G(R))

Theorem 2.1. Let R be a ring which is not a field. Then G(R) is connected and diam $(G(R)) \leq 2$.

Proof. Let R be a ring which is not a field. Then for any two nonadjacent vertices I, J in G(R), there is a path I - (0) - J of length two between them. So, G(R) is connected and $diam(G(R)) \leq 2$.

Theorem 2.2. Let R be a ring. If $|Max(R)| \ge 3$, then G(R) is not a star graph.

Proof. Let $M_1, M_2, M_3 \in Max(R)$. Note that $M_1M_2 \neq (0)$. Suppose that $M_1M_2 = (0)$. Then $(0) \subseteq M_3$. So, $M_1 \subseteq M_3$ or $M_2 \subseteq M_3$ which is not possible. So, $M_1M_2 \neq (0)$. Suppose that $M_1M_2 = M_1$. Then $M_1 \subseteq M_2$ which is again a contradiction. So, $M_1M_2 \neq M_1$. So, we

have a cycle $M_1M_2 - (0) - M_1 - M_1M_2$. Hence, G(R) is not a star graph. Hence, if $|Max(R)| \ge 3$, then G(R) is not a star graph. \Box

Theorem 2.3. Let R be a ring with |Max(R)| = 2. Then G(R) is a star graph if and only if $R \cong F_1 \times F_2$; where F_1 and F_2 are fields. Indeed, in this case G(R) is $K_{1,2}$.

Proof. Let $Max(R) = \{M_1, M_2\}$. Suppose that G(R) is a star graph. Note that $M_1M_2 \neq M_i$; for any $i \in \{1, 2\}$. Suppose that $M_1M_2 \neq (0)$. Then $(0) - M_1M_2 - M_1 - (0)$ is a cycle. So, G(R) is not a star graph. Hence, we have $M_1M_2 = (0)$. Therefore, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong R/J(R) \cong R/M_1 \times R/M_2 \cong F_1 \times F_2;$$

where F_1 and F_2 are fields.

Conversely, suppose that $R \cong F_1 \times F_2$. Note that

$$V(G(R)) = \{F_1 \times (0), (0) \times F_2, (0) \times (0)\}.$$

Hence, G(R) is the star graph $K_{1,2}$ given by

$$F_1 \times (0) - (0) \times (0) - (0) \times F_2.$$

Theorem 2.4. Let R be a ring which is not a field with |Max(R)| = 1. Then G(R) is a star graph if and only if R is SPIR with $M \neq (0)$ but $M^2 = (0)$. Indeed, in this case $G(R) = K_{1,1}$.

Proof. Let $Max(R) = \{M\}$. Suppose that G(R) is a star graph. Let $x \in M \setminus \{0\}$. Clearly, $Rx \neq (0)$. If $M \neq Rx$, then (0) - Rx - M - (0) is a cycle. So, G(R) is not a star graph which is a contradiction. Hence, M = Rx. Suppose that $M^2 = M$. Since, M = J(R) and M = Rx, we have from the Nakayama's lemma [5, Proposition 2.6], $M = \{0\}$. Hence, R is a field which is a contradiction to the assumption. So, $M^2 \neq M$. If $M^2 \neq (0)$, then again $(0) - M - M^2 - (0)$ is a cycle which is not possible. So, $M^2 = (0)$. Let P be any prime ideal. Note that $M^2 = (0) \subseteq P$. So, $M \subseteq P$. Hence, M = P. So, P = M is the only prime ideal of R. So, (R, M) is a SPIR with $M \neq (0)$ but $M^2 = (0)$.

Conversely suppose that (R, M) is SPIR with $M \neq (0)$ and $M^2 = (0)$. Note that $V(G(R)) = \{(0), M\}$. So, G(R) is $K_{1,1}$ given by M - (0).

Theorem 2.5. Let R be a ring which is not a field. Then G(R) is a star graph if and only if R is isomorphic to one of the following rings. (i) (R, M) is SPIR with $M \neq (0)$ and $M^2 = (0)$.

_		_	
-		-	
		- 1	
		- 1	
		- 1	
L.	_	_	

(ii) $F_1 \times F_2$; where F_1 and F_2 are fields. Indeed, if (i) or (ii) holds, then G(R) is either $K_{1,1}$ or $K_{1,2}$.

Proof. Proof follows from Theorems 2.2, 2.3 and 2.4.

Theorem 2.6. Let R be a ring. Then diam(L(G(R))) < diam(G(R))if and only if one of the following holds.

(i) $R \cong F_1 \times F_2$ where F_1 and F_2 are fields.

(ii) (R, M) is SPIR with M as its unique maximal ideal such that $M \neq (0)$ but $M^2 = (0)$.

Proof. Suppose that diam(L(G(R))) < diam(G(R)). By Theorem 2.1, G(R) is connected and $diam(G(R)) \leq 2$. Since, R is not a field, it has at least one maximal ideal $M \neq (0)$. Hence, diam(G(R)) = 1or 2. If diam(G(R)) = 1 then G(R) is a complete graph. Since diam(L(G(R))) < diam(G(R)) = 1, we have diam(L(G(R))) = 0. Now, G(R) is connected. So by [21, Proposition 2.2], we have L(G(R))is also connected. Thus, $L(G(R)) = K_1$. Hence, $G(R) = K_{1,1}$. Hence, by Theorem 2.4, (R, M) is a SPIR with M as its unique maximal ideal such that $M \neq (0)$ but $M^2 = (0)$. If diam(G(R)) = 2, then diam(L(G(R))) = 0 or 1. If diam(L(G(R))) = 0, then $G(R) = K_{1,1}$. So, diam(G(R)) = 1 which is a contradiction. So, diam(L(G(R))) = 1. Therefore, $L(G(R)) = K_n$; $n \in \mathbb{N}$. Now, if $L(G(R)) = K_3$, then $G(R) = K_3$ or $K_{1,3}$. Note that from Theorem 2.5, $G(R) \neq K_{1,3}$. So, $G(R) = K_3$. Then diam(G(R)) = 1 which is not possible. Hence, $L(G(R)) \neq K_3$. So, $L(G(R)) = K_n$; $n \in \mathbb{N}, n \neq 3$. Hence, G(R) is a star graph. By Theorem 2.5, $R \cong F_1 \times F_2$; where F_1 and F_2 are fields or (R, M) is SPIR with M as its unique maximal ideal such that $M \neq (0)$ but $M^2 = (0)$.

