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SOME PROPERTIES OF SUPER-GRAPH OF (C (R))c

AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA∗

Abstract. Let R be a commutative ring with identity 1 ̸= 0. The
comaximal ideal graph of R is the simple, undirected graph whose
vertex set is the set of all proper ideals of the ring R not contained
in the Jacobson radical of R and two vertices I and J are adjacent
in this graph if and only if I + J = R. In this article, we have
discussed the graph G(R) whose vertex set is the set of all proper
ideals of ring R and two vertices I and J are adjacent in this graph
if and only if I + J ̸= R. In this article, we have discussed some
interesting results about G(R) and its line graph.

1. Introduction

The rings considered in this article are commutative with identity
1 ̸= 0 which are not fields. The idea of associating a graph with certain
subsets of a commutative ring and exploring the interplay between the
ring-theoretic properties of a ring and the graph-theoretic properties
of the graph associated with it began with the work of I. Beck in [7].

For a commutative ring R, we denote the set of all maximal ideals
of R by Max(R). I(R) denotes the set of all proper ideals of a ring
R. We denote the cardinality of a set A using the notation |A|. Let
R be a ring. In [26], M. Ye and T. Wu introduced and investigated a
graph called the comaximal ideal graph of R, denoted by C (R). It is an
undirected graph whose vertex set is the set of all proper ideals I of R
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such that I ̸⊆ J(R) and distinct vertices I1, I2 are joined by an edge in
this graph if and only if I1+ I2 = R. In [26], M. Ye and T. Wu showed
that C (R) is connected and diam(C (R)) ≤ 3 and girth(C (R)) ≤ 4
if C (R) contains a cycle. They also studied the clique number and
chromatic number of C (R) and the results proved in [26] on C (R)
demonstrated the influence of certain graph parameters of C (R) on
the ring structure of R. Interesting research work has been done on
comaximal graph and comaximal ideal graph in [2, 11, 14, 15, 13, 16, 18,
20, 23] and on annihilating-ideal graphs as well as zero-divisor graphs
in [1, 3, 4, 8, 9, 12, 17, 19, 22, 24]. A. Gaur and A. Sharma have studied
the line graph associated to the maximal graph in [10, 21].

The graphs considered in this article are undirected. Let G = (V,E)
be a simple graph. Recall from [6] that the complement of G, denoted
by Gc is a graph whose vertex set is V and two distinct u, v ∈ V are
joined by an edge in Gc if and only if there exists no edge in G joining
u and v. Motivated by the results proved on C (R) in [25, 26], we have
considered a super graph of (C (R))c denoted by G(R) whose vertex set
is the set of all proper ideals of R and two distinct vertices I and J are
adjacent in G(R) if and only if I + J ̸= R. So, G(R) is a super-graph
of (C (R))c. As any proper ideal of a ring is contained in at least one
maximal ideal, it follows that I1 and I2 are adjacent in G(R) if and only
if there exists at least one maximal ideal m of R such that I1+ I2 ⊆ m.

It is useful to recall the following definitions and results from graph
theory. Let a, b ∈ V , a ̸= b. Recall that the distance between a and
b, denoted by d(a, b) is defined as the length of a shortest path in G
between a and b if such a path exists, otherwise d(a, b) = ∞. We define
d(a, a) = 0. A graph G is said to be connected if for any distinct vertices
a, b ∈ V , there exists a path in G between a and b. Recall from [6] that
the diameter of a connected graph G = (V,E) denoted by diam(G)
is defined as diam(G) = sup{d(a, b)|a, b ∈ V }. Let G = (V,E) be a
connected graph. Recall that G is a split graph if V (G) is the disjoint
union of two nonempty subsets K and S such that the subgraph of G
induced on K is complete and S is an independent set of G. Let G be
a simple undirected finite graph. Recall from [5] that line graph of G,
denoted as L(G) has its vertex set in 1-1 correspondence with the edge
set of G and two vertices of L(G) are joined by an edge if and only if
the corresponding edges of G are adjacent in G. If u− v is an edge in
G, then we denote the vertex uv of L(G) by [u, v].

Let G = (V,E) be a graph such that G contains a cycle. Recall from
[6] that the girth of G, denoted by girth(G) is defined as the length of
a shortest cycle in G. If a graph G does not contain any cycle, then
we define girth(G) = ∞. Let n ∈ N. A complete graph on n vertices
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is denoted by Kn. Let G = (V,E) be a graph. Then G is said to be
bipartite if the vertex set V of G can be partitioned into two nonempty
subsets V1 and V2 such that each edge of G has one end in V1 and the
other end in V2. A bipartite graph with vertex partition V1 and V2 is
said to be complete, if each element of V1 is adjacent to every element of
V2. Let m,n ∈ N. Let G = (V,E) be a complete bipartite graph with
V = V1 ∪ V2. If |V1| = m and |V2| = n, then G is denoted by Km,n. A
star graph is a complete bipartite graph of the form K1,n. Recall from
[6] that a subset V ′ of the vertex set V (G) of a connected graph G is a
vertex cut of G if G \ V is disconnected; it is a k-vertex cut if |V | = k.
A vertex v of G is a cut vertex of G if {v} is a vertex cut of G. A
subset S of the vertex set V of a graph G is called independent if no
two vertices of S are adjacent in G. S ⊆ V is a maximum independent
set of G if G has no independent set S0 with |S0| > |S|. Cardinality
of maximum independent set of G is called independence number. Let
G = (V,E) be a graph. Recall from [3] that two distinct vertices u, v
of G are said to be orthogonal, written as u ⊥ v if u and v are adjacent
in G and there is no vertex of G which is adjacent to both u and v
in G; that is, the edge u − v is not an edge of any triangle in G. Let
u ∈ V . A vertex v of G is said to be a complement of u if u ⊥ v [3].
Moreover, we recall from [3] that G is complemented if each vertex of
G admits a complement in G.

A ring R is said to be local if R has a unique maximal ideal. Recall
that a principal ideal ring R is said to be a special principal ideal ring
(SPIR) if R admits only one prime ideal. If m is the only prime ideal of
R, then m is necessarily nilpotent. If R is a special principal ideal ring
with m as its only prime ideal, then we describe it using the notation
that (R,m) is a SPIR. Let m be a nonzero maximal ideal of a ring
R such that m is principal and is nilpotent. Let n ≥ 2 be the least
positive integer with the property that mn = (0). Then it follows from
[5] that {mi|i ∈ {1, . . . , n − 1}} is the set of all nonzero proper ideals
of R. As each ideal of R is principal with m as its only prime ideal, it
follows that (R,m) is a SPIR.

