Journal of Algebraic Systems

Vol. 11, No. 2, (2024), pp 93-112

SOME PROPERTIES OF SUPER-GRAPH OF $(\mathscr{C}(R))^{c}$ AND ITS LINE GRAPH

K. L. PUROHIT AND J. PAREJIYA*

Abstract

Let R be a commutative ring with identity $1 \neq 0$. The comaximal ideal graph of R is the simple, undirected graph whose vertex set is the set of all proper ideals of the ring R not contained in the Jacobson radical of R and two vertices I and J are adjacent in this graph if and only if $I+J=R$. In this article, we have discussed the graph $G(R)$ whose vertex set is the set of all proper ideals of ring R and two vertices I and J are adjacent in this graph if and only if $I+J \neq R$. In this article, we have discussed some interesting results about $G(R)$ and its line graph.

1. Introduction

The rings considered in this article are commutative with identity $1 \neq 0$ which are not fields. The idea of associating a graph with certain subsets of a commutative ring and exploring the interplay between the ring-theoretic properties of a ring and the graph-theoretic properties of the graph associated with it began with the work of I. Beck in [7].

For a commutative ring R, we denote the set of all maximal ideals of R by $\operatorname{Max}(R) . I(R)$ denotes the set of all proper ideals of a ring R. We denote the cardinality of a set A using the notation $|A|$. Let R be a ring. In [26], M. Ye and T. Wu introduced and investigated a graph called the comaximal ideal graph of R, denoted by $\mathscr{C}(R)$. It is an undirected graph whose vertex set is the set of all proper ideals I of R

[^0]such that $I \nsubseteq J(R)$ and distinct vertices I_{1}, I_{2} are joined by an edge in this graph if and only if $I_{1}+I_{2}=R$. In [26], M. Ye and T. Wu showed that $\mathscr{C}(R)$ is connected and $\operatorname{diam}(\mathscr{C}(R)) \leq 3$ and $\operatorname{girth}(\mathscr{C}(R)) \leq 4$ if $\mathscr{C}(R)$ contains a cycle. They also studied the clique number and chromatic number of $\mathscr{C}(R)$ and the results proved in [26] on $\mathscr{C}(R)$ demonstrated the influence of certain graph parameters of $\mathscr{C}(R)$ on the ring structure of R. Interesting research work has been done on comaximal graph and comaximal ideal graph in $[2,11,14,15,13,16,18$, 20, 23] and on annihilating-ideal graphs as well as zero-divisor graphs in $[1,3,4,8,9,12,17,19,22,24]$. A. Gaur and A. Sharma have studied the line graph associated to the maximal graph in [10, 21].

The graphs considered in this article are undirected. Let $G=(V, E)$ be a simple graph. Recall from [6] that the complement of G, denoted by G^{c} is a graph whose vertex set is V and two distinct $u, v \in V$ are joined by an edge in G^{c} if and only if there exists no edge in G joining u and v. Motivated by the results proved on $\mathscr{C}(R)$ in [25, 26], we have considered a super graph of $(\mathscr{C}(R))^{c}$ denoted by $G(R)$ whose vertex set is the set of all proper ideals of R and two distinct vertices I and J are adjacent in $G(R)$ if and only if $I+J \neq R$. So, $G(R)$ is a super-graph of $(\mathscr{C}(R))^{c}$. As any proper ideal of a ring is contained in at least one maximal ideal, it follows that I_{1} and I_{2} are adjacent in $G(R)$ if and only if there exists at least one maximal ideal \mathfrak{m} of R such that $I_{1}+I_{2} \subseteq \mathfrak{m}$.

It is useful to recall the following definitions and results from graph theory. Let $a, b \in V, a \neq b$. Recall that the distance between a and b, denoted by $d(a, b)$ is defined as the length of a shortest path in G between a and b if such a path exists, otherwise $d(a, b)=\infty$. We define $d(a, a)=0$. A graph G is said to be connected if for any distinct vertices $a, b \in V$, there exists a path in G between a and b. Recall from [6] that the diameter of a connected graph $G=(V, E)$ denoted by $\operatorname{diam}(G)$ is defined as $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V\}$. Let $G=(V, E)$ be a connected graph. Recall that G is a split graph if $V(G)$ is the disjoint union of two nonempty subsets K and S such that the subgraph of G induced on K is complete and S is an independent set of G. Let G be a simple undirected finite graph. Recall from [5] that line graph of G, denoted as $L(G)$ has its vertex set in 1-1 correspondence with the edge set of G and two vertices of $L(G)$ are joined by an edge if and only if the corresponding edges of G are adjacent in G. If $u-v$ is an edge in G, then we denote the vertex $u v$ of $L(G)$ by $[u, v]$.

Let $G=(V, E)$ be a graph such that G contains a cycle. Recall from [6] that the girth of G, denoted by $\operatorname{girth}(G)$ is defined as the length of a shortest cycle in G. If a graph G does not contain any cycle, then we define $\operatorname{girth}(G)=\infty$. Let $n \in \mathbb{N}$. A complete graph on n vertices
is denoted by K_{n}. Let $G=(V, E)$ be a graph. Then G is said to be bipartite if the vertex set V of G can be partitioned into two nonempty subsets V_{1} and V_{2} such that each edge of G has one end in V_{1} and the other end in V_{2}. A bipartite graph with vertex partition V_{1} and V_{2} is said to be complete, if each element of V_{1} is adjacent to every element of V_{2}. Let $m, n \in \mathbb{N}$. Let $G=(V, E)$ be a complete bipartite graph with $V=V_{1} \cup V_{2}$. If $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, then G is denoted by $K_{m, n}$. A star graph is a complete bipartite graph of the form $K_{1, n}$. Recall from [6] that a subset V^{\prime} of the vertex set $V(G)$ of a connected graph G is a vertex cut of G if $G \backslash V$ is disconnected; it is a k-vertex cut if $|V|=k$. A vertex v of G is a cut vertex of G if $\{\mathrm{v}\}$ is a vertex cut of G. A subset S of the vertex set V of a graph G is called independent if no two vertices of S are adjacent in $G . S \subseteq V$ is a maximum independent set of G if G has no independent set S_{0} with $\left|S_{0}\right|>|S|$. Cardinality of maximum independent set of G is called independence number. Let $G=(V, E)$ be a graph. Recall from [3] that two distinct vertices u, v of G are said to be orthogonal, written as $u \perp v$ if u and v are adjacent in G and there is no vertex of G which is adjacent to both u and v in G; that is, the edge $u-v$ is not an edge of any triangle in G. Let $u \in V$. A vertex v of G is said to be a complement of u if $u \perp v$ [3]. Moreover, we recall from [3] that G is complemented if each vertex of G admits a complement in G.

A ring R is said to be local if R has a unique maximal ideal. Recall that a principal ideal ring R is said to be a special principal ideal ring (SPIR) if R admits only one prime ideal. If \mathfrak{m} is the only prime ideal of R, then \mathfrak{m} is necessarily nilpotent. If R is a special principal ideal ring with \mathfrak{m} as its only prime ideal, then we describe it using the notation that (R, \mathfrak{m}) is a SPIR. Let \mathfrak{m} be a nonzero maximal ideal of a ring R such that \mathfrak{m} is principal and is nilpotent. Let $n \geq 2$ be the least positive integer with the property that $\mathfrak{m}^{n}=(0)$. Then it follows from [5] that $\left\{\mathfrak{m}^{i} \mid i \in\{1, \ldots, n-1\}\right\}$ is the set of all nonzero proper ideals of R. As each ideal of R is principal with \mathfrak{m} as its only prime ideal, it follows that (R, \mathfrak{m}) is a SPIR.

