EXTENSION AND TORSION FUNCTORS WITH RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI*

ABSTRACT. In this paper we generalize the Rigidity Theorem and Zero Divisor Conjecture for an arbitrary Serre subcategory of modules. For this purpose, for any regular *M*-sequence $x_1, ..., x_n$ with respect to S we prove that if $\operatorname{Tor}_2^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Tor}_i^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, for all $i \geq 1$. Also we show that if $\operatorname{Ext}_R^{n+2}(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Ext}_R^i(\frac{R}{(x_1,...,x_n)}, M) \in S$, for all integers $i \geq 0$ $(i \neq n)$.

1. INTRODUCTION

Throughout this paper, R denotes a commutative and Noetherian ring with non-zero identity, I denotes an arbitrary ideal and Mdenotes a finitely generated R-module. Let S be a Serre subcategory of the category of R-modules. In 1961, M. Auslander proposed the Zero Divisor Conjecture in [2] as follows:

Zero divisor conjecture. Let R be a local ring and M be a finitely generated R-module of finite projective dimension. If $x \in R$ is a non-zerodivisor on M, then x is a non-zerodivisor of R.

This conjecture was proved by M. Hochster, L. Szpiro, C. Peskin, and P. Robert (see [6]), in special cases. Also M. Auslander introduced rigidity concept as a generalization of Zero Divisor Conjecture.

DOI: 10.22044/JAS.2022.11683.1597.

MSC(2010): Primary: 13D45; Secondary: 13D07.

Keywords: Serre classes; Zero Divisor Conjecture; Rigidity Theorem; Top local cohomology module.

Received: 20 February 2022, Accepted 28 October 2022.

^{*}Corresponding author.

Definition. Let (R, \mathfrak{m}) be a local ring. An *R*-module *M* is called rigid if $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for some finitely generated *R*-module *N*, then $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for any $j \geq i$ (see [2]).

He also stated the following theorem.

Rigidity Theorem. Let (R, \mathfrak{m}) be a regular local ring and M be a finitely generated R-module. Then M is rigid.

The Rigidity Theorem was proved by M. Auslander in unramified case. S. Lichtenbaum proved the theorem for arbitrary regular local rings in 1966 (see [5]). In this paper, we generalize the Zero Divisor Conjecture and Rigidity Theorem for an arbitrary Serre subcategory of modules. An *R*-module *M* is called *S*-rigid if $\operatorname{Tor}_{i}^{R}(M, N) \in S$ for some finitely generated *R*-module *N*, then $\operatorname{Tor}_{j}^{R}(M, N) \in S$ for any $j \geq i$. Also for an *R*-module *M*, Generalized Zero Divisor Conjecture holds if every regular *M*-sequence with respect to *S* is a regular *R*-sequence with respect to *S*. For this purpose, we prove the following two main theorems.

Theorem 1. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let $x_1, ..., x_n$ be a poor regular M-sequence with respect to S. If $\operatorname{Tor}_2^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Tor}_i^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, for any $i \geq 1$ (see theorem 3.4).

Theorem 2. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $S - E.grad_R(I, M) = n \ge 1$. Assume that $x_1, ..., x_n \in I$ is a maximal regular M-sequence with respect to S. If $\operatorname{Ext}_R^{n+2}(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Ext}_R^i(\frac{R}{(x_1,...,x_n)}, M) \in S$, for all integers $i \ge 0$ ($i \ne n$) (see theorem 3.9). Finally, as a consequence of the above theorems, we prove some corollaries for top local cohomology modules (see theorems 3.5 and 3.10).

2. Preliminaries

A subcategory of the category of R-modules and R-homomorphisms S is said to be a *Serre class* (or Serre subcategory), if for any exact sequence of R-modules

$$0 \to L \to M \to N \to 0$$
,

the *R*-module *M* belongs to S if and only if each of *L* and *N* belong to S.