Conversely, assume that $R \cong F_1 \times F_2$; where F_1 and F_2 are fields. Then by Theorem 2.3, $G(R) = K_{1,2}$ and so $L(G(R)) = K_{1,1}$. Therefore,

$$1 = diam(L(G(R))) < diam(G(R)) = 2.$$

Now, let (R, M) be SPIR with M as its unique maximal ideal such that $M \neq (0)$ but $M^2 = (0)$. Then by Theorem 2.4, $G(R) = K_{1,1}$. So, L(G(R)) is a null graph. Therefore,

$$0 = diam(L(G(R))) < diam(G(R)) = 1$$

Theorem 2.7. Let R be a ring with $|Max(R)| \ge 4$. Then diam(L(G(R))) = 3.

Proof. Let $M_1, M_2, M_3, M_4 \in Max(R)$. Note that $[M_1, M_1M_2]$ and $[M_3, M_3M_4]$ are non-adjacent in L(G(R)). Suppose that there exists a path of length two between $[M_1, M_1M_2]$ and $[M_3, M_3M_4]$, say $[M_1, M_1M_2] - [I, J] - [M_3, M_3M_4]$; for some $[I, J] \in V(L(G(R)))$. Then $[I, J] = [M_1, M_3]$ or $[M_1, M_3M_4]$ or $[M_1M_2, M_3]$ or $[M_1M_2, M_3M_4]$. But, $M_1 + M_3 = R, M_1 + M_3 M_4 = R, M_1 M_2 + M_3 = R,$

$$M_1M_2 + M_3M_4 = R.$$

So, no such [I, J] exists in V(L(G(R))). Hence, the length of path between $[M_1, M_1M_2]$ and $[M_3, M_3M_4]$ is of atleast three. By Theorem 2.1 and [21, Proposition 2.2], $diam(L(G(R))) \leq 3$. Hence,

$$diam(L(G(R))) = 3.$$

Theorem 2.8. Let R be a finite ring with |Max(R)| = 3. Then diam(L(G(R))) = 3 if and only if $R \ncong F_1 \times F_2 \times F_3$; where F_1, F_2 and F_3 are fields.

Proof. Let R be a ring with |Max(R)| = 3. Let

$$Max(R) = \{M_1, M_2, M_3\}.$$

Assume that diam(L(G(R))) = 3. Let if possible

$$R \cong F_1 \times F_2 \times F_3;$$

where F_1, F_2 and F_3 are fields. Note that

.

$$V(L(G(R))) = \{I_1 = [(0), M_1], I_2 = [(0), M_2], I_3 = [(0), M_3], I_4 = [(0), M_1M_2], I_5 = [(0), M_1M_3], I_6 = [(0), M_2M_3], I_7 = [M_1, M_1M_2], I_8 = [M_1, M_1M_3], I_9 = [M_2, M_1M_2], I_{10} = [M_2, M_2M_3], I_{11} = [M_3, M_1M_3], I_{12} = [M_3, M_2M_3], I_{13} = [M_1M_2, M_1M_3], I_{14} = [M_1M_2, M_2M_3], I_{15} = [M_1M_3, M_2M_3]\}.$$

From the following figure and distance matrix of the graph $G(F_1 \times F_2 \times F_3)$, it is clear that

$$diam(L(G(F_1 \times F_2 \times F_3))) = 2.$$

Hence, $R \ncong F_1 \times F_2 \times F_3$; where F_1, F_2 and F_3 are fields.

Figure.1 : $L(G(F_1 \times F_2 \times F_3))$

	Γ0	1	1	1	1	1	1	1	2	2	2	2	2	2	2]	
	1	0	1	1	1	1	2	2	1	1	2	2	2	2	2	
	1	1	0	1	1	1	2	2	2	2	1	1	2	2	2	
	1	1	1	0	1	1	1	2	1	2	2	2	1	1	2	
	1	1	1	1	0	1	2	1	2	2	1	2	1	2	1	
	1	1	1	1	1	0	2	2	2	1	2	1	2	1	1	
	1	2	2	1	2	2	0	1	1	2	2	2	1	1	2	
A =	1	2	2	2	1	2	1	0	2	2	1	2	1	2	1	
	2	1	2	1	2	2	1	2	0	1	2	2	1	1	2	
	2	1	2	2	2	1	2	2	1	0	2	1	2	1	1	
	2	2	1	2	1	2	2	1	2	2	0	1	1	2	1	
	2	2	1	2	2	1	2	2	2	1	1	0	2	1	1	
	2	2	2	1	1	2	1	1	1	2	1	2	0	1	1	
	2	2	2	1	2	1	1	2	1	1	2	1	1	0	1	
	2	2	2	2	1	1	2	1	2	1	1	1	1	1	0	

Conversely, assume that $R \ncong F_1 \times F_2 \times F_3$; where F_1, F_2 and F_3 are fields. Let $x_i \in M_i \setminus (M_j \cup M_k)$; for distinct $i, j, k \in \{1, 2, 3\}$. If $Rx_i \ne M_i$ then $[Rx_i, M_i]$ and $[M_j, M_jM_k]$ are non-adjacent vertices in L(G(R)). Suppose that there exists a path of length two between them, say $[Rx_i, M_i] - [K, P] - [M_j, M_jM_k]$. Then $[K, P] = [Rx_i, M_j]$ or $[Rx_i, M_jM_k]$ or $[M_i, M_j]$ or $[M_i, M_jM_k]$. But, Rx_i and M_j, Rx_i and M_jM_k, M_i and M_j, M_i and M_jM_k are non-adjacent in G(R). So, no such [K, P] exists in V(L(G(R))). Thus,

$diam(L(G(R))) \ge 3.$

By Theorem 2.1 and [21, Proposition 2.2], $diam(L(G(R))) \leq 3$. Hence, diam(L(G(R))) = 3. Suppose that $Rx_i = M_i$ for each $i \in \{1, 2, 3\}$. Suppose that $M_i^2 \neq M_i$. Let

$$x \in M_i^2 \smallsetminus (M_j \cup M_k);$$

for distinct $i, j, k \in \{1, 2, 3\}$. Then, $Rx \subseteq M_i^2 \neq M_i$. But as $x \in M_i \setminus (M_j \cup M_k)$, we have $Rx = M_i$ which is a contradiction. So, $M_i^2 = M_i$; for all $i \in \{1, 2, 3\}$. Then

$$J(R) = M_1 M_2 M_3 = R x_1 x_2 x_3$$

and $(J(R))^2 = J(R)$. By the Nakayama's lemma [5, Proposition 2.6], J(R) = (0). Thus, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong \frac{R}{J(R)} \cong \frac{R}{M_1} \times \frac{R}{M_2} \times \frac{R}{M_3} \cong F_1 \times F_2 \times F_3;$$

where F_1, F_2 and F_3 are fields.