Now, we give brief of the theorems proved in this article. In
Theorem 2.1, for a ring R we have proved that G(R) is connected
and diam(G(R)) ≤ 2. In Theorem 2.2, we have proved that if
|Max(R)| ≥ 3, then G(R) is not a star graph. In Theorem 2.3 (resp.
Theorem 2.4), we have classified rings R with |Max(R)| = 2 (resp.
|Max(R)| = 1) such that G(R) is a star graph. A necessary and
sufficient condition for G(R) to be a star graph is provided in
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Theorem 2.5. In Theorem 2.6, a classification of rings R is provided
for which

diam(L(G(R))) < diam(G(R)).
We have proved in Theorem 2.7 that if |Max(R)| ≥ 4, then
diam(L(G(R))) = 3. In Theorem 2.8, we have proved that for a ring R
with |Max(R)| = 3, diam(L(G(R))) = 3 if and only if R ≇ F1×F2×F3,
where F1, F2, F3 are fields. In Theorem 2.9, we have classified the rings
R with |Max(R)| = 2 for which diam(L(G(R))) = 2. In Theorem
2.10, we have classified the rings for which L(G(R)) is complete. In
Theorem 2.11, we have proved for a reduced ring R =

∏n
i=1Ri, where

Ri is a finite local ring, diam(L(G(R))) = diam(G(R)) = 2 if and only
if R ∼= Z2 × Z2 × Z2.

In Theorem 3.1, we have proved that for a ring R, if
|Max(R)| ≥ 4, then G(R) is not a split graph. Classification of
rings R with |Max(R)| = 3 (resp. |Max(R)| = 2) for which G(R)
is a split graph is provided in Theorem 3.2 (resp. Theorem 3.3). In
Theorem 3.4, we have proved that if (R,M) is a local ring which is not
a field, then G(R) is a split graph. In Theorem 3.5, we have proved
that G(R) admits a cut-vertex if and only if R ∼= F1 × F2; where
F1 and F2 are fields. In Lemma 3.6, we have showed that if R is a
ring which is not a field then girth(G(R)) ∈ {3,∞}. Necessary and
sufficient conditions for which girth(G(R)) = 3 (resp.∞) is provided
in Theorem 3.7 (resp. Theorem 3.8). Independence number of G(R)
has been discussed in Theorem 3.9. In Theorem 3.10, we have proved
that for a non-zero commutative ring R, G(R) is complemented if and
only if R ∼= F1×F2; where F1 and F2 are fields or (R,M) is SPIR with
M ̸= (0) but M2 = (0).

2. Diameter of L(G(R))

Theorem 2.1. Let R be a ring which is not a field. Then G(R) is
connected and diam(G(R)) ≤ 2.
Proof. Let R be a ring which is not a field. Then for any two non-
adjacent vertices I, J in G(R), there is a path I− (0)−J of length two
between them. So, G(R) is connected and diam(G(R)) ≤ 2. □
Theorem 2.2. Let R be a ring. If |Max(R)| ≥ 3, then G(R) is not a
star graph.
Proof. Let M1,M2,M3 ∈ Max(R). Note that M1M2 ̸= (0). Suppose
that M1M2 = (0). Then (0) ⊆ M3. So, M1 ⊆ M3 or M2 ⊆ M3 which
is not possible. So, M1M2 ̸= (0). Suppose that M1M2 = M1. Then
M1 ⊆ M2 which is again a contradiction. So, M1M2 ̸= M1. So, we
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have a cycle M1M2 − (0) − M1 − M1M2. Hence, G(R) is not a star
graph. Hence, if |Max(R)| ≥ 3, then G(R) is not a star graph. □
Theorem 2.3. Let R be a ring with |Max(R)| = 2. Then G(R) is
a star graph if and only if R ∼= F1 × F2; where F1 and F2 are fields.
Indeed, in this case G(R) is K1,2.

Proof. Let Max(R) = {M1,M2}. Suppose that G(R) is a star graph.
Note that M1M2 ̸= Mi; for any i ∈ {1, 2}. Suppose that M1M2 ̸= (0).
Then (0)−M1M2 −M1 − (0) is a cycle. So, G(R) is not a star graph.
Hence, we have M1M2 = (0). Therefore, by the Chinese Remainder
Theorem [5, Proposirion 1.10(ii),(iii)],

R ∼= R/J(R) ∼= R/M1 ×R/M2
∼= F1 × F2;

where F1 and F2 are fields.
Conversely, suppose that R ∼= F1 × F2. Note that

V (G(R)) = {F1 × (0), (0)× F2, (0)× (0)}.

Hence, G(R) is the star graph K1,2 given by

F1 × (0)− (0)× (0)− (0)× F2.

□
Theorem 2.4. Let R be a ring which is not a field with |Max(R)| = 1.
Then G(R) is a star graph if and only if R is SPIR with M ̸= (0) but
M2 = (0). Indeed, in this case G(R) = K1,1.

Proof. Let Max(R) = {M}. Suppose that G(R) is a star graph. Let
x ∈ M∖{0}. Clearly, Rx ̸= (0). If M ̸= Rx, then (0)−Rx−M−(0) is
a cycle. So, G(R) is not a star graph which is a contradiction. Hence,
M = Rx. Suppose that M2 = M . Since, M = J(R) and M = Rx,
we have from the Nakayama’s lemma [5, Proposition 2.6], M = {0}.
Hence, R is a field which is a contradiction to the assumption. So,
M2 ̸= M . If M2 ̸= (0), then again (0)−M −M2− (0) is a cycle which
is not possible. So, M2 = (0). Let P be any prime ideal. Note that
M2 = (0) ⊆ P . So, M ⊆ P . Hence, M = P . So, P = M is the only
prime ideal of R. So, (R,M) is a SPIR with M ̸= (0) but M2 = (0).

Conversely suppose that (R,M) is SPIR with M ̸= (0) and
M2 = (0). Note that V (G(R)) = {(0),M}. So, G(R) is K1,1 given
by M − (0). □
Theorem 2.5. Let R be a ring which is not a field. Then G(R) is a
star graph if and only if R is isomorphic to one of the following rings.