Definition 2.1. [1, Definition 2·2] Suppose that M is an R-module. A sequence $x_1, ..., x_n$ of elements of R is called a poor regular M-sequence with respect to S if for each i = 1, ..., n the R-module $(0: \frac{M}{(x_1, ..., x_{i-1})M} x_i)$

belongs to \mathcal{S} . If in addition $\frac{M}{(x_1,...,x_n)M} \notin \mathcal{S}$, we say that $x_1,...,x_n$ is a regular *M*-sequence with respect to \mathcal{S} .

For an R-module L, we denote

$$\mathcal{S}-\operatorname{Supp}_{R} L := \{\mathfrak{p} \in \operatorname{Supp}_{R} L : \frac{R}{\mathfrak{p}} \notin \mathcal{S}\}$$

and

$$\mathcal{S}-\operatorname{Ass}_{R} L := \{\mathfrak{p} \in \operatorname{Ass}_{R} L : \frac{R}{\mathfrak{p}} \notin \mathcal{S}\}.$$

Lemma 2.2. [1, Lemma 2 · 1] Let M be a finitely generated R-module. Then $M \in S$ if and only if $\frac{R}{\mathfrak{p}} \in S$ for all $\mathfrak{p} \in \operatorname{Supp}_R M$. In particular, for any two finitely generated R-modules N and L with $\operatorname{Supp}_R N = \operatorname{Supp}_R L$, we have $N \in S$ if and only if $L \in S$.

The following statements are equivalent by the definition.

Lemma 2.3. [1, Lemma $2 \cdot 3$] Let M be a finitely generated R-module and $x_1, ..., x_n$ a sequence of elements of R. Then the following are equivalent:

- (1) $x_i \notin \bigcup_{\mathfrak{p} \in \mathcal{S} \operatorname{Ass}_R \frac{M}{(x_1, \dots, x_{i-1})}} \mathfrak{p} \text{ for all } i = 1, \dots, n.$
- (2) The sequence $x_1, ..., x_n$ is a poor regular *M*-sequence with respect to S.
- (3) For any $\mathfrak{p} \in \mathcal{S} \operatorname{Supp}_R M$, the elements $\frac{x_1}{1}, ..., \frac{x_n}{1}$ of the local ring $R_{\mathfrak{p}}$ form a poor regular $M_{\mathfrak{p}}$ -sequence.
- (4) The sequence $x_1^{t_1}, ..., x_n^{t_n}$ is a poor regular *M*-sequence with respect to *S* for all positive integers $t_1, ..., t_n$.

Definition 2.4. [1, Definition $2 \cdot 6$] Let M be an R-module and \mathfrak{a} be an ideal of R. The notation of Ext grade of \mathfrak{a} on M with respect to S is defined as follows:

$$\mathcal{S}-\mathrm{E}.grade_R(\mathfrak{a},M):=\inf\{i\in\mathbb{N}_0:\mathrm{Ext}_R^i(\frac{R}{\mathfrak{a}},M)\notin\mathcal{S}\}.$$

3. Main results

Similar to the property of regular sequences we have the following.

Lemma 3.1. Let $x_1, ..., x_n$ be a poor regular *M*-sequence with respect to S, then

$$\operatorname{Tor}_{1}^{R}(\frac{R}{(x_{1},...,x_{n})},M) \in \mathcal{S}.$$

Proof. Let $x_1, ..., x_n$ is a poor M-sequence with respect to \mathcal{S} , then for every $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_R(M), \frac{x_1}{1}, ..., \frac{x_n}{1}$ is a poor regular $M_{\mathfrak{p}}$ -sequence. Thus $\operatorname{Tor}_1^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{(\frac{x_1}{1},...,\frac{x_n}{1})}, M_{\mathfrak{p}}) = 0$, by [4, Exercise $1 \cdot 1.12$]. This implies that $\mathcal{S} - \operatorname{Supp}\operatorname{Tor}_1^R(\frac{R}{(x_1,...,x_n)}, M) = \emptyset$. Hence $\operatorname{Tor}_1^R(\frac{R}{(x_1,...,x_n)}, M) \in \mathcal{S}$. \Box

Lemma 3.2. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let x be a poor regular M-sequence with respect to S. If $\operatorname{Tor}_{2}^{R}(\frac{R}{(x)}, M) \in S$, then $(0:_{R}x) \otimes_{R} M \in S$.