Theorem 2.9. Let R be an Artinian ring with |Max(R)| = 2. Then diam(L(G(R))) = 2 if and only if $R \cong R_1 \times R_2$; where (R_1, m_1) and (R_2, m_2) are local rings, $R_i a = m_i$ for some $a \in R_i$ and $m_i^2 = m_i$; for atleast one $i \in \{1, 2\}$.

Proof. Since |Max(R)| = 2 and R is an Artinian ring, $R \cong R_1 \times R_2$; where (R_i, m_i) is a local ring for all $i \in \{1, 2\}$. Note that

$$Max(R) = \{M_1 = m_1 \times R_2, M_2 = R_1 \times m_2\}.$$

Assume that diam(L(G(R))) = 2. Suppose that $m_1^2 \neq m_1$ and $m_2^2 \neq m_2$. So, $M_1^2 \neq M_1$ and $M_2^2 \neq M_2$. Note that

$$[M_1, M_1^2], [M_2, M_2^2] \in V(L(G(R)))$$

are non-adjacent. Let if possible, there exists a path of length two between $[M_1, M_1^2]$ and $[M_2, M_2^2]$, say $[M_1, M_1^2] - [I, J] - [M_2, M_2^2]$. Now, $[I, J] = [M_1, M_2]$ or $[M_1, M_2^2]$ or $[M_1^2, M_2]$ or $[M_1^2, M_2^2]$. But, M_1 and M_2 , M_1 and M_2^2 , M_1^2 and M_2 , M_1^2 and M_2^2 are not adjacent in G(R). So, no such [I, J] exists in V(L(G(R))). So, the length of the path between $[M_1, M_1^2]$ and $[M_2, M_2^2]$ is atleast three. Thus, $M_1^2 = M_1$ or $M_2^2 = M_2$. Without loss of generality, we may assume that $M_1^2 = M_1$. So, $m_1^2 = m_1$. Let $x_1 \in M_1 \smallsetminus (0)$. Suppose that $Rx_1 = M_1$. If $x_1 = (a, 1)$; for some $a \in R_1$ then $m_1 = R_1 a$. Suppose that $Rx_1 \neq M_1$. Let $M_2^2 \neq M_2$. Suppose that there exists a path of length two between $[Rx_1, M_1]$ and $[M_2, M_2^2]$, say $[Rx_1, M_1] - [I, J] - [M_2, M_2^2]$.

Then $[I, J] = [Rx_1, M_2]$ or $[Rx_1, M_2^2]$ or $[M_1, M_2]$ or $[M_1, M_2^2]$. But, Rx_1 and M_2 , Rx_1 and M_2^2 , M_1 and M_2 , M_1 and M_2^2 are not adjacent in G(R). So, in any case such [I, J] does not exist in V(L(G(R))). Thus, the length of path between $[Rx_1, M_1]$ and $[M_2, M_2^2]$ is atleast three. Hence, $M_2^2 = M_2$. Let $x_2 \in M_2 \setminus (0)$. If $Rx_2 \neq M_2$, then again by similar argument, the length of the path between $[M_1, Rx_1]$ and $[M_2, Rx_2]$ is atleast three. So, $M_2 = Rx_2$. Hence, $M_2^2 = M_2$ and $M_2 = Rx_2$; for some $x_2 \in M_2$. If $x_2 = (1, b)$; for some $b \in R_2$, then $m_2 = R_2b$.

Conversely, assume that $R \cong R_1 \times R_2$; where (R_1, m_1) and (R_2, m_2) are local rings, $R_i a = m_i$ for some $a \in R_i$ and $m_i^2 = m_i$; for atleast one $i \in \{1, 2\}$. Let $R_1 a = m_1$; for some $a \in R_1$ and $m_1^2 = m_1$. V(L(G(R)))contains vertices of the form $[M_1, I]$ and [K, P]; where $I \subseteq J(R)$ and $K, P \subseteq M_2$. Non-adjacent vertices in L(G(R)) are either of the form $[M_1, I]$ and [K, P]; where $I \subseteq J(R)$, $K, P \subseteq M_2$ or of the form $[K_1, P_1]$ and $[K_2, P_2]$; where $K_1, P_1, K_2, P_2 \subseteq M_2$ are distinct vertices in G(R). Let $[M_1, I]$ and [K, P] be two non-adjacent vertices in L(G(R)); $I \subseteq J(R)$ and $K, P \subseteq M_2$. Then, [M, I] - [I, K] - [K, P] is a path of length two between them as $I \subseteq J(R)$ implies $I \subseteq K$. Now, let $[K_1, P_1]$ and $[K_2, P_2]$ be non-adjacent vertices in L(G(R)); where $K_1, P_2 \subseteq M_2$. Thus, $[K_1, P_1] - [K_1, P_2] - [K_2, P_2]$ is a path of length two between $[K_1, P_1]$ and K_2, P_2 in L(G(R)). Hence, diam(L(G(R))) = 2.

Theorem 2.10. Let R be a ring. Then L(G(R)) is complete if and only if R is isomorphic to one of the following rings:

(i) $F_1 \times F_2$; where F_1 and F_2 are fields.

(ii) (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$.

(iii) (R, M) is SPIR with $M^2 \neq (0)$ but $M^3 = (0)$.