(i) (R,M) is SPIR with M ̸= (0) and M2 = (0).
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(ii) F1 × F2; where F1 and F2 are fields.
Indeed, if (i) or (ii) holds, then G(R) is either K1,1 or K1,2.

Proof. Proof follows from Theorems 2.2, 2.3 and 2.4. □

Theorem 2.6. Let R be a ring. Then diam(L(G(R))) < diam(G(R))
if and only if one of the following holds.

(i) R ∼= F1 × F2 where F1 and F2 are fields.
(ii) (R,M) is SPIR with M as its unique maximal ideal such that

M ̸= (0) but M2 = (0).

Proof. Suppose that diam(L(G(R))) < diam(G(R)). By Theorem 2.1,
G(R) is connected and diam(G(R)) ≤ 2. Since, R is not a field, it
has at least one maximal ideal M ̸= (0). Hence, diam(G(R)) = 1
or 2. If diam(G(R)) = 1 then G(R) is a complete graph. Since
diam(L(G(R))) < diam(G(R)) = 1, we have diam(L(G(R))) = 0.
Now, G(R) is connected. So by [21, Proposition 2.2], we have L(G(R))
is also connected. Thus,L(G(R)) = K1. Hence, G(R) = K1,1. Hence,
by Theorem 2.4, (R,M) is a SPIR with M as its unique maximal
ideal such that M ̸= (0) but M2 = (0). If diam(G(R)) = 2, then
diam(L(G(R))) = 0 or 1. If diam(L(G(R))) = 0, then G(R) = K1,1.
So, diam(G(R)) = 1 which is a contradiction. So, diam(L(G(R))) = 1.
Therefore, L(G(R)) = Kn; n ∈ N. Now, if L(G(R)) = K3, then
G(R) = K3 or K1,3. Note that from Theorem 2.5, G(R) ̸= K1,3. So,
G(R) = K3. Then diam(G(R)) = 1 which is not possible. Hence,
L(G(R)) ̸= K3. So, L(G(R)) = Kn; n ∈ N, n ̸= 3. Hence, G(R) is
a star graph. By Theorem 2.5, R ∼= F1 × F2; where F1 and F2 are
fields or (R,M) is SPIR with M as its unique maximal ideal such that
M ̸= (0) but M2 = (0).

Conversely, assume that R ∼= F1 × F2; where F1 and F2 are fields.
Then by Theorem 2.3, G(R) = K1,2 and so L(G(R)) = K1,1. Therefore,

1 = diam(L(G(R))) < diam(G(R)) = 2.

Now, let (R,M) be SPIR with M as its unique maximal ideal such
that M ̸= (0) but M2 = (0). Then by Theorem 2.4, G(R) = K1,1. So,
L(G(R)) is a null graph. Therefore,

0 = diam(L(G(R))) < diam(G(R)) = 1.

□

Theorem 2.7. Let R be a ring with |Max(R)| ≥ 4. Then
diam(L(G(R))) = 3.
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Proof. Let M1,M2,M3,M4 ∈ Max(R). Note that [M1,M1M2] and
[M3,M3M4] are non-adjacent in L(G(R)). Suppose that there
exists a path of length two between [M1,M1M2] and [M3,M3M4], say
[M1,M1M2]− [I, J ]− [M3,M3M4]; for some [I, J ] ∈ V (L(G(R))). Then
[I, J ] = [M1,M3] or [M1,M3M4] or [M1M2,M3] or [M1M2,M3M4]. But,
M1 +M3 = R, M1 +M3M4 = R, M1M2 +M3 = R,

M1M2 +M3M4 = R.

So, no such [I, J ] exists in V (L(G(R))). Hence, the length of path
between [M1,M1M2] and [M3,M3M4] is of atleast three. By Theorem
2.1 and [21, Proposition 2.2], diam(L(G(R))) ≤ 3. Hence,

diam(L(G(R))) = 3.

□

Theorem 2.8. Let R be a finite ring with |Max(R)| = 3. Then
diam(L(G(R))) = 3 if and only if R ≇ F1 × F2 × F3; where F1, F2 and
F3 are fields.

Proof. Let R be a ring with |Max(R)| = 3. Let

Max(R) = {M1,M2,M3}.

Assume that diam(L(G(R))) = 3. Let if possible

R ∼= F1 × F2 × F3;

where F1, F2 and F3 are fields. Note that

V (L(G(R))) = {I1 = [(0),M1], I2 = [(0),M2], I3 = [(0),M3],

I4 = [(0),M1M2], I5 = [(0),M1M3],

I6 = [(0),M2M3], I7 = [M1,M1M2],

I8 = [M1,M1M3], I9 = [M2,M1M2],

I10 = [M2,M2M3], I11 = [M3,M1M3],

I12 = [M3,M2M3], I13 = [M1M2,M1M3],

I14 = [M1M2,M2M3], I15 = [M1M3,M2M3]}.

From the following figure and distance matrix of the graph
G(F1 × F2 × F3), it is clear that

diam(L(G(F1 × F2 × F3))) = 2.

Hence, R ≇ F1 × F2 × F3; where F1, F2 and F3 are fields.
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Figure.1 : L(G(F1 × F2 × F3))

A =



0 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 0 1 1 1 1 2 2 1 1 2 2 2 2 2
1 1 0 1 1 1 2 2 2 2 1 1 2 2 2
1 1 1 0 1 1 1 2 1 2 2 2 1 1 2
1 1 1 1 0 1 2 1 2 2 1 2 1 2 1
1 1 1 1 1 0 2 2 2 1 2 1 2 1 1
1 2 2 1 2 2 0 1 1 2 2 2 1 1 2
1 2 2 2 1 2 1 0 2 2 1 2 1 2 1
2 1 2 1 2 2 1 2 0 1 2 2 1 1 2
2 1 2 2 2 1 2 2 1 0 2 1 2 1 1
2 2 1 2 1 2 2 1 2 2 0 1 1 2 1
2 2 1 2 2 1 2 2 2 1 1 0 2 1 1
2 2 2 1 1 2 1 1 1 2 1 2 0 1 1
2 2 2 1 2 1 1 2 1 1 2 1 1 0 1
2 2 2 2 1 1 2 1 2 1 1 1 1 1 0