Now, we give brief of the theorems proved in this article. In Theorem 2.1, for a ring R we have proved that $G(R)$ is connected and $\operatorname{diam}(G(R)) \leq 2$. In Theorem 2.2, we have proved that if $|\operatorname{Max}(R)| \geq 3$, then $G(R)$ is not a star graph. In Theorem 2.3 (resp. Theorem 2.4), we have classified rings R with $|\operatorname{Max}(R)|=2$ (resp. $|\operatorname{Max}(R)|=1)$ such that $G(R)$ is a star graph. A necessary and sufficient condition for $G(R)$ to be a star graph is provided in

Theorem 2.5. In Theorem 2.6, a classification of rings R is provided for which

$$
\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))
$$

We have proved in Theorem 2.7 that if $|\operatorname{Max}(R)| \geq 4$, then $\operatorname{diam}(L(G(R)))=3$. In Theorem 2.8, we have proved that for a ring R with $|\operatorname{Max}(R)|=3, \operatorname{diam}(L(G(R)))=3$ if and only if $R \nexists F_{1} \times F_{2} \times F_{3}$, where F_{1}, F_{2}, F_{3} are fields. In Theorem 2.9, we have classified the rings R with $|\operatorname{Max}(R)|=2$ for which $\operatorname{diam}(L(G(R)))=2$. In Theorem 2.10, we have classified the rings for which $L(G(R))$ is complete. In Theorem 2.11, we have proved for a reduced ring $R=\prod_{i=1}^{n} R_{i}$, where R_{i} is a finite local ring, $\operatorname{diam}(L(G(R)))=\operatorname{diam}(G(R))=2$ if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

In Theorem 3.1, we have proved that for a ring R, if $|\operatorname{Max}(R)| \geq 4$, then $G(R)$ is not a split graph. Classification of rings R with $|\operatorname{Max}(R)|=3$ (resp. $|\operatorname{Max}(R)|=2$) for which $G(R)$ is a split graph is provided in Theorem 3.2 (resp. Theorem 3.3). In Theorem 3.4, we have proved that if (R, M) is a local ring which is not a field, then $G(R)$ is a split graph. In Theorem 3.5, we have proved that $G(R)$ admits a cut-vertex if and only if $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields. In Lemma 3.6, we have showed that if R is a ring which is not a field then $\operatorname{girth}(G(R)) \in\{3, \infty\}$. Necessary and sufficient conditions for which $\operatorname{girth}(G(R))=3$ (resp. ∞) is provided in Theorem 3.7 (resp. Theorem 3.8). Independence number of $G(R)$ has been discussed in Theorem 3.9. In Theorem 3.10, we have proved that for a non-zero commutative ring $R, G(R)$ is complemented if and only if $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields or (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$.

2. Diameter of $L(G(R))$

Theorem 2.1. Let R be a ring which is not a field. Then $G(R)$ is connected and $\operatorname{diam}(G(R)) \leq 2$.
Proof. Let R be a ring which is not a field. Then for any two nonadjacent vertices I, J in $G(R)$, there is a path $I-(0)-J$ of length two between them. So, $G(R)$ is connected and $\operatorname{diam}(G(R)) \leq 2$.

Theorem 2.2. Let R be a ring. If $|\operatorname{Max}(R)| \geq 3$, then $G(R)$ is not a star graph.
Proof. Let $M_{1}, M_{2}, M_{3} \in \operatorname{Max}(R)$. Note that $M_{1} M_{2} \neq(0)$. Suppose that $M_{1} M_{2}=(0)$. Then $(0) \subseteq M_{3}$. So, $M_{1} \subseteq M_{3}$ or $M_{2} \subseteq M_{3}$ which is not possible. So, $M_{1} M_{2} \neq(0)$. Suppose that $M_{1} M_{2}=M_{1}$. Then $M_{1} \subseteq M_{2}$ which is again a contradiction. So, $M_{1} M_{2} \neq M_{1}$. So, we
have a cycle $M_{1} M_{2}-(0)-M_{1}-M_{1} M_{2}$. Hence, $G(R)$ is not a star graph. Hence, if $|\operatorname{Max}(R)| \geq 3$, then $G(R)$ is not a star graph.

Theorem 2.3. Let R be a ring with $|\operatorname{Max}(R)|=2$. Then $G(R)$ is a star graph if and only if $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields. Indeed, in this case $G(R)$ is $K_{1,2}$.

Proof. Let $\operatorname{Max}(R)=\left\{M_{1}, M_{2}\right\}$. Suppose that $G(R)$ is a star graph. Note that $M_{1} M_{2} \neq M_{i}$; for any $i \in\{1,2\}$. Suppose that $M_{1} M_{2} \neq(0)$. Then (0) - $M_{1} M_{2}-M_{1}-(0)$ is a cycle. So, $G(R)$ is not a star graph. Hence, we have $M_{1} M_{2}=(0)$. Therefore, by the Chinese Remainder Theorem [5, Proposirion 1.10(ii),(iii)],

$$
R \cong R / J(R) \cong R / M_{1} \times R / M_{2} \cong F_{1} \times F_{2}
$$

where F_{1} and F_{2} are fields.
Conversely, suppose that $R \cong F_{1} \times F_{2}$. Note that

$$
V(G(R))=\left\{F_{1} \times(0),(0) \times F_{2},(0) \times(0)\right\}
$$

Hence, $G(R)$ is the star graph $K_{1,2}$ given by

$$
F_{1} \times(0)-(0) \times(0)-(0) \times F_{2} .
$$

Theorem 2.4. Let R be a ring which is not a field with $|\operatorname{Max}(R)|=1$. Then $G(R)$ is a star graph if and only if R is SPIR with $M \neq(0)$ but $M^{2}=(0)$. Indeed, in this case $G(R)=K_{1,1}$.

Proof. Let $\operatorname{Max}(R)=\{M\}$. Suppose that $G(R)$ is a star graph. Let $x \in M \backslash\{0\}$. Clearly, $R x \neq(0)$. If $M \neq R x$, then (0$)-R x-M-(0)$ is a cycle. So, $G(R)$ is not a star graph which is a contradiction. Hence, $M=R x$. Suppose that $M^{2}=M$. Since, $M=J(R)$ and $M=R x$, we have from the Nakayama's lemma [5, Proposition 2.6], $M=\{0\}$. Hence, R is a field which is a contradiction to the assumption. So, $M^{2} \neq M$. If $M^{2} \neq(0)$, then again (0$)-M-M^{2}-(0)$ is a cycle which is not possible. So, $M^{2}=(0)$. Let P be any prime ideal. Note that $M^{2}=(0) \subseteq P$. So, $M \subseteq P$. Hence, $M=P$. So, $P=M$ is the only prime ideal of R. So, (R, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$.

Conversely suppose that (R, M) is SPIR with $M \neq(0)$ and $M^{2}=(0)$. Note that $V(G(R))=\{(0), M\}$. So, $G(R)$ is $K_{1,1}$ given by $M-(0)$.

Theorem 2.5. Let R be a ring which is not a field. Then $G(R)$ is a star graph if and only if R is isomorphic to one of the following rings.
(i) (R, M) is SPIR with $M \neq(0)$ and $M^{2}=(0)$.
(ii) $F_{1} \times F_{2}$; where F_{1} and F_{2} are fields.

Indeed, if (i) or (ii) holds, then $G(R)$ is either $K_{1,1}$ or $K_{1,2}$.
Proof. Proof follows from Theorems 2.2, 2.3 and 2.4.
Theorem 2.6. Let R be a ring. Then $\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))$ if and only if one of the following holds.
(i) $R \cong F_{1} \times F_{2}$ where F_{1} and F_{2} are fields.
(ii) (R, M) is SPIR with M as its unique maximal ideal such that $M \neq(0)$ but $M^{2}=(0)$.

Proof. Suppose that $\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))$. By Theorem 2.1, $G(R)$ is connected and $\operatorname{diam}(G(R)) \leq 2$. Since, R is not a field, it has at least one maximal ideal $M \neq(0)$. Hence, $\operatorname{diam}(G(R))=1$ or 2. If $\operatorname{diam}(G(R))=1$ then $G(R)$ is a complete graph. Since $\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))=1$, we have $\operatorname{diam}(L(G(R)))=0$. Now, $G(R)$ is connected. So by [21, Proposition 2.2], we have $L(G(R))$ is also connected. Thus, $L(G(R))=K_{1}$. Hence, $G(R)=K_{1,1}$. Hence, by Theorem 2.4, (R, M) is a SPIR with M as its unique maximal ideal such that $M \neq(0)$ but $M^{2}=(0)$. If $\operatorname{diam}(G(R))=2$, then $\operatorname{diam}(L(G(R)))=0$ or 1 . If $\operatorname{diam}(L(G(R)))=0$, then $G(R)=K_{1,1}$. So, $\operatorname{diam}(G(R))=1$ which is a contradiction. So, $\operatorname{diam}(L(G(R)))=1$. Therefore, $L(G(R))=K_{n} ; n \in \mathbb{N}$. Now, if $L(G(R))=K_{3}$, then $G(R)=K_{3}$ or $K_{1,3}$. Note that from Theorem 2.5, $G(R) \neq K_{1,3}$. So, $G(R)=K_{3}$. Then $\operatorname{diam}(G(R))=1$ which is not possible. Hence, $L(G(R)) \neq K_{3}$. So, $L(G(R))=K_{n} ; n \in \mathbb{N}, n \neq 3$. Hence, $G(R)$ is a star graph. By Theorem 2.5, $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields or (R, M) is SPIR with M as its unique maximal ideal such that $M \neq(0)$ but $M^{2}=(0)$.