Proof. Suppose L(G(R)) is complete. Let $L(G(R)) = K_n$; $n \in \mathbb{N}$. If $n \neq 3$, then G(R) is a star graph. Hence, by Theorem 2.5, $R \cong F_1 \times F_2$; where F_1 and F_2 are fields or (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$. If $L(G(R)) = K_3$, then $G(R) = K_3$ or $K_{1,3}$. But, by Theorem 2.5, $G(R) \neq K_{1,3}$. So, $G(R) = K_3$. Suppose $|Max(R)| \geq 2$. Let $M_1, M_2 \in Max(R)$. Then M_1 and M_2 are not adjacent in G(R). So, $G(R) \neq K_3$ which is a contradiction to the assumption. So, |Max(R)| = 1. Let $Max(R) = \{M\}$. As R is not a field, $M \neq (0)$. Let $x \in M \setminus (0)$. Suppose that $M \neq Rx$. Let $y \in M \setminus Rx$. Then it is clear that $Ry \neq Rx$. Also, $Ry \neq (0)$ as $y \neq 0$. Now, if $M \neq Ry$, then $M, Rx, Ry, (0) \in V(G(R))$ forms K_4 which is not possible. Hence, M = Ry. Suppose that $M^2 = (0)$. Now, let P be any prime ideal. Then $M^2 = (0) \subseteq P$. So, $M \subseteq P$. Thus M = P. Hence, (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$. Then $G(R) = K_2$

which is not possible. So, $M^2 \neq (0)$. Let if possible, $M^2 = M$. Since M = Ry and $M^2 = M$, by the Nakayama's lemma [5, Proposition 2.6], we have M = (0). This is not possible. So, $M^2 \neq M$. Hence, $M^2 \neq (0)$ and $M^2 \neq M$. As M = Ry, we have $M^2 = Ry^2$. Now, if $M^3 = M^2$, then by the Nakayama's lemma [5, Proposition 2.6], M = (0). So, $M^3 \neq M^2$. If $M^3 \neq (0)$, then $M, M^2, M^3, (0) \in V(G(R))$ which is also not possible. So, $M^3 = (0)$. Let P be any prime ideal of R. Then $M^3 = (0) \subseteq P$. So, $M \subseteq P$. So, M = P. Thus, (R, M) is SPIR with $M^2 \neq (0)$ but $M^3 = (0)$.

Conversely, assume that $R \cong F_1 \times F_2$; where F_1 and F_2 are fields. Then by Theorem 2.3, $G(R) = K_{1,2}$. So, $L(G(R)) = K_2$. Now, we assume that (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$. Then by Theorem 2.4, $G(R) = K_{1,1}$. So, $L(G(R)) = K_1$. If (R, M) is SPIR with $M^2 \neq (0)$ but $M^3 = (0)$ then G(R) is K_3 given by

$$(0) - M - M^2 - (0)$$

and so $L(G(R)) = K_3$.

Theorem 2.11. Let $R = \prod_{i=1}^{n} R_i$ be a reduced ring with maximal ideals $M_1, M_2, ..., M_n$; for some $n \in \mathbb{N}$ where R_i is a finite local ring with maximal ideals $\mathfrak{n}_1, \mathfrak{n}_2, ..., \mathfrak{n}_n$. Then diam(L(G(R))) = diam(G(R)) = 2 if and only if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Assume that diam(L(G(R))) = diam(G(R)) = 2. As R is a finite reduced ring, it is a direct product of finitely many fields. Let $R \cong F_1 \times F_2 \times \ldots \times F_n$; where F_i is a field for each $n \in \mathbb{N}$. Let if possible,

$$\left| M_i \smallsetminus \bigcup_{\substack{j \neq i}}^{j=1^n} M_j \right| \ge 2;$$

for some $i \in \{1, 2, \dots, n\}$. Recall from [21, Remark 2.9],

 $\left| M_i \smallsetminus \bigcup_{\substack{j \neq i}}^{j=1\,n} M_j \right| \ge 2;$

for atleast (n-1) i's. Choose $s, t \in M_1 \setminus \bigcup_{j=2}^n M_j$ and

$$u, v \in M_2 \smallsetminus \bigcup_{j \neq 2}^{j=1^n} M_j.$$

Take $V_1 = [Rs, Rt]$ and $V_2 = [Ru, Rv]$. Then $V_1, V_2 \in V(L(G(R)))$. Clearly, V_1 and V_2 are not adjacent in L(G(R)). Let if possible,

$$V_1 = [Rs, Rt] - [I, J] - [Ru, Rv] = V_2$$

be a path between V_1 and V_2 . Without loss of generality, we may assume that I = Rs and J = Rv. So, $[Rs, Rv] \in V(L(G(R)))$. So, Rs and Rv are adjacent in G(R). Thus, there exists a maximal ideal, say M that contains both Rs and Rv which is not possible. So, the

$$\square$$

PUROHIT AND PAREJIYA

path between V_1 and V_2 is atleast of length three which contradicts the hypothesis. So, we have $\left| M_i \smallsetminus \bigcup_{j \neq i}^{j=1^n} M_j \right| = 1$; for all i. Hence, $F_i = \mathbb{Z}_2$; for each $i \in \{1, 2, ..., n\}$. Let if possible, $n \geq 4$. Choose $s \in M_1 \smallsetminus \bigcup_{j=2}^n M_j$, $t \in (M_1 \cap M_2) \smallsetminus \bigcup_{j=3}^n M_j$, $u \in M_3 \smallsetminus \bigcup_{j\neq 3}^{n-1} M_j$ and $v \in (M_3 \cap M_4) \smallsetminus \bigcup_{j\neq 3, 4}^{n-1} M_j$. Then [Rs, Rt] and [Ru, Rv] are not adjacent in L(G(R)). Let if possible, [Rs, Rt] - [I, J] - [Ru, Rv] be a path between [Rs, Rt] and [Ru, Rv] in L(G(R)). Without loss of generality, we may assume that I = Rs and J = Rv. So, Rs and Rvare adjacent in G(R) which is not true by the choice of s and v. So, the path between [Rs, Rt] and [Ru, Rv] is atleast of length three which again contradicts the hypothesis. So, $|Max(R)| \leq 3$. Let $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Then

$$V(R) = \{ \mathbb{Z}_2 \times (0), (0) \times \mathbb{Z}_2, (0) \times (0) \}.$$

Note that $G(\mathbb{Z}_2 \times \mathbb{Z}_2) = K_{1,2}$ and so $L(G(\mathbb{Z}_2 \times \mathbb{Z}_2)) = K_2$. Hence, $diam(L(G(\mathbb{Z}_2 \times \mathbb{Z}_2))) = 1$ which contradicts the hypothesis. So, $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Conversely, assume that $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Note that

$$V(G(R)) = \{ O = (0) \times (0) \times (0), M_1 = (0) \times \mathbb{Z}_2 \times \mathbb{Z}_2, M_2 = \mathbb{Z}_2 \times (0) \times \mathbb{Z}_2, M_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times (0), M_1 M_2 = (0) \times (0) \times \mathbb{Z}_2, M_1 M_3 = (0) \times \mathbb{Z}_2 \times (0), M_2 M_3 = \mathbb{Z}_2 \times (0) \times (0) \}.$$