Conversely, assume that R ≇ F1 × F2 × F3; where F1, F2 and F3

are fields. Let xi ∈ Mi ∖ (Mj ∪ Mk); for distinct i, j, k ∈ {1, 2, 3}.
If Rxi ̸= Mi then [Rxi,Mi] and [Mj,MjMk] are non-adjacent vertices
in L(G(R)). Suppose that there exists a path of length two between
them, say [Rxi,Mi] − [K,P ] − [Mj,MjMk]. Then [K,P ] = [Rxi,Mj]
or [Rxi,MjMk] or [Mi,Mj] or [Mi,MjMk]. But, Rxi and Mj, Rxi and
MjMk, Mi and Mj, Mi and MjMk are non-adjacent in G(R). So, no
such [K,P ] exists in V (L(G(R))). Thus,
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diam(L(G(R))) ≥ 3.
By Theorem 2.1 and [21, Proposition 2.2], diam(L(G(R))) ≤ 3. Hence,
diam(L(G(R))) = 3. Suppose that Rxi = Mi for each i ∈ {1, 2, 3}.
Suppose that M2

i ̸= Mi. Let
x ∈ M2

i ∖ (Mj ∪Mk);
for distinct i, j, k ∈ {1, 2, 3}. Then, Rx ⊆ M2

i ̸= Mi. But as
x ∈ Mi ∖ (Mj ∪ Mk), we have Rx = Mi which is a contradiction.
So, M2

i = Mi; for all i ∈ {1, 2, 3}. Then
J(R) = M1M2M3 = Rx1x2x3

and (J(R))2 = J(R). By the Nakayama’s lemma [5, Proposition 2.6],
J(R) = (0). Thus, by the Chinese Remainder Theorem [5,
Proposition 1.10(ii),(iii)],

R ∼= R
J(R)

∼= R
M1

× R
M2

× R
M3

∼= F1 × F2 × F3;

where F1, F2 and F3 are fields.
□

Theorem 2.9. Let R be an Artinian ring with |Max(R)| = 2. Then
diam(L(G(R))) = 2 if and only if R ∼= R1 × R2; where (R1,m1) and
(R2,m2) are local rings, Ria = mi for some a ∈ Ri and m2

i = mi; for
atleast one i ∈ {1, 2}.
Proof. Since |Max(R)| = 2 and R is an Artinian ring, R ∼= R1 × R2;
where (Ri,mi) is a local ring for all i ∈ {1, 2}. Note that

Max(R) = {M1 = m1 ×R2,M2 = R1 ×m2}.
Assume that diam(L(G(R))) = 2. Suppose that m2

1 ̸= m1 and
m2

2 ̸= m2. So, M2
1 ̸= M1 and M2

2 ̸= M2. Note that
[M1,M

2
1 ], [M2,M

2
2 ] ∈ V (L(G(R)))

are non-adjacent. Let if possible, there exists a path of length two
between [M1,M

2
1 ] and [M2,M

2
2 ], say [M1,M

2
1 ]− [I, J ]− [M2,M

2
2 ]. Now,

[I, J ] = [M1,M2] or [M1,M
2
2 ] or [M2

1 ,M2] or [M2
1 ,M

2
2 ]. But, M1

and M2, M1 and M2
2 , M2

1 and M2, M2
1 and M2

2 are not adjacent
in G(R). So, no such [I, J ] exists in V (L(G(R))). So, the length
of the path between [M1,M

2
1 ] and [M2,M

2
2 ] is atleast three. Thus,

M2
1 = M1 or M2

2 = M2. Without loss of generality, we may assume that
M2

1 = M1. So, m2
1 = m1. Let x1 ∈ M1 ∖ (0). Suppose that Rx1 = M1.

If x1 = (a, 1); for some a ∈ R1 then m1 = R1a. Suppose that
Rx1 ̸= M1. Let M2

2 ̸= M2. Suppose that there exists a path of length
two between [Rx1,M1] and [M2,M

2
2 ], say [Rx1,M1]− [I, J ]− [M2,M

2
2 ].
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Then [I, J ] = [Rx1,M2] or [Rx1,M
2
2 ] or [M1,M2] or [M1,M

2
2 ]. But,

Rx1 and M2, Rx1 and M2
2 , M1 and M2, M1 and M2

2 are not adjacent
in G(R). So, in any case such [I, J ] does not exist in V (L(G(R))).
Thus, the length of path between [Rx1,M1] and [M2,M

2
2 ] is atleast

three. Hence, M2
2 = M2. Let x2 ∈ M2 ∖ (0). If Rx2 ̸= M2, then

again by similar argument, the length of the path between [M1, Rx1]
and [M2, Rx2] is atleast three. So, M2 = Rx2. Hence, M2

2 = M2 and
M2 = Rx2; for some x2 ∈ M2. If x2 = (1, b); for some b ∈ R2, then
m2 = R2b.

Conversely, assume that R ∼= R1 ×R2; where (R1,m1) and (R2,m2)
are local rings, Ria = mi for some a ∈ Ri and m2

i = mi; for atleast one
i ∈ {1, 2}. Let R1a = m1; for some a ∈ R1 and m2

1 = m1. V (L(G(R)))
contains vertices of the form [M1, I] and [K,P ]; where I ⊆ J(R)
and K,P ⊆ M2. Non-adjacent vertices in L(G(R)) are either of the
form [M1, I] and [K,P ]; where I ⊆ J(R), K,P ⊆ M2 or of the form
[K1, P1] and [K2, P2]; where K1, P1, K2, P2 ⊆ M2 are distinct vertices in
G(R). Let [M1, I] and [K,P ] be two non-adjacent vertices in L(G(R));
I ⊆ J(R) and K,P ⊆ M2. Then, [M, I] − [I,K] − [K,P ] is a path of
length two between them as I ⊆ J(R) implies I ⊆ K. Now, let [K1, P1]
and [K2, P2] be non-adjacent vertices in L(G(R)); where K1, P2 ⊆ M2.
Thus, [K1, P1] − [K1, P2] − [K2, P2] is a path of length two between
[K1, P1] and K2, P2 in L(G(R)). Hence, diam(L(G(R))) = 2. □
Theorem 2.10. Let R be a ring. Then L(G(R)) is complete if and
only if R is isomorphic to one of the following rings:

(i) F1 × F2; where F1 and F2 are fields.
(ii) (R,M) is SPIR with M ̸= (0) but M2 = (0).
(iii) (R,M) is SPIR with M2 ̸= (0) but M3 = (0).