Conversely, assume that $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields. Then by Theorem 2.3, $G(R)=K_{1,2}$ and so $L(G(R))=K_{1,1}$. Therefore,

$$
1=\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))=2
$$

Now, let (R, M) be SPIR with M as its unique maximal ideal such that $M \neq(0)$ but $M^{2}=(0)$. Then by Theorem $2.4, G(R)=K_{1,1}$. So, $L(G(R))$ is a null graph. Therefore,

$$
0=\operatorname{diam}(L(G(R)))<\operatorname{diam}(G(R))=1
$$

Theorem 2.7. Let R be a ring with $|\operatorname{Max}(R)| \geq 4$. Then

$$
\operatorname{diam}(L(G(R)))=3
$$

Proof. Let $M_{1}, M_{2}, M_{3}, M_{4} \in \operatorname{Max}(R)$. Note that $\left[M_{1}, M_{1} M_{2}\right]$ and $\left[M_{3}, M_{3} M_{4}\right]$ are non-adjacent in $L(G(R))$. Suppose that there exists a path of length two between $\left[M_{1}, M_{1} M_{2}\right]$ and $\left[M_{3}, M_{3} M_{4}\right]$, say $\left[M_{1}, M_{1} M_{2}\right]-[I, J]-\left[M_{3}, M_{3} M_{4}\right]$; for some $[I, J] \in V(L(G(R)))$. Then $[I, J]=\left[M_{1}, M_{3}\right]$ or $\left[M_{1}, M_{3} M_{4}\right]$ or $\left[M_{1} M_{2}, M_{3}\right]$ or $\left[M_{1} M_{2}, M_{3} M_{4}\right]$. But, $M_{1}+M_{3}=R, M_{1}+M_{3} M_{4}=R, M_{1} M_{2}+M_{3}=R$,

$$
M_{1} M_{2}+M_{3} M_{4}=R
$$

So, no such $[I, J]$ exists in $V(L(G(R)))$. Hence, the length of path between $\left[M_{1}, M_{1} M_{2}\right]$ and $\left[M_{3}, M_{3} M_{4}\right]$ is of atleast three. By Theorem 2.1 and [21, Proposition 2.2], $\operatorname{diam}(L(G(R))) \leq 3$. Hence,

$$
\operatorname{diam}(L(G(R)))=3
$$

Theorem 2.8. Let R be a finite ring with $|\operatorname{Max}(R)|=3$. Then $\operatorname{diam}(L(G(R)))=3$ if and only if $R \nexists F_{1} \times F_{2} \times F_{3}$; where F_{1}, F_{2} and F_{3} are fields.

Proof. Let R be a ring with $|\operatorname{Max}(R)|=3$. Let

$$
\operatorname{Max}(R)=\left\{M_{1}, M_{2}, M_{3}\right\}
$$

Assume that $\operatorname{diam}(L(G(R)))=3$. Let if possible

$$
R \cong F_{1} \times F_{2} \times F_{3}
$$

where F_{1}, F_{2} and F_{3} are fields. Note that

$$
\begin{aligned}
V(L(G(R)))=\{ & I_{1} \\
& =\left[(0), M_{1}\right], I_{2}=\left[(0), M_{2}\right], I_{3}=\left[(0), M_{3}\right], \\
& I_{4}=\left[(0), M_{1} M_{2}\right], I_{5}=\left[(0), M_{1} M_{3}\right], \\
& I_{6}=\left[(0), M_{2} M_{3}\right], I_{7}=\left[M_{1}, M_{1} M_{2}\right], \\
& I_{8}=\left[M_{1}, M_{1} M_{3}\right], I_{9}=\left[M_{2}, M_{1} M_{2}\right], \\
& I_{10}=\left[M_{2}, M_{2} M_{3}\right], I_{11}=\left[M_{3}, M_{1} M_{3}\right], \\
& I_{12}=\left[M_{3}, M_{2} M_{3}\right], I_{13}=\left[M_{1} M_{2}, M_{1} M_{3}\right], \\
& \left.I_{14}=\left[M_{1} M_{2}, M_{2} M_{3}\right], I_{15}=\left[M_{1} M_{3}, M_{2} M_{3}\right]\right\} .
\end{aligned}
$$

From the following figure and distance matrix of the graph $G\left(F_{1} \times F_{2} \times F_{3}\right)$, it is clear that

$$
\operatorname{diam}\left(L\left(G\left(F_{1} \times F_{2} \times F_{3}\right)\right)\right)=2
$$

Hence, $R \not \equiv F_{1} \times F_{2} \times F_{3}$; where F_{1}, F_{2} and F_{3} are fields.

Figure. $1: L\left(G\left(F_{1} \times F_{2} \times F_{3}\right)\right)$

$$
A=\left[\begin{array}{lllllllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 1 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 1 & 1 & 2 \\
1 & 1 & 1 & 1 & 0 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 2 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 2 & 2 & 0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 2 \\
1 & 2 & 2 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 0 & 1 & 2 & 2 & 1 & 1 & 2 \\
2 & 1 & 2 & 2 & 2 & 1 & 2 & 2 & 1 & 0 & 2 & 1 & 2 & 1 & 1 \\
2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 0 & 1 & 1 & 2 & 1 \\
2 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 2 & 1 & 1 & 0 & 2 & 1 & 1 \\
2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 0 & 1 & 1 \\
2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 0 & 1 \\
2 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Conversely, assume that $R \nsupseteq F_{1} \times F_{2} \times F_{3}$; where F_{1}, F_{2} and F_{3} are fields. Let $x_{i} \in M_{i} \backslash\left(M_{j} \cup M_{k}\right)$; for distinct $i, j, k \in\{1,2,3\}$. If $R x_{i} \neq M_{i}$ then $\left[R x_{i}, M_{i}\right.$] and $\left[M_{j}, M_{j} M_{k}\right.$] are non-adjacent vertices in $L(G(R))$. Suppose that there exists a path of length two between them, say $\left[R x_{i}, M_{i}\right]-[K, P]-\left[M_{j}, M_{j} M_{k}\right]$. Then $[K, P]=\left[R x_{i}, M_{j}\right]$ or $\left[R x_{i}, M_{j} M_{k}\right.$] or $\left[M_{i}, M_{j}\right]$ or $\left[M_{i}, M_{j} M_{k}\right]$. But, $R x_{i}$ and $M_{j}, R x_{i}$ and $M_{j} M_{k}, M_{i}$ and M_{j}, M_{i} and $M j M_{k}$ are non-adjacent in $G(R)$. So, no such $[K, P]$ exists in $V(L(G(R)))$. Thus,

$$
\operatorname{diam}(L(G(R))) \geq 3
$$

By Theorem 2.1 and [21, Proposition 2.2], $\operatorname{diam}(L(G(R))) \leq 3$. Hence, $\operatorname{diam}(L(G(R)))=3$. Suppose that $R x_{i}=M_{i}$ for each $i \in\{1,2,3\}$. Suppose that $M_{i}^{2} \neq M_{i}$. Let

$$
x \in M_{i}^{2} \backslash\left(M_{j} \cup M_{k}\right) ;
$$

for distinct $i, j, k \in\{1,2,3\}$. Then, $R x \subseteq M_{i}^{2} \neq M_{i}$. But as $x \in M_{i} \backslash\left(M_{j} \cup M_{k}\right)$, we have $R x=M_{i}$ which is a contradiction. So, $M_{i}^{2}=M_{i}$; for all $i \in\{1,2,3\}$. Then

$$
J(R)=M_{1} M_{2} M_{3}=R x_{1} x_{2} x_{3}
$$

and $(J(R))^{2}=J(R)$. By the Nakayama's lemma [5, Proposition 2.6], $J(R)=(0)$. Thus, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$
R \cong \frac{R}{J(R)} \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}} \times \frac{R}{M_{3}} \cong F_{1} \times F_{2} \times F_{3}
$$

where F_{1}, F_{2} and F_{3} are fields.