From the following Figure.2, it is clear that diam(G(R)) = 2. Note that

$$V(L(G(R))) = \left\{ I_1 = [(0), M_1], I_2 = [(0), M_2], \\ I_3 = [(0), M_3], I_4 = [(0), M_1 M_2], \\ I_5 = [(0), M_1 M_3], I_6 = [(0), M_2 M_3], \\ I_7 = [M_1, M_1 M_2], I_8 = [M_1, M_1 M_3], \\ I_9 = [M_2, M_1 M_2], I_{10} = [M_2, M_2 M_3], \\ I_{11} = [M_3, M_1 M_3], I_{12} = [M_3, M_2 M_3] \right\}$$

From Figure.1, it is clear that diam(V(L(G(R)))) = 2. Hence,

$$diam(G(R)) = 2 = diam(L(G(R))).$$

Figure.2: $G(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)$

3. Some more Results on G(R)

Theorem 3.1. Let R be a ring with $|Max(R)| \ge 4$. Then G(R) is not a split graph.

Proof. Let G(R) be a split graph. Let $V(G(R)) = K \cup S$; where the subgraph of G(R) induced on K is complete, S is an independent set of G(R) and $K \cap S = \emptyset$. Let

$$M_1, M_2, M_3, M_4 \in Max(R).$$

Suppose that (0) $\in S$. Then $M_i \notin S$; for $i \in \{1, 2, 3, 4\}$ as (0) is adjacent to each M_i ; for $i \in \{1, 2, 3, 4\}$. So, $M_i \in K$; for all $i \in \{1, 2, 3, 4\}$ which is not possible as any two distinct maximal ideals are not adjacent in G(R). So, $(0) \in K$. Note that at most one of the maximal ideal can be in K. Without loss of generality, we may assume that $M_1 \in K$. Hence, $M_2, M_3, M_4 \in S$. If $M_2M_3 = (0)$, then $M_2M_3 = (0) \subseteq M_1$. So, $M_2 = M_1$ or $M_3 = M_1$ which is not possible. Hence, $M_2M_3 \neq (0)$. Also, $M_2M_3 \neq M_i$; for any $i \in \{1, 2, 3, 4\}$ as if $M_2 M_3 = M_i$; for some $i \in \{1, 2, 3, 4\}$, then $M_2 = M_i$ or $M_3 = M_i$ which is not possible. Since $M_2 \in S$ and M_2M_3 is adjacent to M_2 in G(R), we have $M_2M_3 \notin S$. Also, $M_1 + M_2M_3 = R$. So, $M_2M_3 \notin K$. Thus, $Max(R) \subseteq S$. Note that M_iM_j is adjacent with M_i ; for any distinct $i, j \in \{1, 2, 3, 4\}$. Hence, $M_i M_j \in K$; for distinct $i, j \in \{1, 2, 3, 4\}$. So, we have $M_1 M_2, M_3 M_4 \in K$. But, then $M_1M_2 + M_3M_4 = R$. So, M_1M_2 and M_3M_4 are not adjacent in G(R). Hence, G(R) is not a split graph. This is a contradiction. So, |Max(R)| < 3.

Theorem 3.2. Let R be a ring with |Max(R)| = 3. Then G(R) is a split graph if and only if $R \cong F_1 \times F_2 \times F_3$; where F_1, F_2 and F_3 are fields.

Proof. Suppose that $R \cong F_1 \times F_2 \times F_3$; where F_1, F_2 and F_3 are fields. Note that

$$V(G(R)) = \{(0) \times (0) \times (0), M_1 = (0) \times F_2 \times F_3, M_2 = F_1 \times (0) \times F_3, M_3 = F_1 \times F_2 \times (0), M_1 M_2, M_2 M_3, M_1 M_3 \}.$$

Let $K = \{M_1M_2, M_2M_3, M_1M_3, (0)\}$ and $S = \{M_1, M_2, M_3\}$. Then we have $V(G(R)) = K \cup S$, where the subgraph of G(R) induced on K is complete, S is an independent set of G(R) and $K \cap S = \emptyset$. Therefore, G(R) is a split graph.

Conversely, assume that G(R) is a split graph. Let

$$V(G(R)) = K \cup S;$$

where the subgraph of G(R) induced on K is complete, S is an independent set of G(R) and $K \cap S = \emptyset$. Let

$$Max(R) = \{M_1, M_2, M_3\}.$$

Note that $M_iM_j \neq (0)$; for any $i, j \in \{1, 2, 3\}$. As $M_i + M_j = R$; for $i \neq j$ and $i, j \in \{1, 2, 3\}$, we have at most one $M_i \in K$, for $i \in \{1, 2, 3\}$. Let $M_1 \in K$ and $M_2, M_3 \in S$. Now, M_2 and M_2M_3 are adjacent in G(R). So, $M_2M_3 \notin S$. Also, $M_1 + M_2M_3 = R$. So, $M_2M_3 \notin K$. So, $Max(R) \subseteq S$. Since,(0) is adjacent to all other vertices, we have $(0) \in K$. Note that $M_2M_3 \neq (0)$. Observe that M_2M_3 and M_2 are adjacent in G(R). As $M_2 \in S$, we have $M_2M_3 \in K$. Let

$$x \in M_1 \smallsetminus (M_2 \cup M_3).$$

Let if possible, $Rx \neq M_1$. As Rx is adjacent to M_1 in G(R), $Rx \notin S$. Also, $Rx + M_2M_3 = R$. So, $Rx \notin K$. Hence, $Rx = M_1$. Similarly, $M_2 = Ry$; for some $y \in M_2 \setminus (M_1 \cup M_3)$ and $M_3 = Rz$; for some $z \in M_3 \setminus (M_1 \cup M_2)$. Thus, J(R) = Rxyz. Let if possible, $M_1^2 = (0)$. Then $M_1^2 = (0) \subseteq M_2$. This implies that $M_1 = M_2$ which is not possible. So, $M_1^2 \neq (0)$. If $M_1^2 \neq M_1$, then $M_1^2 + M_2M_3 = R$. So, M_1^2 cannot be in K. Also, M_1^2 and M_1 are adjacent in G(R). So, $M_1^2 \notin S$. Hence, $M_1^2 = M_1$. By similar argument, $M_2^2 = M_2$ and $M_3^2 = M_3$. So, $(J(R))^2 = J(R)$. Since, J(R) is principal, by the Nakayama's lemma [5, Proposition 2.6], we have J(R) = (0). So, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong \frac{R}{J(R)} \cong \frac{R}{M_1} \times \frac{R}{M_2} \times \frac{R}{M_3} \cong F_1 \times F_2 \times F_3;$$

where F_1, F_2 and F_3 are fields.