Proof. Suppose L(G(R)) is complete. Let L(G(R)) = Kn; n ∈ N. If
n ̸= 3, then G(R) is a star graph. Hence, by Theorem 2.5,
R ∼= F1 × F2; where F1 and F2 are fields or (R,M) is SPIR with
M ̸= (0) but M2 = (0). If L(G(R)) = K3, then G(R) = K3 or
K1,3. But, by Theorem 2.5, G(R) ̸= K1,3. So, G(R) = K3. Suppose
|Max(R)| ≥ 2. Let M1,M2 ∈ Max(R). Then M1 and M2 are not
adjacent in G(R). So, G(R) ̸= K3 which is a contradiction to the
assumption. So, |Max(R)| = 1. Let Max(R) = {M}. As R is not
a field, M ̸= (0). Let x ∈ M ∖ (0). Suppose that M ̸= Rx. Let
y ∈ M ∖Rx. Then it is clear that Ry ̸= Rx. Also, Ry ̸= (0) as y ̸= 0.
Now, if M ̸= Ry, then M,Rx,Ry, (0) ∈ V (G(R)) forms K4 which is
not possible. Hence, M = Ry. Suppose that M2 = (0). Now, let P
be any prime ideal. Then M2 = (0) ⊆ P . So, M ⊆ P . Thus M = P .
Hence, (R,M) is SPIR with M ̸= (0) but M2 = (0). Then G(R) = K2
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which is not possible. So, M2 ̸= (0). Let if possible, M2 = M . Since
M = Ry and M2 = M , by the Nakayama’s lemma [5, Proposition 2.6],
we have M = (0). This is not possible. So, M2 ̸= M . Hence, M2 ̸= (0)
and M2 ̸= M . As M = Ry, we have M2 = Ry2. Now, if M3 = M2,
then by the Nakayama’s lemma [5, Proposition 2.6], M = (0). So,
M3 ̸= M2. If M3 ̸= (0), then M,M2,M3, (0) ∈ V (G(R)) which is also
not possible. So, M3 = (0). Let P be any prime ideal of R. Then
M3 = (0) ⊆ P . So, M ⊆ P . So, M = P . Thus, (R,M) is SPIR with
M2 ̸= (0) but M3 = (0).

Conversely, assume that R ∼= F1 × F2; where F1 and F2 are fields.
Then by Theorem 2.3, G(R)) = K1,2. So, L(G(R))) = K2. Now, we
assume that (R,M) is SPIR with M ̸= (0) but M2 = (0). Then by
Theorem 2.4, G(R) = K1,1. So, L(G(R)) = K1. If (R,M) is SPIR
with M2 ̸= (0) but M3 = (0) then G(R) is K3 given by

(0)−M −M2 − (0)

and so L(G(R)) = K3. □
Theorem 2.11. Let R =

∏n
i=1Ri be a reduced ring with maximal

ideals M1,M2, ...,Mn; for some n ∈ N where Ri is a finite local ring
with maximal ideals n1, n2, ..., nn. Then diam(L(G(R))) = diam(G(R))
= 2 if and only if R ∼= Z2 × Z2 × Z2.
Proof. Assume that diam(L(G(R))) = diam(G(R)) = 2. As R is a
finite reduced ring, it is a direct product of finitely many fields. Let
R ∼= F1×F2×...×Fn; where Fi is a field for each n ∈ N. Let if possible,∣∣∣Mi ∖

∪ j=1
j ̸=i

n
Mj

∣∣∣ ≥ 2;

for some i ∈ {1, 2, ..., n}. Recall from [21, Remark 2.9],∣∣∣Mi ∖
∪ j=1

j ̸=i

n
Mj

∣∣∣ ≥ 2;

for atleast (n-1) i’s. Choose s, t ∈ M1 ∖
∪n

j=2 Mj and

u, v ∈ M2 ∖
∪ j=1

j ̸=2

n
Mj.

Take V1 = [Rs,Rt] and V2 = [Ru,Rv]. Then V1, V2 ∈ V (L(G(R))).
Clearly, V1 and V2 are not adjacent in L(G(R)). Let if possible,

V1 = [Rs,Rt]− [I, J ]− [Ru,Rv] = V2

be a path between V1 and V2. Without loss of generality, we may
assume that I = Rs and J = Rv. So, [Rs,Rv] ∈ V (L(G(R))). So,
Rs and Rv are adjacent in G(R). Thus, there exists a maximal ideal,
say M that contains both Rs and Rv which is not possible. So, the
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path between V1 and V2 is atleast of length three which contradicts
the hypothesis. So, we have

∣∣∣Mi ∖
∪ j=1

j ̸=i

n
Mj

∣∣∣ = 1; for all i. Hence,
Fi = Z2; for each i ∈ {1, 2, ..., n}. Let if possible, n ≥ 4. Choose
s ∈ M1 ∖

∪n
j=2Mj, t ∈ (M1 ∩M2) ∖

∪n
j=3Mj, u ∈ M3 ∖

∪n
j=1
j ̸=3

Mj

and v ∈ (M3 ∩M4) ∖
∪n

j=1
j ̸=3,4

Mj. Then [Rs,Rt] and [Ru,Rv] are not
adjacent in L(G(R)). Let if possible, [Rs,Rt] − [I, J ] − [Ru,Rv] be
a path between [Rs,Rt] and [Ru,Rv] in L(G(R)). Without loss of
generality, we may assume that I = Rs and J = Rv. So, Rs and Rv
are adjacent in G(R) which is not true by the choice of s and v. So,
the path between [Rs,Rt] and [Ru,Rv] is atleast of length three which
again contradicts the hypothesis. So, |Max(R)| ≤ 3. Let R ∼= Z2×Z2.
Then

V (R) = {Z2 × (0), (0)× Z2, (0)× (0)}.

Note that G(Z2 × Z2) = K1,2 and so L(G(Z2 × Z2)) = K2. Hence,
diam(L(G(Z2 × Z2))) = 1 which contradicts the hypothesis. So,
R ∼= Z2 × Z2 × Z2.

Conversely, assume that R ∼= Z2 × Z2 × Z2. Note that

V (G(R)) =
{
O = (0)× (0)× (0),M1 = (0)× Z2 × Z2,

M2 = Z2 × (0)× Z2,M3 = Z2 × Z2 × (0),

M1M2 = (0)× (0)× Z2,M1M3 = (0)× Z2 × (0),

M2M3 = Z2 × (0)× (0)
}
.