Theorem 2.9. Let R be an Artinian ring with $|\operatorname{Max}(R)|=2$. Then $\operatorname{diam}(L(G(R)))=2$ if and only if $R \cong R_{1} \times R_{2}$; where $\left(R_{1}, m_{1}\right)$ and $\left(R_{2}, m_{2}\right)$ are local rings, $R_{i} a=m_{i}$ for some $a \in R_{i}$ and $m_{i}^{2}=m_{i}$; for atleast one $i \in\{1,2\}$.
Proof. Since $|\operatorname{Max}(R)|=2$ and R is an Artinian ring, $R \cong R_{1} \times R_{2}$; where $\left(R_{i}, m_{i}\right)$ is a local ring for all $i \in\{1,2\}$. Note that

$$
\operatorname{Max}(R)=\left\{M_{1}=m_{1} \times R_{2}, M_{2}=R_{1} \times m_{2}\right\}
$$

Assume that $\operatorname{diam}(L(G(R)))=2$. Suppose that $m_{1}^{2} \neq m_{1}$ and $m_{2}^{2} \neq m_{2}$. So, $M_{1}^{2} \neq M_{1}$ and $M_{2}^{2} \neq M_{2}$. Note that

$$
\left[M_{1}, M_{1}^{2}\right],\left[M_{2}, M_{2}^{2}\right] \in V(L(G(R)))
$$

are non-adjacent. Let if possible, there exists a path of length two between $\left[M_{1}, M_{1}^{2}\right]$ and $\left[M_{2}, M_{2}^{2}\right]$, say $\left[M_{1}, M_{1}^{2}\right]-[I, J]-\left[M_{2}, M_{2}^{2}\right]$. Now, $[I, J]=\left[M_{1}, M_{2}\right]$ or $\left[M_{1}, M_{2}^{2}\right]$ or $\left[M_{1}^{2}, M_{2}\right]$ or $\left[M_{1}^{2}, M_{2}^{2}\right]$. But, M_{1} and M_{2}, M_{1} and M_{2}^{2}, M_{1}^{2} and M_{2}, M_{1}^{2} and M_{2}^{2} are not adjacent in $G(R)$. So, no such $[I, J]$ exists in $V(L(G(R)))$. So, the length of the path between $\left[M_{1}, M_{1}^{2}\right]$ and $\left[M_{2}, M_{2}^{2}\right]$ is atleast three. Thus, $M_{1}^{2}=M_{1}$ or $M_{2}^{2}=M_{2}$. Without loss of generality, we may assume that $M_{1}^{2}=M_{1}$. So, $m_{1}^{2}=m_{1}$. Let $x_{1} \in M_{1} \backslash(0)$. Suppose that $R x_{1}=M_{1}$. If $x_{1}=(a, 1)$; for some $a \in R_{1}$ then $m_{1}=R_{1} a$. Suppose that $R x_{1} \neq M_{1}$. Let $M_{2}^{2} \neq M_{2}$. Suppose that there exists a path of length two between $\left[R x_{1}, M_{1}\right]$ and $\left[M_{2}, M_{2}^{2}\right]$, say $\left[R x_{1}, M_{1}\right]-[I, J]-\left[M_{2}, M_{2}^{2}\right]$.

Then $[I, J]=\left[R x_{1}, M_{2}\right]$ or $\left[R x_{1}, M_{2}^{2}\right]$ or $\left[M_{1}, M_{2}\right]$ or $\left[M_{1}, M_{2}^{2}\right]$. But, $R x_{1}$ and $M_{2}, R x_{1}$ and M_{2}^{2}, M_{1} and M_{2}, M_{1} and M_{2}^{2} are not adjacent in $G(R)$. So, in any case such $[I, J]$ does not exist in $V(L(G(R)))$. Thus, the length of path between $\left[R x_{1}, M_{1}\right]$ and $\left[M_{2}, M_{2}^{2}\right]$ is atleast three. Hence, $M_{2}^{2}=M_{2}$. Let $x_{2} \in M_{2} \backslash(0)$. If $R x_{2} \neq M_{2}$, then again by similar argument, the length of the path between $\left[M_{1}, R x_{1}\right]$ and $\left[M_{2}, R x_{2}\right]$ is atleast three. So, $M_{2}=R x_{2}$. Hence, $M_{2}^{2}=M_{2}$ and $M_{2}=R x_{2}$; for some $x_{2} \in M_{2}$. If $x_{2}=(1, b)$; for some $b \in R_{2}$, then $m_{2}=R_{2} b$.

Conversely, assume that $R \cong R_{1} \times R_{2}$; where (R_{1}, m_{1}) and (R_{2}, m_{2}) are local rings, $R_{i} a=m_{i}$ for some $a \in R_{i}$ and $m_{i}^{2}=m_{i}$; for atleast one $i \in\{1,2\}$. Let $R_{1} a=m_{1}$; for some $a \in R_{1}$ and $m_{1}^{2}=m_{1} . V(L(G(R)))$ contains vertices of the form $\left[M_{1}, I\right]$ and $[K, P]$; where $I \subseteq J(R)$ and $K, P \subseteq M_{2}$. Non-adjacent vertices in $L(G(R))$ are either of the form $\left[M_{1}, I\right]$ and $[K, P]$; where $I \subseteq J(R), K, P \subseteq M_{2}$ or of the form [K_{1}, P_{1}] and $\left[K_{2}, P_{2}\right]$; where $K_{1}, P_{1}, K_{2}, P_{2} \subseteq M_{2}$ are distinct vertices in $G(R)$. Let $\left[M_{1}, I\right]$ and $[K, P]$ be two non-adjacent vertices in $L(G(R))$; $I \subseteq J(R)$ and $K, P \subseteq M_{2}$. Then, $[M, I]-[I, K]-[K, P]$ is a path of length two between them as $I \subseteq J(R)$ implies $I \subseteq K$. Now, let $\left[K_{1}, P_{1}\right]$ and $\left[K_{2}, P_{2}\right]$ be non-adjacent vertices in $L(G(R))$; where $K_{1}, P_{2} \subseteq M_{2}$. Thus, $\left[K_{1}, P_{1}\right]-\left[K_{1}, P_{2}\right]-\left[K_{2}, P_{2}\right]$ is a path of length two between $\left[K_{1}, P_{1}\right]$ and K_{2}, P_{2} in $L(G(R))$. Hence, $\operatorname{diam}(L(G(R)))=2$.

Theorem 2.10. Let R be a ring. Then $L(G(R))$ is complete if and only if R is isomorphic to one of the following rings:
(i) $F_{1} \times F_{2}$; where F_{1} and F_{2} are fields.
(ii) (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$.
(iii) (R, M) is SPIR with $M^{2} \neq(0)$ but $M^{3}=(0)$.

Proof. Suppose $L(G(R))$ is complete. Let $L(G(R))=K_{n} ; n \in \mathbb{N}$. If $n \neq 3$, then $G(R)$ is a star graph. Hence, by Theorem 2.5, $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields or (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$. If $L(G(R))=K_{3}$, then $G(R)=K_{3}$ or $K_{1,3}$. But, by Theorem 2.5, $G(R) \neq K_{1,3}$. So, $G(R)=K_{3}$. Suppose $|\operatorname{Max}(R)| \geq 2$. Let $M_{1}, M_{2} \in \operatorname{Max}(R)$. Then M_{1} and M_{2} are not adjacent in $G(R)$. So, $G(R) \neq K_{3}$ which is a contradiction to the assumption. So, $|\operatorname{Max}(R)|=1$. Let $\operatorname{Max}(R)=\{M\}$. As R is not a field, $M \neq(0)$. Let $x \in M \backslash(0)$. Suppose that $M \neq R x$. Let $y \in M \backslash R x$. Then it is clear that $R y \neq R x$. Also, $R y \neq(0)$ as $y \neq 0$. Now, if $M \neq R y$, then $M, R x, R y,(0) \in V(G(R))$ forms K_{4} which is not possible. Hence, $M=R y$. Suppose that $M^{2}=(0)$. Now, let P be any prime ideal. Then $M^{2}=(0) \subseteq P$. So, $M \subseteq P$. Thus $M=P$. Hence, (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$. Then $G(R)=K_{2}$
which is not possible. So, $M^{2} \neq(0)$. Let if possible, $M^{2}=M$. Since $M=R y$ and $M^{2}=M$, by the Nakayama's lemma [5, Proposition 2.6], we have $M=(0)$. This is not possible. So, $M^{2} \neq M$. Hence, $M^{2} \neq(0)$ and $M^{2} \neq M$. As $M=R y$, we have $M^{2}=R y^{2}$. Now, if $M^{3}=M^{2}$, then by the Nakayama's lemma [5, Proposition 2.6], $M=(0)$. So, $M^{3} \neq M^{2}$. If $M^{3} \neq(0)$, then $M, M^{2}, M^{3},(0) \in V(G(R))$ which is also not possible. So, $M^{3}=(0)$. Let P be any prime ideal of R. Then $M^{3}=(0) \subseteq P$. So, $M \subseteq P$. So, $M=P$. Thus, (R, M) is SPIR with $M^{2} \neq(0)$ but $M^{3}=(0)$.