Theorem 3.3. Let R be an Artinian ring with |Max(R)| = 2. Then G(R) is a split graph if and only if $R \cong R_1 \times R_2$; where (R_1, m_1) and (R_2, m_2) are local rings, $R_i a = m_i$ for some $a \in R_i$ and $m_i^2 = m_i$; for at least one $i \in \{1, 2\}$.

Proof. Since R is an Artinian ring, $R \cong R_1 \times R_2$; where (R_1, m_1) and (R_2, m_2) are local rings [5, Proposition 8.7]. Note that

$$Max(R) = \{ M_1 = m_1 \times R_2, M_2 = R_1 \times m_2 \}.$$

Assume that G(R) is a split graph. Let $V(G(R)) = K \cup S$; where the subgraph induced on K is complete, S is an independent set of G(R) and $K \cap S = \emptyset$. If $(0) \in S$, then $M_1, M_2 \in K$ which is not possible as $M_1 + M_2 = R$. So, $(0) \in K$. Note that any two distinct maximal ideals are not adjacent in G(R). So, at most one of M_1 or M_2 can be placed in K. Without loss of generality, we may assume that $M_2 \in K$. Thus, $M_1 \in S$. Let $x_1 \in M_1 \setminus M_2$. Let if possible, $Rx_1 \neq M_1$. Then, $Rx_1 + M_2 = R$. So, Rx_1 is not adjacent to M_2 . So, $Rx_1 \notin K$. Also, Rx_1 is adjacent to M_1 in G(R). So, $Rx_1 \notin S$. Thus, $Rx_1 = M_1$. Note that $M_1^2 \neq (0)$. Let if possible, $M_1^2 \neq M_1$. Then $M_1^2 \notin K$ as $M_1^2 + M_2 = R$. Also, M_1^2 is adjacent to M_1 in G(R). So, $M_1^2 \notin S$. Thus, $M_1^2 = M_1$. Let $x_1 = (a, 1)$; for some $a \in R_1$. Then $R_1 a = m_1$ and $m_1^2 = m_1$. Suppose that $M_1, M_2 \in S$. Let $x_1 \in M_1 \setminus M_2$. Let if possible $Rx_1 \neq M_1$, then Rx_1 is adjacent to M_1 . So, $Rx_1 \notin S$. So, $Rx_1 \in K$. Let $x_2 \in M_2 \setminus M_1$. If $M_2 \neq Rx_2$, then $Rx_2 \notin S$ as Rx_2 is adjacent to M_2 . Also, $Rx_1 + Rx_2 = R$. So, $Rx_2 \notin K$. Thus, $Rx_2 = M_2$. If $M_2^2 \neq M_2$, then $M_2^2 \notin S$ as M_2^2 and M_2 are adjacent. Also, $Rx_1 + M_2^2 = R$. So, $M_2^2 \notin K$. Thus, $M_2^2 = M_2$. Let $x_2 = (1, b)$; for some $b \in R_2$. Then $R_2 b = m_2$ and $m_2^2 = m_2$. Suppose $Rx_1 = M_1$ and if $M_1^2 \neq M_1$, then $M_1^2 \in K$. By similar argument as above, $m_2^2 = m_2$ and $Rb = m_2$; for some $b \in R_2$.

Conversely, assume that $R \cong R_1 \times R_2$; where (R_1, m_1) and (R_2, m_2) are local rings, $R_i a = m_i$ for some $a \in R_i$ and $m_i^2 = m_i$; for atleast one $i \in \{1, 2\}$. Suppose that $R_1 a = m_1$; for some $a \in R_1$ and $m_1^2 = m_1$. Let

$$K = \{(0), M_2\} \cup \{I \in I(R) : I \subseteq M_2\}$$

and $S = \{M_1\}$. Hence, G(R) is a split graph.

Theorem 3.4. Let (R, M) be a local ring which is not a field. Then G(R) is a split graph.

Proof. Proof is clear.

Theorem 3.5. G(R) admits a cut-vertex if and only if $R \cong F_1 \times F_2$; where F_1 and F_2 are fields.

Proof. Suppose that G(R) has a cut-vertex, say K. Now, G(R) admits a cut-vertex K if and only if there exists I and $J \in V(G(R))$ such that there is exactly one path I - K - J between I and J in G(R). Note that $I, J \neq (0)$ as (0) is adjacent to all the vertices in G(R). If $K \neq (0)$, then there is another path I - (0) - J between I and J in G(R). Hence, K = (0). Let $M, M' \in Max(R)$ such that $I \subseteq M$ and $J \subseteq M'$. As I and J are not adjacent in $G(R), M \neq M'$. Let $x \in M \cap M'$; where $x \neq 0$. Then I - Rx - J is another path between I and J which is not possible. So, $M \cap M' = (0)$. Let if possible, M'' be a maximal ideal distinct from M and M'. Then $M \cap M' = (0) \subseteq M''$. But then either M = M'' or M' = M'' which is also not possible. So, $|Max(R)| \leq 2$. If |Max(R)| = 1, then G(R) is a complete graph. So, it will never admit a cut-vertex. So, |Max(R)| = 2. Let

$$Max(R) = \{M_1, M_2\}.$$

As $M_1 \cap M_2 = (0)$, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong \frac{R}{J(R)} \cong \frac{R}{M_1} \times \frac{R}{M_2} \cong F_1 \times F_2;$$

where F_1 and F_2 are fields.

Conversely, assume that $R \cong F_1 \times F_2$; for some fields F_1 and F_2 . Then $R \cong F_1 \times F_2$ is a path graph $F_1 \times (0) - (0) \times (0) - (0) \times F_2$ and clearly $(0) \times (0)$ is a cut-vertex.