From the following Figure.2, it is clear that diam(G(R)) = 2. Note
that

V (L(G(R))) =
{
I1 = [(0), M1], I2 = [(0),M2],

I3 = [(0),M3], I4 = [(0),M1M2],

I5 = [(0),M1M3], I6 = [(0),M2M3],

I7 = [M1,M1M2], I8 = [M1,M1M3],

I9 = [M2,M1M2], I10 = [M2,M2M3],

I11 = [M3,M1M3], I12 = [M3,M2M3]
}

From Figure.1, it is clear that diam(V (L(G(R)))) = 2. Hence,

diam(G(R)) = 2 = diam(L(G(R))).
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Figure.2 : G(Z2 × Z2 × Z2)

□

3. Some more Results on G(R)

Theorem 3.1. Let R be a ring with |Max(R)| ≥ 4. Then G(R) is not
a split graph.

Proof. Let G(R) be a split graph. Let V (G(R)) = K ∪ S; where the
subgraph of G(R) induced on K is complete, S is an independent set
of G(R) and K ∩ S = ∅. Let

M1,M2,M3,M4 ∈ Max(R).

Suppose that (0) ∈ S. Then Mi /∈ S; for i ∈ {1, 2, 3, 4} as (0)
is adjacent to each Mi; for i ∈ {1, 2, 3, 4}. So, Mi ∈ K; for all
i ∈ {1, 2, 3, 4} which is not possible as any two distinct maximal ideals
are not adjacent in G(R). So, (0) ∈ K. Note that at most one of
the maximal ideal can be in K. Without loss of generality, we may
assume that M1 ∈ K. Hence, M2,M3,M4 ∈ S. If M2M3 = (0),
then M2M3 = (0) ⊆ M1. So, M2 = M1 or M3 = M1 which is not
possible. Hence, M2M3 ̸= (0). Also, M2M3 ̸= Mi; for any
i ∈ {1, 2, 3, 4} as if M2M3 = Mi; for some i ∈ {1, 2, 3, 4}, then M2 = Mi

or M3 = Mi which is not possible. Since M2 ∈ S and M2M3 is
adjacent to M2 in G(R), we have M2M3 /∈ S. Also, M1 +M2M3 = R.
So, M2M3 /∈ K. Thus, Max(R) ⊆ S. Note that MiMj is adjacent
with Mi; for any distinct i, j ∈ {1, 2, 3, 4}. Hence, MiMj ∈ K; for
distinct i, j ∈ {1, 2, 3, 4}. So, we have M1M2, M3M4 ∈ K. But,
then M1M2 + M3M4 = R. So, M1M2 and M3M4 are not adjacent
in G(R). Hence, G(R) is not a split graph. This is a contradiction. So,
|Max(R)| ≤ 3. □
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Theorem 3.2. Let R be a ring with |Max(R)| = 3. Then G(R) is a
split graph if and only if R ∼= F1 × F2 × F3; where F1, F2 and F3 are
fields.
Proof. Suppose that R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields.
Note that

V (G(R)) = {(0)× (0)× (0),M1 = (0)× F2 × F3,

M2 = F1 × (0)× F3,M3 = F1 × F2 × (0),

M1M2,M2M3,M1M3}.
Let K = {M1M2,M2M3,M1M3, (0)} and S = {M1,M2,M3}. Then we
have V (G(R)) = K ∪ S, where the subgraph of G(R) induced on K is
complete, S is an independent set of G(R) and K ∩ S = ∅. Therefore,
G(R) is a split graph.

Conversely, assume that G(R) is a split graph. Let
V (G(R)) = K ∪ S;

where the subgraph of G(R) induced on K is complete, S is an inde-
pendent set of G(R) and K ∩ S = ∅. Let

Max(R) = {M1,M2,M3}.
Note that MiMj ̸= (0); for any i, j ∈ {1, 2, 3}. As Mi +Mj = R; for
i ̸= j and i, j ∈ {1, 2, 3}, we have at most one Mi ∈ K, for i ∈ {1, 2, 3}.
Let M1 ∈ K and M2,M3 ∈ S. Now, M2 and M2M3 are adjacent in
G(R). So, M2M3 /∈ S. Also, M1 + M2M3 = R. So, M2M3 /∈ K.
So, Max(R) ⊆ S. Since,(0) is adjacent to all other vertices, we have
(0) ∈ K. Note that M2M3 ̸= (0). Observe that M2M3 and M2 are
adjacent in G(R). As M2 ∈ S, we have M2M3 ∈ K. Let

x ∈ M1 ∖ (M2 ∪M3).
Let if possible, Rx ̸= M1. As Rx is adjacent to M1 in G(R), Rx /∈ S.
Also, Rx + M2M3 = R. So, Rx /∈ K. Hence, Rx = M1. Similarly,
M2 = Ry; for some y ∈ M2 ∖ (M1 ∪ M3) and M3 = Rz; for some
z ∈ M3 ∖ (M1 ∪M2). Thus, J(R) = Rxyz. Let if possible, M2

1 = (0).
Then M2

1 = (0) ⊆ M2. This implies that M1 = M2 which is not
possible. So, M2

1 ̸= (0). If M2
1 ̸= M1, then M2

1 +M2M3 = R. So, M2
1

cannot be in K. Also, M2
1 and M1 are adjacent in G(R). So, M2

1 /∈ S.
Hence, M2

1 = M1. By similar argument, M2
2 = M2 and M2

3 = M3. So,
(J(R))2 = J(R). Since, J(R) is principal, by the Nakayama’s lemma
[5, Proposition 2.6], we have J(R) = (0). So, by the Chinese Remainder
Theorem [5, Proposition 1.10(ii),(iii)],

R ∼= R
J(R)

∼= R
M1

× R
M2

× R
M3

∼= F1 × F2 × F3;



SOME PROPERTIES OF SUPER-GRAPH OF (C (R))c ... 107

where F1, F2 and F3 are fields. □
Theorem 3.3. Let R be an Artinian ring with |Max(R)| = 2. Then
G(R) is a split graph if and only if R ∼= R1 × R2; where (R1,m1) and
(R2,m2) are local rings, Ria = mi for some a ∈ Ri and m2

i = mi; for
at least one i ∈ {1, 2}.