Conversely, assume that $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields. Then by Theorem 2.3, $G(R))=K_{1,2}$. So, $\left.L(G(R))\right)=K_{2}$. Now, we assume that (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$. Then by Theorem 2.4, $G(R)=K_{1,1}$. So, $L(G(R))=K_{1}$. If (R, M) is SPIR with $M^{2} \neq(0)$ but $M^{3}=(0)$ then $G(R)$ is K_{3} given by

$$
(0)-M-M^{2}-(0)
$$

and so $L(G(R))=K_{3}$.
Theorem 2.11. Let $R=\prod_{i=1}^{n} R_{i}$ be a reduced ring with maximal ideals $M_{1}, M_{2}, \ldots, M_{n}$; for some $n \in \mathbb{N}$ where R_{i} is a finite local ring with maximal ideals $\mathfrak{n}_{1}, \mathfrak{n}_{2}, \ldots, \mathfrak{n}_{n}$. Then $\operatorname{diam}(L(G(R)))=\operatorname{diam}(G(R))$ $=2$ if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. Assume that $\operatorname{diam}(L(G(R)))=\operatorname{diam}(G(R))=2$. As R is a finite reduced ring, it is a direct product of finitely many fields. Let $R \cong F_{1} \times F_{2} \times \ldots \times F_{n}$; where F_{i} is a field for each $n \in \mathbb{N}$. Let if possible,

$$
\left|M_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{j=1} M_{j}\right| \geq 2
$$

for some $i \in\{1,2, \ldots, n\}$. Recall from [21, Remark 2.9],

$$
\left|M_{i} \backslash \bigcup_{\substack{j=1 n \\ j \neq i}} M_{j}\right| \geq 2
$$

for atleast (n-1) i's. Choose $s, t \in M_{1} \backslash \bigcup_{j=2}^{n} M_{j}$ and

$$
u, v \in M_{2} \backslash \bigcup_{\substack{j=1 n \\ j \neq 2}}^{j=} M_{j} .
$$

Take $V_{1}=[R s, R t]$ and $V_{2}=[R u, R v]$. Then $V_{1}, V_{2} \in V(L(G(R)))$. Clearly, V_{1} and V_{2} are not adjacent in $L(G(R))$. Let if possible,

$$
V_{1}=[R s, R t]-[I, J]-[R u, R v]=V_{2}
$$

be a path between V_{1} and V_{2}. Without loss of generality, we may assume that $I=R s$ and $J=R v$. So, $[R s, R v] \in V(L(G(R)))$. So, $R s$ and $R v$ are adjacent in $G(R)$. Thus, there exists a maximal ideal, say M that contains both $R s$ and $R v$ which is not possible. So, the
path between V_{1} and V_{2} is atleast of length three which contradicts the hypothesis. So, we have $\left|M_{i} \backslash \bigcup_{\substack{j=1 n \\ j \neq i}} M_{j}\right|=1$; for all i. Hence, $F_{i}=\mathbb{Z}_{2}$; for each $i \in\{1,2, \ldots, n\}$. Let if possible, $n \geq 4$. Choose $s \in M_{1} \backslash \bigcup_{j=2}^{n} M_{j}, t \in\left(M_{1} \cap M_{2}\right) \backslash \bigcup_{j=3}^{n} M_{j}, u \in M_{3} \backslash \bigcup_{\substack{j=1 \\ j \neq 3}}^{n} M_{j}$ and $v \in\left(M_{3} \cap M_{4}\right) \backslash \bigcup_{\substack{j=1,4 \\ j \neq 3,4}}^{n} M_{j}$. Then $[R s, R t]$ and $[R u, R v]$ are not adjacent in $L(G(R))$. Let if possible, $[R s, R t]-[I, J]-[R u, R v]$ be a path between $[R s, R t]$ and $[R u, R v]$ in $L(G(R))$. Without loss of generality, we may assume that $I=R s$ and $J=R v$. So, $R s$ and $R v$ are adjacent in $G(R)$ which is not true by the choice of s and v. So, the path between $[R s, R t]$ and $[R u, R v]$ is atleast of length three which again contradicts the hypothesis. So, $|\operatorname{Max}(R)| \leq 3$. Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then

$$
V(R)=\left\{\mathbb{Z}_{2} \times(0),(0) \times \mathbb{Z}_{2},(0) \times(0)\right\}
$$

Note that $G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=K_{1,2}$ and so $L\left(G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=K_{2}$. Hence, $\operatorname{diam}\left(L\left(G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)\right)=1$ which contradicts the hypothesis. So, $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Conversely, assume that $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Note that

$$
\begin{aligned}
V(G(R))= & \left\{O=(0) \times(0) \times(0), M_{1}=(0) \times \mathbb{Z}_{2} \times \mathbb{Z}_{2},\right. \\
& M_{2}=\mathbb{Z}_{2} \times(0) \times \mathbb{Z}_{2}, M_{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times(0), \\
& M_{1} M_{2}=(0) \times(0) \times \mathbb{Z}_{2}, M_{1} M_{3}=(0) \times \mathbb{Z}_{2} \times(0), \\
& \left.M_{2} M_{3}=\mathbb{Z}_{2} \times(0) \times(0)\right\} .
\end{aligned}
$$

From the following Figure.2, it is clear that $\operatorname{diam}(G(R))=2$. Note that

$$
\begin{aligned}
V(L(G(R)))=\left\{I_{1}\right. & =\left[(0), M_{1}\right], I_{2}=\left[(0), M_{2}\right], \\
I_{3} & =\left[(0), M_{3}\right], I_{4}=\left[(0), M_{1} M_{2}\right], \\
I_{5} & =\left[(0), M_{1} M_{3}\right], I_{6}=\left[(0), M_{2} M_{3}\right], \\
I_{7} & =\left[M_{1}, M_{1} M_{2}\right], I_{8}=\left[M_{1}, M_{1} M_{3}\right], \\
I_{9} & =\left[M_{2}, M_{1} M_{2}\right], I_{10}=\left[M_{2}, M_{2} M_{3}\right], \\
I_{11} & \left.=\left[M_{3}, M_{1} M_{3}\right], I_{12}=\left[M_{3}, M_{2} M_{3}\right]\right\}
\end{aligned}
$$

From Figure.1, it is clear that $\operatorname{diam}(V(L(G(R))))=2$. Hence,

$$
\operatorname{diam}(G(R))=2=\operatorname{diam}(L(G(R)))
$$

Figure. 2 : $G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

3. Some more Results on $G(R)$

Theorem 3.1. Let R be a ring with $|\operatorname{Max}(R)| \geq 4$. Then $G(R)$ is not a split graph.