Lemma 3.6. Let R be a ring which is not a field. Then $girth(G(R)) \in \{3, \infty\}.$

Proof. Assume that $|Max(R)| \geq 3$. Let $M_1, M_2, M_3 \in Max(R)$. Suppose that $M_1M_2 = (0)$. Then, $M_1M_2 = (0) \subseteq M_3$. So, $M_1 = M_3$ or $M_2 = M_3$ which is not possible. So, $M_1M_2 \neq (0)$. Suppose that $M_1M_2 = M_1$. Then $M_1 \subseteq M_2$ which is not possible. So, $M_1M_2 \neq M_1$. Thus, we have a cycle $M_1M_2 - (0) - M_1 - M_1M_2$ in G(R) of length three. Hence, girth(G(R)) = 3.

Let |Max(R)| = 2. Let $Max(R) = \{M_1, M_2\}$. If

$$M_1 M_2 = J(R) = (0)$$

then by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong R/J(R) \cong R/M_1 \times R/M_2 = F_1 \times F_2;$$

where F_1 and F_2 are fields. Then G(R) is $K_{1,2}$ and so $girth(G(R)) = \infty$. If $J(R) = M_1 M_2 \neq (0)$, then $M_1 - M_1 M_2 - (0) - M_1$ forms a cycle of length 3. Hence, girth(G(R)) = 3.

Assume that (R, M) is a local ring. Let $x \in M \setminus (0)$. If $Rx \neq M$, then we have a cycle (0) - Rx - M - (0) in G(R). So, girth(G(R)) = 3. Let Rx = M. Let if possible, $M^2 = (0)$. Let P be any prime ideal of R. Then as $M^2 = (0)$, we have $M \subseteq P$. Thus, M = P. So, P = M is the only prime ideal of R. So, (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$. Hence, $girth(G(R)) = \infty$. Let $M^2 \neq (0)$. Also, let if possible $M^2 = M$. Then M = J(R) and M = Rx. So, by the Nakayama's lemma [5, Proposition 2.6], we have $M = \{0\}$, which is not possible as R is not a field. Hence, R is a field which is contradiction to the assumption. So, $M^2 \neq M$. Hence, $(0) - M^2 - M - (0)$ is a cycle of length three in G(R). So, girth(G(R)) = 3.

Theorem 3.7. Let R be a ring which is not a field. Then

$$girth(G(R)) = 3$$

if and only if one of the following conditions hold.

(i) $|Max(R)| \geq 3$

(*ii*) |Max(R)| = 2 and $J(R) \neq (0)$.

(iii) (R, M) is a local ring which is not isomorphic to SPIR (S, M); where $M \neq (0)$ but $M^2 = (0)$.

Proof. Proof follows from Theorem 3.6.

Theorem 3.8. Let R be a ring which is not a field. Then

$$girth(G(R)) = \infty$$

if and only if one of the following conditions hold.

(i) $R \cong F_1 \times F_2$; where F_1 and F_2 are fields.

(ii) (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$.

Proof. Proof follows from Theorem 3.6.

Theorem 3.9. Let R be a ring. Then $\alpha(G(R)) = n$ if and only if |Max(R)| = n; for some $n \in \mathbb{N}$.

Proof. Assume that $\alpha(G(R)) = n$; for some $n \in \mathbb{N}$. Let

$$Max(R) = \{M_1, M_2, ..., M_m\};$$

for some $m \in \mathbb{N}$. It is clear that Max(R) is an independent set in G(R). So, $m \leq n$. Let $W = \{I_1, I_2, ..., I_n\}$ be an independent set of G(R) with |W| = n. Since W is an independent set, I_i is not adjacent to any of the $I'_j s$; for $i \neq j$ and $i, j \in \{1, 2, ..., n\}$. Let $I_i \subseteq M_i$; for some $i \in \{1, 2, ..., n\}$. Let if possible, $M_i = M_j$ for some $i \neq j$ and

 $i, j \in \{1, 2, ..., n\}$. Then I_i and I_j will be adjacent in G(R) which is not possible. Hence, $M_i \neq M_j$; for $\forall i, j \in \{1, 2, ..., n\}$. Therefore, $m \ge n$. Hence, m = n.

Conversely, assume that |Max(R)| = n. Since, Max(R) forms an independent set in G(R), $\alpha(G(R)) \ge n$. Let if possible, $\alpha(G(R)) > n$. Then there exists an independent set, say $W = \{I_1, I_2, ..., I_n, ..., I_t\}$; where $t > n, t \in \mathbb{N}$. Let $I_i \subseteq M_i$; for some $i \in \{1, 2, ..., t\}$. Now, t > n. So, by the Pigeon-hole principle, there exists a maximal ideal M_r ; for some $r \in \{1, 2, ..., n\}$ and $i, j \in \{1, 2, ..., t\}$ such that $I_i, I_j \subseteq M_r$ which is not possible. So, $\alpha(G(R)) = n$.

Theorem 3.10. Let R be a ring. Then G(R) is complemented if and only if one of the following conditions hold.

(i) $R \cong F_1 \times F_2$; where F_1 and F_2 are fields.

(ii) (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$.

Proof. Suppose that G(R) is complemented. Let $I \neq (0)$ be any vertex of G(R). Since G(R) is complemented, there exists a vertex J in G(R) such that $I \perp J$. If $J \neq (0)$, then I - J - (0) - I forms a triangle which is not possible. So, J = (0). Now, $I \subseteq M$; for some $M \in Max(R)$. If $I \subsetneq M$, then I - (0) - M - I forms a triangle which is not possible. So, I = M. Suppose that, $|Max(R)| \ge 3$. Let $M_1, M_2, M_3 \in Max(R)$. Let $I = M_1$. Note that $M_1M_2 \neq (0)$ and $M_1M_2 \neq M_i$; for $i \in \{1, 2\}$. Observe that $(0) - M_1 - M_1M_2 - (0)$ forms a triangle which is not possible. So, $|Max(R)| \le 2$. Suppose that |Max(R)| = 2. Let $J(R) \neq (0)$. Then (0) - J(R) - M - (0) forms a triangle which is not possible. So, J(R) = (0). Hence, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$R \cong \frac{R}{J(R)} \cong \frac{R}{M_1} \times \frac{R}{M_2} \cong F_1 \times F_2;$$

where F_1 and F_2 are fields. Let (R, M) be a local ring which is not a field. Let $x \in M \setminus (0)$. If $Rx \neq M$, then (0) - Rx - M - (0) forms a triangle which is not possible. So, Rx = M. If $M^2 \neq (0)$ and $M^2 \neq M$, then $(0) - M - M^2 - (0)$ forms a triangle which is not possible. So, $M^2 = (0)$ or $M^2 = M$. If $M^2 = M$, then by the Nakayama's lemma [5, Proposition 2.6], M = (0). So, $M^2 \neq M$. Hence, $M^2 = (0)$. Let P be any prime ideal of R. Now, $M^2 = (0) \subseteq P$ which implies that $M \subseteq P$. As M is maximal, P = M = Rx. Thus, (R, M) is SPIR with $M \neq (0)$ but $M^2 = (0)$.