Proof. Since R is an Artinian ring, R ∼= R1 × R2; where (R1,m1) and
(R2,m2) are local rings [5, Proposition 8.7]. Note that

Max(R) = {M1 = m1 ×R2,M2 = R1 ×m2}.
Assume that G(R) is a split graph. Let V (G(R)) = K ∪ S; where
the subgraph induced on K is complete, S is an independent set of
G(R) and K ∩ S = ∅. If (0) ∈ S, then M1,M2 ∈ K which is not
possible as M1 + M2 = R. So, (0) ∈ K. Note that any two distinct
maximal ideals are not adjacent in G(R). So, atmost one of M1 or
M2 can be placed in K. Without loss of generality, we may assume
that M2 ∈ K. Thus, M1 ∈ S. Let x1 ∈ M1 ∖ M2. Let if possible,
Rx1 ̸= M1. Then, Rx1 + M2 = R. So, Rx1 is not adjacent to M2.
So, Rx1 /∈ K. Also, Rx1 is adjacent to M1 in G(R). So, Rx1 /∈ S.
Thus, Rx1 = M1. Note that M2

1 ̸= (0). Let if possible, M2
1 ̸= M1.

Then M2
1 /∈ K as M2

1 + M2 = R. Also, M2
1 is adjacent to M1 in

G(R). So, M2
1 /∈ S. Thus, M2

1 = M1. Let x1 = (a, 1); for some
a ∈ R1. Then R1a = m1 and m2

1 = m1. Suppose that M1,M2 ∈ S.
Let x1 ∈ M1 ∖M2. Let if possible Rx1 ̸= M1, then Rx1 is adjacent to
M1. So, Rx1 /∈ S. So, Rx1 ∈ K. Let x2 ∈ M2 ∖ M1. If M2 ̸= Rx2,
then Rx2 /∈ S as Rx2 is adjacent to M2. Also, Rx1 + Rx2 = R. So,
Rx2 /∈ K. Thus, Rx2 = M2. If M2

2 ̸= M2, then M2
2 /∈ S as M2

2 and M2

are adjacent. Also, Rx1+M2
2 = R. So, M2

2 /∈ K. Thus, M2
2 = M2. Let

x2 = (1, b); for some b ∈ R2. Then R2b = m2 and m2
2 = m2. Suppose

Rx1 = M1 and if M2
1 ̸= M1, then M2

1 ∈ K. By similar argument as
above, m2

2 = m2 and Rb = m2; for some b ∈ R2.
Conversely, assume that R ∼= R1 ×R2; where (R1,m1) and (R2,m2)

are local rings, Ria = mi for some a ∈ Ri and m2
i = mi; for atleast one

i ∈ {1, 2}. Suppose that R1a = m1; for some a ∈ R1 and m2
1 = m1.

Let
K = {(0),M2} ∪ {I ∈ I(R) : I ⊆ M2}

and S = {M1}. Hence, G(R) is a split graph. □
Theorem 3.4. Let (R,M) be a local ring which is not a field. Then
G(R) is a split graph.

Proof. Proof is clear. □
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Theorem 3.5. G(R) admits a cut-vertex if and only if R ∼= F1 × F2;
where F1 and F2 are fields.

Proof. Suppose that G(R) has a cut-vertex, say K. Now, G(R) admits
a cut-vertex K if and only if there exists I and J ∈ V (G(R)) such that
there is exactly one path I −K − J between I and J in G(R). Note
that I, J ̸= (0) as (0) is adjacent to all the vertices in G(R). If K ̸= (0),
then there is another path I−(0)−J between I and J in G(R). Hence,
K = (0). Let M,M ′ ∈ Max(R) such that I ⊆ M and J ⊆ M ′. As
I and J are not adjacent in G(R), M ̸= M ′. Let x ∈ M ∩M ′; where
x ̸= 0. Then I −Rx− J is another path between I and J which is not
possible. So, M ∩ M ′ = (0). Let if possible, M ′′ be a maximal ideal
distinct from M and M ′. Then M ∩M ′ = (0) ⊆ M ′′. But then either
M = M ′′ or M ′ = M ′′ which is also not possible. So, |Max(R)| ≤ 2. If
|Max(R)| = 1, then G(R) is a complete graph. So, it will never admit
a cut-vertex. So, |Max(R)| = 2. Let

Max(R) = {M1,M2}.

As M1 ∩ M2 = (0), by the Chinese Remainder Theorem [5,
Proposition 1.10(ii),(iii)],

R ∼= R
J(R)

∼= R
M1

× R
M2

∼= F1 × F2;

where F1 and F2 are fields.
Conversely, assume that R ∼= F1 × F2; for some fields F1 and F2.

Then R ∼= F1 × F2 is a path graph F1 × (0)− (0)× (0)− (0)× F2 and
clearly (0)× (0) is a cut-vertex.

□
Lemma 3.6. Let R be a ring which is not a field. Then

girth(G(R)) ∈ {3,∞}.

Proof. Assume that |Max(R)| ≥ 3. Let M1,M2,M3 ∈ Max(R).
Suppose that M1M2 = (0). Then, M1M2 = (0) ⊆ M3. So, M1 = M3

or M2 = M3 which is not possible. So, M1M2 ̸= (0). Suppose that
M1M2 = M1. Then M1 ⊆ M2 which is not possible. So, M1M2 ̸= M1.
Thus, we have a cycle M1M2 − (0) − M1 − M1M2 in G(R) of length
three. Hence, girth(G(R)) = 3.

Let |Max(R)| = 2. Let Max(R) = {M1,M2}. If

M1M2 = J(R) = (0),

then by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

R ∼= R/J(R) ∼= R/M1 ×R/M2 = F1 × F2;
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where F1 and F2 are fields. Then G(R) is K1,2 and so girth(G(R)) = ∞.
If J(R) = M1M2 ̸= (0), then M1 −M1M2 − (0)−M1 forms a cycle of
length 3. Hence, girth(G(R)) = 3.