Proof. The exact sequence

$$0 \to Rx \to R \to \frac{R}{Rx} \to 0 \tag{3.1}$$

implies that $\operatorname{Tor}_2^R(\frac{R}{Rx}, M) \cong \operatorname{Tor}_1^R(Rx, M)$ and hence

$$\operatorname{Tor}_{1}^{R}(Rx, M) \in \mathcal{S}.$$
(3.2)

Also, the exact sequence

$$0 \to (0:_R x) \to R \to R x \to 0 \tag{3.3}$$

induces the exact sequence

$$0 \to \operatorname{Tor}_1^R(Rx, M) \to (0:_R x) \otimes_R M \to R \otimes_R M \xrightarrow{h} Rx \otimes_R M \to 0.$$

Now, we have the short exact sequence

$$0 \to \operatorname{Tor}_{1}^{R}(Rx, M) \to (0:_{R}x) \otimes_{R} M \to Kerh \to 0$$
(3.4)

where $Kerh \cong (0:_R x)M$, and $(0:_R x)M \in \mathcal{S}$. Thus by (3.2) and exact sequence (3.4), we get $(0:_R x) \otimes_R M \in \mathcal{S}$.

We now generalize the rigid concept to an arbitrary Serre subcategory as follows.

Definition 3.3. An *R*-module *M* is called S-rigid if $\operatorname{Tor}_{i}^{R}(M, N) \in S$ for some finitely generated *R*-module *N*, then $\operatorname{Tor}_{j}^{R}(M, N) \in S$ for any $j \geq i$.

In the following theorem, we introduce and prove conditions for S-rigidity.

Theorem 3.4. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let $x_1, ..., x_n$ be a poor regular M-sequence with respect to S. If $\operatorname{Tor}_2^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Tor}_i^R(\frac{R}{(x_1,...,x_n)}, M) \in S$, for any $i \geq 1$.

Proof. It is enough to show that $S - Supp \operatorname{Tor}_{i}^{R}(\frac{R}{(x_{1},...,x_{n})}, M) = \emptyset$. If $\mathfrak{p} \in S - Supp_{R}(M) - V(x_{1},...,x_{n})$, then $(\frac{x_{1}}{1},...,\frac{x_{n}}{1}) = R_{\mathfrak{p}}$, hence $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{(\frac{x_{1}}{1},...,\frac{x_{n}}{1})}, M_{\mathfrak{p}}) = 0$. Therefore without loss of generality, we may assume that $S - \operatorname{Supp}_{R} M \subseteq V(x_{1},...,x_{n})$ and $M \notin S$. We use induction on n. Assume that n = 1 and set $x := x_{1}$. By Lemma 3.2, we have $(0:_{R}x) \otimes_{R} M \in S$.

On the other hand, $\operatorname{Supp} \operatorname{Tor}_{i}^{R}((0:_{R}x), M) \subseteq \operatorname{Supp}((0:_{R}x) \otimes_{R} M)$ for all $i \geq 0$. Thus by Lemma 3.2, for all $i \geq 0$

$$\operatorname{Tor}_{i}^{R}((0:_{R}x), M) \in \mathcal{S}$$

Also, using the exact sequences (3.1) and (3.2), we have

$$\operatorname{Tor}_{i}^{R}((0:_{R}x), M) \cong \operatorname{Tor}_{i+1}^{R}(Rx, M) \cong \operatorname{Tor}_{i+2}^{R}(\frac{R}{Rx}, M)$$

for all $i \geq 1$. Therefore, by Lemma 3.1, $\operatorname{Tor}_{i}^{R}(\frac{R}{Rx}, M) \in \mathcal{S}$, for any $i \geq 1$.