Proof. Let $G(R)$ be a split graph. Let $V(G(R))=K \cup S$; where the subgraph of $G(R)$ induced on K is complete, S is an independent set of $G(R)$ and $K \cap S=\emptyset$. Let

$$
M_{1}, M_{2}, M_{3}, M_{4} \in \operatorname{Max}(R)
$$

Suppose that $(0) \in S$. Then $M_{i} \notin S$; for $i \in\{1,2,3,4\}$ as (0) is adjacent to each M_{i}; for $i \in\{1,2,3,4\}$. So, $M_{i} \in K$; for all $i \in\{1,2,3,4\}$ which is not possible as any two distinct maximal ideals are not adjacent in $G(R)$. So, $(0) \in K$. Note that at most one of the maximal ideal can be in K. Without loss of generality, we may assume that $M_{1} \in K$. Hence, $M_{2}, M_{3}, M_{4} \in S$. If $M_{2} M_{3}=(0)$, then $M_{2} M_{3}=(0) \subseteq M_{1}$. So, $M_{2}=M_{1}$ or $M_{3}=M_{1}$ which is not possible. Hence, $M_{2} M_{3} \neq(0)$. Also, $M_{2} M_{3} \neq M_{i}$; for any $i \in\{1,2,3,4\}$ as if $M_{2} M_{3}=M_{i}$; for some $i \in\{1,2,3,4\}$, then $M_{2}=M_{i}$ or $M_{3}=M_{i}$ which is not possible. Since $M_{2} \in S$ and $M_{2} M_{3}$ is adjacent to M_{2} in $G(R)$, we have $M_{2} M_{3} \notin S$. Also, $M_{1}+M_{2} M_{3}=R$. So, $M_{2} M_{3} \notin K$. Thus, $\operatorname{Max}(R) \subseteq S$. Note that $M_{i} M_{j}$ is adjacent with M_{i}; for any distinct $i, j \in\{1,2,3,4\}$. Hence, $M_{i} M_{j} \in K$; for distinct $i, j \in\{1,2,3,4\}$. So, we have $M_{1} M_{2}, M_{3} M_{4} \in K$. But, then $M_{1} M_{2}+M_{3} M_{4}=R$. So, $M_{1} M_{2}$ and $M_{3} M_{4}$ are not adjacent in $G(R)$. Hence, $G(R)$ is not a split graph. This is a contradiction. So, $|\operatorname{Max}(R)| \leq 3$.

Theorem 3.2. Let R be a ring with $|\operatorname{Max}(R)|=3$. Then $G(R)$ is a split graph if and only if $R \cong F_{1} \times F_{2} \times F_{3}$; where F_{1}, F_{2} and F_{3} are fields.

Proof. Suppose that $R \cong F_{1} \times F_{2} \times F_{3}$; where F_{1}, F_{2} and F_{3} are fields. Note that

$$
\begin{aligned}
V(G(R))=\{ & (0) \times(0) \times(0), M_{1}=(0) \times F_{2} \times F_{3}, \\
& M_{2}=F_{1} \times(0) \times F_{3}, M_{3}=F_{1} \times F_{2} \times(0), \\
& \left.M_{1} M_{2}, M_{2} M_{3}, M_{1} M_{3}\right\} .
\end{aligned}
$$

Let $K=\left\{M_{1} M_{2}, M_{2} M_{3}, M_{1} M_{3},(0)\right\}$ and $S=\left\{M_{1}, M_{2}, M_{3}\right\}$. Then we have $V(G(R))=K \cup S$, where the subgraph of $G(R)$ induced on K is complete, S is an independent set of $G(R)$ and $K \cap S=\emptyset$. Therefore, $G(R)$ is a split graph.

Conversely, assume that $G(R)$ is a split graph. Let

$$
V(G(R))=K \cup S
$$

where the subgraph of $G(R)$ induced on K is complete, S is an independent set of $G(R)$ and $K \cap S=\emptyset$. Let

$$
\operatorname{Max}(R)=\left\{M_{1}, M_{2}, M_{3}\right\} .
$$

Note that $M_{i} M_{j} \neq(0)$; for any $i, j \in\{1,2,3\}$. As $M_{i}+M_{j}=R$; for $i \neq j$ and $i, j \in\{1,2,3\}$, we have at most one $M_{i} \in K$, for $i \in\{1,2,3\}$. Let $M_{1} \in K$ and $M_{2}, M_{3} \in S$. Now, M_{2} and $M_{2} M_{3}$ are adjacent in $G(R)$. So, $M_{2} M_{3} \notin S$. Also, $M_{1}+M_{2} M_{3}=R$. So, $M_{2} M_{3} \notin K$. So, $\operatorname{Max}(R) \subseteq S$. Since,(0) is adjacent to all other vertices, we have $(0) \in K$. Note that $M_{2} M_{3} \neq(0)$. Observe that $M_{2} M_{3}$ and M_{2} are adjacent in $G(R)$. As $M_{2} \in S$, we have $M_{2} M_{3} \in K$. Let

$$
x \in M_{1} \backslash\left(M_{2} \cup M_{3}\right) .
$$

Let if possible, $R x \neq M_{1}$. As $R x$ is adjacent to M_{1} in $G(R), R x \notin S$. Also, $R x+M_{2} M_{3}=R$. So, $R x \notin K$. Hence, $R x=M_{1}$. Similarly, $M_{2}=R y$; for some $y \in M_{2} \backslash\left(M_{1} \cup M_{3}\right)$ and $M_{3}=R z$; for some $z \in M_{3} \backslash\left(M_{1} \cup M_{2}\right)$. Thus, $J(R)=$ Rxyz. Let if possible, $M_{1}^{2}=(0)$. Then $M_{1}^{2}=(0) \subseteq M_{2}$. This implies that $M_{1}=M_{2}$ which is not possible. So, $M_{1}^{2} \neq(0)$. If $M_{1}^{2} \neq M_{1}$, then $M_{1}^{2}+M_{2} M_{3}=R$. So, M_{1}^{2} cannot be in K. Also, M_{1}^{2} and M_{1} are adjacent in $G(R)$. So, $M_{1}^{2} \notin S$. Hence, $M_{1}^{2}=M_{1}$. By similar argument, $M_{2}^{2}=M_{2}$ and $M_{3}^{2}=M_{3}$. So, $(J(R))^{2}=J(R)$. Since, $J(R)$ is principal, by the Nakayama's lemma [5, Proposition 2.6], we have $J(R)=(0)$. So, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$
R \cong \frac{R}{J(R)} \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}} \times \frac{R}{M_{3}} \cong F_{1} \times F_{2} \times F_{3} ;
$$

where F_{1}, F_{2} and F_{3} are fields.
Theorem 3.3. Let R be an Artinian ring with $|\operatorname{Max}(R)|=2$. Then $G(R)$ is a split graph if and only if $R \cong R_{1} \times R_{2}$; where $\left(R_{1}, m_{1}\right)$ and $\left(R_{2}, m_{2}\right)$ are local rings, $R_{i} a=m_{i}$ for some $a \in R_{i}$ and $m_{i}^{2}=m_{i}$; for at least one $i \in\{1,2\}$.

Proof. Since R is an Artinian ring, $R \cong R_{1} \times R_{2}$; where $\left(R_{1}, m_{1}\right)$ and $\left(R_{2}, m_{2}\right)$ are local rings [5, Proposition 8.7]. Note that

$$
\operatorname{Max}(R)=\left\{M_{1}=m_{1} \times R_{2}, M_{2}=R_{1} \times m_{2}\right\}
$$

Assume that $G(R)$ is a split graph. Let $V(G(R))=K \cup S$; where the subgraph induced on K is complete, S is an independent set of $G(R)$ and $K \cap S=\emptyset$. If $(0) \in S$, then $M_{1}, M_{2} \in K$ which is not possible as $M_{1}+M_{2}=R$. So, $(0) \in K$. Note that any two distinct maximal ideals are not adjacent in $G(R)$. So, atmost one of M_{1} or M_{2} can be placed in K. Without loss of generality, we may assume that $M_{2} \in K$. Thus, $M_{1} \in S$. Let $x_{1} \in M_{1} \backslash M_{2}$. Let if possible, $R x_{1} \neq M_{1}$. Then, $R x_{1}+M_{2}=R$. So, $R x_{1}$ is not adjacent to M_{2}. So, $R x_{1} \notin K$. Also, $R x_{1}$ is adjacent to M_{1} in $G(R)$. So, $R x_{1} \notin S$. Thus, $R x_{1}=M_{1}$. Note that $M_{1}^{2} \neq(0)$. Let if possible, $M_{1}^{2} \neq M_{1}$. Then $M_{1}^{2} \notin K$ as $M_{1}^{2}+M_{2}=R$. Also, M_{1}^{2} is adjacent to M_{1} in $G(R)$. So, $M_{1}^{2} \notin S$. Thus, $M_{1}^{2}=M_{1}$. Let $x_{1}=(a, 1)$; for some $a \in R_{1}$. Then $R_{1} a=m_{1}$ and $m_{1}^{2}=m_{1}$. Suppose that $M_{1}, M_{2} \in S$. Let $x_{1} \in M_{1} \backslash M_{2}$. Let if possible $R x_{1} \neq M_{1}$, then $R x_{1}$ is adjacent to M_{1}. So, $R x_{1} \notin S$. So, $R x_{1} \in K$. Let $x_{2} \in M_{2} \backslash M_{1}$. If $M_{2} \neq R x_{2}$, then $R x_{2} \notin S$ as $R x_{2}$ is adjacent to M_{2}. Also, $R x_{1}+R x_{2}=R$. So, $R x_{2} \notin K$. Thus, $R x_{2}=M_{2}$. If $M_{2}^{2} \neq M_{2}$, then $M_{2}^{2} \notin S$ as M_{2}^{2} and M_{2} are adjacent. Also, $R x_{1}+M_{2}^{2}=R$. So, $M_{2}^{2} \notin K$. Thus, $M_{2}^{2}=M_{2}$. Let $x_{2}=(1, b)$; for some $b \in R_{2}$. Then $R_{2} b=m_{2}$ and $m_{2}^{2}=m_{2}$. Suppose $R x_{1}=M_{1}$ and if $M_{1}^{2} \neq M_{1}$, then $M_{1}^{2} \in K$. By similar argument as above, $m_{2}^{2}=m_{2}$ and $R b=m_{2}$; for some $b \in R_{2}$.