Assume that (R,M) is a local ring. Let x ∈ M ∖ (0). If Rx ̸= M ,
then we have a cycle (0)−Rx−M−(0) in G(R). So, girth(G(R)) = 3.
Let Rx = M . Let if possible, M2 = (0). Let P be any prime ideal
of R. Then as M2 = (0), we have M ⊆ P . Thus, M = P . So,
P = M is the only prime ideal of R. So, (R,M) is SPIR with M ̸= (0)
but M2 = (0). Hence, girth(G(R)) = ∞. Let M2 ̸= (0). Also, let
if possible M2 = M . Then M = J(R) and M = Rx. So, by the
Nakayama’s lemma [5, Proposition 2.6], we have M = {0}, which is
not possible as R is not a field. Hence, R is a field which is contradiction
to the assumption. So, M2 ̸= M . Hence, (0)−M2−M − (0) is a cycle
of length three in G(R). So, girth(G(R)) = 3. □
Theorem 3.7. Let R be a ring which is not a field. Then

girth(G(R)) = 3

if and only if one of the following conditions hold.
(i) |Max(R)| ≥ 3
(ii) |Max(R)| = 2 and J(R) ̸= (0).
(iii) (R,M) is a local ring which is not isomorphic to SPIR (S,M);

where M ̸= (0) but M2 = (0).

Proof. Proof follows from Theorem 3.6. □
Theorem 3.8. Let R be a ring which is not a field. Then

girth(G(R)) = ∞
if and only if one of the following conditions hold.

(i) R ∼= F1 × F2; where F1 and F2 are fields.
(ii) (R,M) is SPIR with M ̸= (0) but M2 = (0).

Proof. Proof follows from Theorem 3.6. □
Theorem 3.9. Let R be a ring. Then α(G(R)) = n if and only if
|Max(R)| = n; for some n ∈ N.

Proof. Assume that α(G(R)) = n; for some n ∈ N. Let
Max(R) = {M1,M2, ...,Mm};

for some m ∈ N. It is clear that Max(R) is an independent set in
G(R). So, m ≤ n. Let W = {I1, I2, ..., In} be an independent set of
G(R) with |W | = n. Since W is an independent set, Ii is not adjacent
to any of the I ′js; for i ̸= j and i, j ∈ {1, 2, ..., n}. Let Ii ⊆ Mi; for
some i ∈ {1, 2, ..., n}. Let if possible, Mi = Mj for some i ̸= j and
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i, j ∈ {1, 2, ..., n}. Then Ii and Ij will be adjacent in G(R) which is not
possible. Hence, Mi ̸= Mj; for ∀i, j ∈ {1, 2, ..., n}. Therefore, m ≥ n.
Hence, m = n.

Conversely, asssume that |Max(R)| = n. Since, Max(R) forms an
independent set in G(R), α(G(R)) ≥ n. Let if possible, α(G(R)) > n.
Then there exists an independent set, say W = {I1, I2, ..., In, ..., It};
where t > n, t ∈ N. Let Ii ⊆ Mi; for some i ∈ {1, 2, ..., t}. Now, t > n.
So, by the Pigeon-hole principle, there exists a maximal ideal Mr; for
some r ∈ {1, 2, ..., n} and i, j ∈ {1, 2, ..., t} such that Ii, Ij ⊆ Mr which
is not possible. So, α(G(R)) = n. □
Theorem 3.10. Let R be a ring. Then G(R) is complemented if and
only if one of the following conditions hold.

(i) R ∼= F1 × F2; where F1 and F2 are fields.
(ii) (R,M) is SPIR with M ̸= (0) but M2 = (0).

Proof. Suppose that G(R) is complemented. Let I ̸= (0) be any ver-
tex of G(R). Since G(R) is complemented, there exists a vertex J in
G(R) such that I ⊥ J . If J ̸= (0), then I − J − (0) − I forms a
triangle which is not possible. So, J = (0). Now, I ⊆ M ; for some
M ∈ Max(R). If I ⊊ M , then I − (0) − M − I forms a triangle
which is not possible. So, I = M . Suppose that, |Max(R)| ≥ 3. Let
M1,M2,M3 ∈ Max(R). Let I = M1. Note that M1M2 ̸= (0) and
M1M2 ̸= Mi; for i ∈ {1, 2}. Observe that (0) − M1 − M1M2 − (0)
forms a triangle which is not possible. So, |Max(R)| ≤ 2. Suppose
that |Max(R)| = 2. Let J(R) ̸= (0). Then (0)−J(R)−M − (0) forms
a triangle which is not possible. So, J(R) = (0). Hence, by the Chinese
Remainder Theorem [5, Proposition 1.10(ii),(iii)],

R ∼= R
J(R)

∼= R
M1

× R
M2

∼= F1 × F2;

where F1 and F2 are fields. Let (R,M) be a local ring which is not a
field. Let x ∈ M \ (0). If Rx ̸= M , then (0) − Rx −M − (0) forms a
triangle which is not possible. So, Rx = M . If M2 ̸= (0) and M2 ̸= M ,
then (0) − M − M2 − (0) forms a triangle which is not possible. So,
M2 = (0) or M2 = M . If M2 = M , then by the Nakayama’s lemma
[5, Proposition 2.6], M = (0). So, M2 ̸= M . Hence, M2 = (0). Let
P be any prime ideal of R. Now, M2 = (0) ⊆ P which implies that
M ⊆ P . As M is maximal, P = M = Rx. Thus, (R,M) is SPIR with
M ̸= (0) but M2 = (0). □
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SOME PROPERTIES OF SUPER-GRAPH OF (C (R))c

AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA

آن خطی گراف و (C (R))c ابرگراف خواص برخی

پارجیا٢ جیدیپ و پوروهیت١ لالیتکومار کریشنا

هند راجکوت، ،RK دانشگاه کاربردی، علوم ١گروه

هند راجکوت، دولتی، تکنیک پلی ریاضی، ٢گروه

است غیرجهتی و ساده گرافی R هم بیشین ایده آل گراف باشد. ١ ̸= ٠ با یکدار حلقه ای R می کنیم فرض
جیکوبسون در مشمول که به طوری هستند R حلقه  ی سره ی ایده آل های همه ی مجموعه ی آن رئوس که
این در ما .I + J = R اگر تنها و اگر مجاورند گراف این در J و I رأس دو و نیستند R رادیکال
رأس دو و است R سره ی ایده آل های تمام مجموعه ی با برابر آن رئوس مجموعه ی که G(R) گراف مقاله،
مقاله، این در ما همچنین، می کنیم. مطالعه ،I + J ̸= R اگر تنها و اگر مجاورند گراف این در J و I

می دهیم. قرار بررسی مورد را آن خطی گراف و G(R) مورد در جالب نتایج برخی

خطی. گراف ،SPIR ،G(R) کلیدی: کلمات
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