Now assume that n > 1 and the result has been proved for smaller values of n. Set $I := (x_1, ..., x_{n-1})$ and $J := (x_1, ..., x_n)$. Let $\mathfrak{p} \in \mathcal{S} - Supp_R M$. By Lemma 2.3, we have the exact sequence

$$0 \to \frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}} \stackrel{\frac{x_n}{1}}{\to} \frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}} \to \frac{R_{\mathfrak{p}}}{JR_{\mathfrak{p}}} \to 0,$$

which induces the following exact sequence

$$\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}}, M_{\mathfrak{p}}) \xrightarrow{\frac{x_{n}}{1}} \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}}, M_{\mathfrak{p}}) \to \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{JR_{\mathfrak{p}}}, M_{\mathfrak{p}}).$$

Thus, we obtain

$$\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) = \frac{x_{n}}{1} \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}}, M_{\mathfrak{p}}\right),$$

and then by Nakayama's Lemma $\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}(\frac{R_{\mathfrak{p}}}{IR_{\mathfrak{p}}}, M_{\mathfrak{p}}) = 0$. This implies that $\operatorname{Tor}_{2}^{R}(\frac{R}{I}, M) \in \mathcal{S}$. Now, by the inductive hypothesis,

$$\operatorname{Tor}_{i}^{R}(\frac{R}{I}, M) \in \mathcal{S}$$
 (3.5)

for all $i \geq 1$. The exact sequence

$$0 \to (0:_{\frac{R}{I}} x_n) \to \frac{R}{I} \to \frac{J}{I} \to 0$$

induces the exact sequence

$$\operatorname{Tor}_{i+1}^{R}(\frac{R}{I}, M) \to \operatorname{Tor}_{i+1}^{R}(\frac{J}{I}, M) \to \operatorname{Tor}_{i}^{R}((0:_{\frac{R}{I}}x_{n}), M).$$

By (3.5)

$$\operatorname{Tor}_{i}^{R}(\frac{J}{I}, M) \in \mathcal{S}$$
 (3.6)

for all $i \geq 1$. Finally the exact sequence

$$0 \to \frac{J}{I} \to \frac{R}{I} \to \frac{R}{J} \to 0$$

induces the exact sequence

$$\operatorname{Tor}_{i+1}^{R}(\frac{R}{I}, M) \to \operatorname{Tor}_{i+1}^{R}(\frac{R}{J}, M) \to \operatorname{Tor}_{i}^{R}(\frac{J}{I}, M).$$

By (3.6) and (3.5), we have $\operatorname{Tor}_{i}^{R}(\frac{R}{J}, M) \in \mathcal{S}$, for all i > 1. Hence $\operatorname{Tor}_{i}^{R}(\frac{R}{\tau}, M) \in \mathcal{S}$, for all $i \geq 1$, by Lemma 3.1.

Bahmanpour in [3, Corollary $2 \cdot 5$] proved that if x_1, \ldots, x_n is a poor regular M-regular sequence, then

$$\operatorname{Tor}_{n+i}^{R}(\frac{R}{(x_1,\dots,x_n)},\operatorname{H}_{(x_1,\dots,x_n)}^n(M)) \cong \operatorname{Tor}_{i}^{R}(\frac{R}{(x_1,\dots,x_n)},M),$$

for all $i \geq 0$. Therefore, if $x_1, ..., x_n$ is a poor regular *M*-sequence with respect to \mathcal{S} , then $\operatorname{Tor}_i^R(\frac{R}{(x_1,...,x_n)}, M) \in \mathcal{S}$ if and only if

$$\operatorname{Tor}_{n+i}^{R}(\frac{R}{(x_{1},\ldots,x_{n})},\operatorname{H}_{(x_{1},\ldots,x_{n})}^{n}(M)) \in \mathcal{S}_{1}$$

for all $i \geq 0$. Hence we have the following equivalent statements.