Acknowledgments

We are very thankful to the anonymous reviewers for their valuable suggestions.

References

- G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaiveisi, On the coloring of the annihilating-ideal graph of a commutative ring, *Discrete Math.*, **312** (2012), 2620–2626.
- S. Akbari, B. Miraftab, R. Nikandish, Co-maximal graphs of subgroups of groups, *Canad. Math. Bull.*, 60(1) (2017), 12–25.
- D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings and Boolean Algebras, J. Pure Appl. Algebra, 180 (2003), 221–241.
- 4. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, **217** (1999), 434–447.
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
- R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, 2000.
- 7. I. Beck, Coloring of commutative rings, J. Algebra, **116**(1) (1988), 208–226.
- M. Behboodi and Z. Rakeei, The annihilating-ideal graphs of commutative rings I, J. Algebra Appl., 10(4), (2011), 727–739.
- M. Behboodi and Z. Rakeei, The annihilating-ideal graphs of commutative rings II, J. Algebra Appl., 10(4) (2011), 741–753.
- A. Gaur and A. Sharma, Maximal graph of a commutative ring, *International J. Algebra*, 7(12) (2013), 581–588.
- M. I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm. Algebra, 40(7) (2012), 2400–2404.
- R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745–750.
- H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(4) (2008), 1801–1808.
- B. Miraftab and R. Nikandish, Co-maximal graphs of two generator groups, J. Algebra Appl., 18(04) (2019), Article ID: 1950068.
- B. Miraftab and R. Nikandish, Co-maximal ideal graphs of matrix algebras, Boletín de la Sociedad Matemática Mexicana, 24(1) (2018), 1–10.
- 16. S. M. Moconja and Z. Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, *Bull. Aust. Math. Soc.*, 83 (2011), 11–21.
- K. Nazzal and M. Ghanem, On the Line Graph of the Zero Divisor Graph for the Ring of Gaussian Integers Modulo n, *International Journal of Combinatorics*, (2012), Article ID: 957284, 13 pp.
- E. M. Nezhad and A. M. Rahimi, Dominating sets of the comaximal and ideal based zero-divisor graphs of commutative rings, *Quaest. Math.*, 38(5) (2015), 613–629.

PUROHIT AND PAREJIYA

- R. Nikandish and H. R. Maimani, Dominating sets of the annihilating-ideal graphs, *Electron. Notes Discrete Math.*, 45 (2014), 17–22.
- K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57(2) (2014), 413–423.
- A. Sharma and A. Gaur, Line Graphs associated to the Maximal graph, J. Algebra Relat. Topics, 3(1) (2015), 1–11.
- S. Visweswaran and J. Parejiya, Annihilating -ideal graphs with independence number at most four, *Cogent Mathematics*, 3(1) (2016), Article ID: 1155858.
- S. Visweswaran and J. Parejiya, When is the complement of the comaximal graph of a commutative ring planar?, *ISRN Algebra*, (2014), Article ID: 736043, 8 pp.
- S. Visweswaran and H. D. Patel, Some results on the complement of the annihilating ideal graph of a commutative ring, J. Algebra Appl., 14(7) (2015), Article ID: 1550099.
- H. J. Wang, Graphs associated to Co-maximal ideals of commutative rings, J. Algebra, 320(7) (2008), 2917–2933.
- M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, J. Algebra Appl., 11(6) (2012), Article ID: 1250114.

Krishna Lalitkumar Purohit

Department of Applied Sciences, RK University, P.O. Box 360003, Rajkot, India. Email: purohitkrishnal123@gmail.com

Jaydeep Parejiya

Department of Mathematics, Government Polytechnic, P.O. Box 360003, Rajkot, India.

Email: parejiyajay@gmail.com

Journal of Algebraic Systems

SOME PROPERTIES OF SUPER–GRAPH OF $(\mathscr{C}(R))^c$ AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA

برخی خواص ابرگراف $\mathscr{C}(R))^c$ و گراف خطی آن

كريشنا لاليتكومار پوروهيت' و جيديپ پارجيا

^اگروه علوم کاربردی، دانشگاه *RK*، راجکوت، هند

اگروه ریاضی، پلی تکنیک دولتی، راجکوت، هند

فرض میکنیم R حلقه ای یکدار با $\circ \neq 1$ باشد. گراف ایده آل همبیشین R گرافی ساده و غیرجهتی است که رئوس آن مجموعه ی همه ی ایده آل های سره ی حلقه ی R هستند به طوری که مشمول در جیکوبسون رادیکال R نیستند و دو رأس I و L در این گراف مجاورند اگر و تنها اگر R = R ام در این رادیکال R نیستند و دو رأس I و L در این گراف مجاورند اگر و تنها اگر R = R است و دو رأس مقاله، گراف (R) که مجموعه ی رئوس آن برابر با مجموعه ی تمام ایده آل های سره ی R است و دو رأس I و L در این گراف محاورند اگر و تنها اگر R = R مقاله، گراف (R) مقاله، گراف مجاورند اگر و تنها اگر R است و دو رأس رادیک ال و تنها اگر R و تنها اگر R محموعه ی تمام ایده آل های سره ی R است و دو رأس رادی کاله، گراف مجاورند اگر و تنها اگر R = L در این مقاله، میکنیم. همچنین، ما در این مقاله، رخی نتایج جالب در مورد (R) و گراف خطی آن را مورد بررسی قرار می دهیم.

كلمات كليدى: (G(R، G(R، گراف خطى.