Conversely, assume that $R \cong R_{1} \times R_{2}$; where $\left(R_{1}, m_{1}\right)$ and $\left(R_{2}, m_{2}\right)$ are local rings, $R_{i} a=m_{i}$ for some $a \in R_{i}$ and $m_{i}^{2}=m_{i}$; for atleast one $i \in\{1,2\}$. Suppose that $R_{1} a=m_{1}$; for some $a \in R_{1}$ and $m_{1}^{2}=m_{1}$. Let

$$
K=\left\{(0), M_{2}\right\} \cup\left\{I \in I(R): I \subseteq M_{2}\right\}
$$

and $S=\left\{M_{1}\right\}$. Hence, $G(R)$ is a split graph.
Theorem 3.4. Let (R, M) be a local ring which is not a field. Then $G(R)$ is a split graph.

Proof. Proof is clear.

Theorem 3.5. $G(R)$ admits a cut-vertex if and only if $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields.

Proof. Suppose that $G(R)$ has a cut-vertex, say K. Now, $G(R)$ admits a cut-vertex K if and only if there exists I and $J \in V(G(R))$ such that there is exactly one path $I-K-J$ between I and J in $G(R)$. Note that $I, J \neq(0)$ as (0) is adjacent to all the vertices in $G(R)$. If $K \neq(0)$, then there is another path $I-(0)-J$ between I and J in $G(R)$. Hence, $K=(0)$. Let $M, M^{\prime} \in \operatorname{Max}(R)$ such that $I \subseteq M$ and $J \subseteq M^{\prime}$. As I and J are not adjacent in $G(R), M \neq M^{\prime}$. Let $x \in M \cap M^{\prime}$; where $x \neq 0$. Then $I-R x-J$ is another path between I and J which is not possible. So, $M \cap M^{\prime}=(0)$. Let if possible, $M^{\prime \prime}$ be a maximal ideal distinct from M and M^{\prime}. Then $M \cap M^{\prime}=(0) \subseteq M^{\prime \prime}$. But then either $M=M^{\prime \prime}$ or $M^{\prime}=M^{\prime \prime}$ which is also not possible. So, $|\operatorname{Max}(R)| \leq 2$. If $|\operatorname{Max}(R)|=1$, then $G(R)$ is a complete graph. So, it will never admit a cut-vertex. So, $|\operatorname{Max}(R)|=2$. Let

$$
\operatorname{Max}(R)=\left\{M_{1}, M_{2}\right\} .
$$

As $M_{1} \cap M_{2}=(0)$, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$
R \cong \frac{R}{J(R)} \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}} \cong F_{1} \times F_{2} ;
$$

where F_{1} and F_{2} are fields.
Conversely, assume that $R \cong F_{1} \times F_{2}$; for some fields F_{1} and F_{2}. Then $R \cong F_{1} \times F_{2}$ is a path graph $F_{1} \times(0)-(0) \times(0)-(0) \times F_{2}$ and clearly $(0) \times(0)$ is a cut-vertex.

Lemma 3.6. Let R be a ring which is not a field. Then

$$
\operatorname{girth}(G(R)) \in\{3, \infty\}
$$

Proof. Assume that $|\operatorname{Max}(R)| \geq 3$. Let $M_{1}, M_{2}, M_{3} \in \operatorname{Max}(R)$. Suppose that $M_{1} M_{2}=(0)$. Then, $M_{1} M_{2}=(0) \subseteq M_{3}$. So, $M_{1}=M_{3}$ or $M_{2}=M_{3}$ which is not possible. So, $M_{1} M_{2} \neq(0)$. Suppose that $M_{1} M_{2}=M_{1}$. Then $M_{1} \subseteq M_{2}$ which is not possible. So, $M_{1} M_{2} \neq M_{1}$. Thus, we have a cycle $M_{1} M_{2}-(0)-M_{1}-M_{1} M_{2}$ in $G(R)$ of length three. Hence, $\operatorname{girth}(G(R))=3$.

Let $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{M_{1}, M_{2}\right\}$. If

$$
M_{1} M_{2}=J(R)=(0)
$$

then by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$
R \cong R / J(R) \cong R / M_{1} \times R / M_{2}=F_{1} \times F_{2}
$$

where F_{1} and F_{2} are fields. Then $G(R)$ is $K_{1,2}$ and so $\operatorname{girth}(G(R))=\infty$. If $J(R)=M_{1} M_{2} \neq(0)$, then $M_{1}-M_{1} M_{2}-(0)-M_{1}$ forms a cycle of length 3. Hence, $\operatorname{girth}(G(R))=3$.

Assume that (R, M) is a local ring. Let $x \in M \backslash(0)$. If $R x \neq M$, then we have a cycle $(0)-R x-M-(0)$ in $G(R)$. So, $\operatorname{girth}(G(R))=3$. Let $R x=M$. Let if possible, $M^{2}=(0)$. Let P be any prime ideal of R. Then as $M^{2}=(0)$, we have $M \subseteq P$. Thus, $M=P$. So, $P=M$ is the only prime ideal of R. So, (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$. Hence, $\operatorname{girth}(G(R))=\infty$. Let $M^{2} \neq(0)$. Also, let if possible $M^{2}=M$. Then $M=J(R)$ and $M=R x$. So, by the Nakayama's lemma [5, Proposition 2.6], we have $M=\{0\}$, which is not possible as R is not a field. Hence, R is a field which is contradiction to the assumption. So, $M^{2} \neq M$. Hence, (0$)-M^{2}-M-(0)$ is a cycle of length three in $G(R)$. So, $\operatorname{girth}(G(R))=3$.

Theorem 3.7. Let R be a ring which is not a field. Then

$$
\operatorname{girth}(G(R))=3
$$

if and only if one of the following conditions hold.
(i) $|\operatorname{Max}(R)| \geq 3$
(ii) $|\operatorname{Max}(R)|=2$ and $J(R) \neq(0)$.
(iii) (R, M) is a local ring which is not isomorphic to $\operatorname{SPIR}(S, M)$; where $M \neq(0)$ but $M^{2}=(0)$.

Proof. Proof follows from Theorem 3.6.
Theorem 3.8. Let R be a ring which is not a field. Then

$$
\operatorname{girth}(G(R))=\infty
$$

if and only if one of the following conditions hold.
(i) $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields.
(ii) (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$.

Proof. Proof follows from Theorem 3.6.
Theorem 3.9. Let R be a ring. Then $\alpha(G(R))=n$ if and only if $|\operatorname{Max}(R)|=n$; for some $n \in \mathbb{N}$.

Proof. Assume that $\alpha(G(R))=n$; for some $n \in \mathbb{N}$. Let

$$
\operatorname{Max}(R)=\left\{M_{1}, M_{2}, \ldots, M_{m}\right\} ;
$$

for some $m \in \mathbb{N}$. It is clear that $\operatorname{Max}(R)$ is an independent set in $G(R)$. So, $m \leq n$. Let $W=\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ be an independent set of $G(R)$ with $|W|=n$. Since W is an independent set, I_{i} is not adjacent to any of the $I_{j}^{\prime} s$; for $i \neq j$ and $i, j \in\{1,2, \ldots, n\}$. Let $I_{i} \subseteq M_{i}$; for some $i \in\{1,2, \ldots, n\}$. Let if possible, $M_{i}=M_{j}$ for some $i \neq j$ and
$i, j \in\{1,2, \ldots, n\}$. Then I_{i} and I_{j} will be adjacent in $G(R)$ which is not possible. Hence, $M_{i} \neq M_{j}$; for $\forall i, j \in\{1,2, \ldots, n\}$. Therefore, $m \geq n$. Hence, $m=n$.

Conversely, asssume that $|\operatorname{Max}(R)|=n$. Since, $\operatorname{Max}(R)$ forms an independent set in $G(R), \alpha(G(R)) \geq n$. Let if possible, $\alpha(G(R))>n$. Then there exists an independent set, say $W=\left\{I_{1}, I_{2}, \ldots, I_{n}, \ldots, I_{t}\right\}$; where $t>n, t \in \mathbb{N}$. Let $I_{i} \subseteq M_{i}$; for some $i \in\{1,2, \ldots, t\}$. Now, $t>n$. So, by the Pigeon-hole principle, there exists a maximal ideal M_{r}; for some $r \in\{1,2, \ldots, n\}$ and $i, j \in\{1,2, \ldots, t\}$ such that $I_{i}, I_{j} \subseteq M_{r}$ which is not possible. So, $\alpha(G(R))=n$.

Theorem 3.10. Let R be a ring. Then $G(R)$ is complemented if and only if one of the following conditions hold.
(i) $R \cong F_{1} \times F_{2}$; where F_{1} and F_{2} are fields.
(ii) (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$.

Proof. Suppose that $G(R)$ is complemented. Let $I \neq(0)$ be any vertex of $G(R)$. Since $G(R)$ is complemented, there exists a vertex J in $G(R)$ such that $I \perp J$. If $J \neq(0)$, then $I-J-(0)-I$ forms a triangle which is not possible. So, $J=(0)$. Now, $I \subseteq M$; for some $M \in \operatorname{Max}(R)$. If $I \subsetneq M$, then $I-(0)-M-I$ forms a triangle which is not possible. So, $I=M$. Suppose that, $|\operatorname{Max}(R)| \geq 3$. Let $M_{1}, M_{2}, M_{3} \in \operatorname{Max}(R)$. Let $I=M_{1}$. Note that $M_{1} M_{2} \neq(0)$ and $M_{1} M_{2} \neq M_{i}$; for $i \in\{1,2\}$. Observe that (0) $-M_{1}-M_{1} M_{2}-(0)$ forms a triangle which is not possible. So, $|\operatorname{Max}(R)| \leq 2$. Suppose that $|\operatorname{Max}(R)|=2$. Let $J(R) \neq(0)$. Then $(0)-J(R)-M-(0)$ forms a triangle which is not possible. So, $J(R)=(0)$. Hence, by the Chinese Remainder Theorem [5, Proposition 1.10(ii),(iii)],

$$
R \cong \frac{R}{J(R)} \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}} \cong F_{1} \times F_{2} ;
$$

where F_{1} and F_{2} are fields. Let (R, M) be a local ring which is not a field. Let $x \in M \backslash(0)$. If $R x \neq M$, then $(0)-R x-M-(0)$ forms a triangle which is not possible. So, $R x=M$. If $M^{2} \neq(0)$ and $M^{2} \neq M$, then (0$)-M-M^{2}-(0)$ forms a triangle which is not possible. So, $M^{2}=(0)$ or $M^{2}=M$. If $M^{2}=M$, then by the Nakayama's lemma [5, Proposition 2.6], $M=(0)$. So, $M^{2} \neq M$. Hence, $M^{2}=(0)$. Let P be any prime ideal of R. Now, $M^{2}=(0) \subseteq P$ which implies that $M \subseteq P$. As M is maximal, $P=M=R x$. Thus, (R, M) is SPIR with $M \neq(0)$ but $M^{2}=(0)$.

Acknowledgments

We are very thankful to the anonymous reviewers for their valuable suggestions.

References

1. G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaiveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math., 312 (2012), 2620-2626.
2. S. Akbari, B. Miraftab, R. Nikandish, Co-maximal graphs of subgroups of groups, Canad. Math. Bull., 60(1) (2017), 12-25.
3. D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings and Boolean Algebras, J. Pure Appl. Algebra, 180 (2003), 221-241.
4. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
5. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
6. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, 2000.
7. I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
8. M. Behboodi and Z. Rakeei, The annihilating-ideal graphs of commutative rings I, J. Algebra Appl., 10(4), (2011), 727-739.
9. M. Behboodi and Z. Rakeei, The annihilating-ideal graphs of commutative rings II, J. Algebra Appl., 10(4) (2011), 741-753.
10. A. Gaur and A. Sharma, Maximal graph of a commutative ring, International J. Algebra, 7(12) (2013), 581-588.
11. M. I. Jinnah and S,C. Mathew, When is the comaximal graph split?, Comm. Algebra, 40(7) (2012), 2400-2404.
12. R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745-750.
13. H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(4) (2008), 1801-1808.
14. B. Miraftab and R. Nikandish, Co-maximal graphs of two generator groups, J. Algebra Appl., 18(04) (2019), Article ID: 1950068.
15. B. Miraftab and R. Nikandish, Co-maximal ideal graphs of matrix algebras, Boletín de la Sociedad Matemática Mexicana, 24(1) (2018), 1-10.
16. S. M. Moconja and Z. Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc., 83 (2011), 11-21.
17. K. Nazzal and M. Ghanem, On the Line Graph of the Zero Divisor Graph for the Ring of Gaussian Integers Modulo n, International Journal of Combinatorics, (2012), Article ID: 957284, 13 pp.
18. E. M. Nezhad and A. M. Rahimi, Dominating sets of the comaximal and ideal based zero-divisor graphs of commutative rings, Quaest. Math., 38(5) (2015), 613-629.
19. R. Nikandish and H. R. Maimani, Dominating sets of the annihilating-ideal graphs, Electron. Notes Discrete Math., 45 (2014), 17-22.
20. K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57(2) (2014), 413-423.
21. A. Sharma and A. Gaur, Line Graphs associated to the Maximal graph, J. Algebra Relat. Topics, 3(1) (2015), 1-11.
22. S. Visweswaran and J. Parejiya, Annihilating -ideal graphs with independence number at most four, Cogent Mathematics, 3(1) (2016), Article ID: 1155858.
23. S. Visweswaran and J. Parejiya, When is the complement of the comaximal graph of a commutative ring planar?, ISRN Algebra, (2014), Article ID: 736043, 8 pp.
24. S. Visweswaran and H. D. Patel, Some results on the complement of the annihilating ideal graph of a commutative ring, J. Algebra Appl., 14(7) (2015), Article ID: 1550099.
25. H. J. Wang, Graphs associated to Co-maximal ideals of commutative rings, J. Algebra, 320(7) (2008), 2917-2933.
26. M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, J. Algebra Appl., 11(6) (2012), Article ID: 1250114.

Krishna Lalitkumar Purohit

Department of Applied Sciences, RK University, P.O. Box 360003, Rajkot, India.
Email: purohitkrishnal123@gmail.com

Jaydeep Parejiya

Department of Mathematics, Government Polytechnic, P.O. Box 360003, Rajkot, India.
Email: parejiyajay@gmail.com

Journal of Algebraic Systems

SOME PROPERTIES OF SUPER－GRAPH OF $(\mathscr{C}(R))^{c}$ AND ITS LINE GRAPH

K．L．PUROHIT AND J．PAREJIYA

$$
\begin{aligned}
& \text { برخى خواص ابرگراف }{ }^{\text {(}} \\
& \text { كريشنا لاليتكومار پوروهيت’ و جيدیپ پارجيا׳「 } \\
& \text { 'گروه علوم كاربردى، دانشگاه RK، راجكوت، هند } \\
& \text { 「گروه رياضى، پلى تكنيك دولتى، راجكوت، هند }
\end{aligned}
$$

فرض مىكنيم R حلقهاى يكدار با 1 ا 1 باشد．گراف ايدهآل همبيشين R گرافى ساده و غيرجهتى است

 I I برخى نتايج جالب در مورد $G(R)$ و گراف خطى آن را را مورد بررسى قرار مىدهيم． كلمات كليدى：SPIR، G（R）، گراف خطى．

[^0]: DOI: 10.22044/JAS.2022.12098.1628.
 MSC(2010): Primary: 13A15; Secondary: 05C25.
 Keywords: $G(R)$; SPIR; Line graph.
 Received: 16 July 2022, Accepted: 21 October 2022.

 * Corresponding author.