Theorem 3.5. Let R be a Noetherian ring and M be a non-zero finitely generated R-module. Let $n \geq 1$ be an integer and $x_1, ..., x_n$ be a poor regular M-sequence with respect to \mathcal{S} . Then the following statements are equivalent:

- (1) $\operatorname{Tor}_{i}^{R}(\frac{R}{(x_{1},...,x_{n})}, M) \in \mathcal{S}$ for every $i \geq 1$; (2) $\operatorname{Tor}_{2}^{R}(\frac{R}{(x_{1},...,x_{n})}, M) \in \mathcal{S}$; (3) $\operatorname{Tor}_{i}^{R}(\frac{R}{(x_{1},...,x_{n})}, \operatorname{H}_{(x_{1},...,x_{n})}^{n}(M)) \in \mathcal{S}$ for all integers $i \geq n+1$; (4) $\operatorname{Tor}_{n+2}^{R}(\frac{R}{(x_{1},...,x_{n})}, \operatorname{H}_{(x_{1},...,x_{n})}^{n}(M)) \in \mathcal{S}$.

By Zero Divisor Conjecture any regular M-sequence is a regular Rsequence. We generalize the Zero Divisor Conjecture as follows.

Zero Divisor Conjecture with respect to \mathcal{S} . Every regular *M*-sequence with respect to \mathcal{S} is a regular *R*-sequence with respect to \mathcal{S} .

In the following, we provide some conditions in which the conjecture is established.

Lemma 3.6. Let $x_1, ..., x_n$ be a poor regular M-sequence with respect to S. Then

$$\operatorname{Ext}_{R}^{n+1}(\frac{R}{(x_{1},...,x_{n})},M) \in \mathcal{S}.$$

Proof. Let $x_1, ..., x_n$ is a poor M-sequence with respect to \mathcal{S} , then for every $\mathfrak{p} \in \mathcal{S} - \operatorname{Supp}_R(M), \frac{x_1}{1}, ..., \frac{x_n}{1}$ is a poor regular $M_{\mathfrak{p}}$ -sequence. Thus $\operatorname{Ext}_R^{n+1}(\frac{R_{\mathfrak{p}}}{(\frac{x_1}{1},...,\frac{x_n}{1})}, M_{\mathfrak{p}}) = 0$, by [3, Lemma $3 \cdot 3$]. This implies that $\mathcal{S} - \operatorname{Supp}\operatorname{Ext}_R^{n+1}(\frac{R}{(x_1,...,x_n)}, M) = \emptyset$. Hence

$$\operatorname{Ext}_{R}^{n+1}(\frac{R}{(x_{1},...,x_{n})},M) \in \mathcal{S}.$$

Remark 3.7. The concept of S - C.grade(I, M) is defined as the supremum length of poor *M*-sequences with respect to S in *I*. It is shown that any two maximal regular *M*-sequences in *I* with respect to S have the same length. In [1, Theorem $2 \cdot 8$] it is shown that the concepts S - C.grade(I, M) and S - E.grade(I, M) are the same.

Theorem 3.8. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with S-E.grade_R(I, M) = n. Let $x_1, ..., x_n$ be a maximal regular M-sequence in I with respect to S. If $\operatorname{Ext}_{R}^{n+2}(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $x_1, ..., x_n \in I$ is a regular R-sequence with respect to S.

Proof. We use induction on n. Assume that n=1 and set $x := x_1$. The exact sequences (3.1) and (3.3) imply that

$$\operatorname{Ext}_{R}^{i}\left(\left(0_{:R}x\right),M\right) \cong \operatorname{Ext}_{R}^{i+1}\left(Rx,M\right) \cong \operatorname{Ext}_{R}^{i+2}\left(\frac{R}{Rx},M\right)$$

for all $i \geq 1$. By assumption, $\operatorname{Ext}^3_R(\frac{R}{Rx}, M) \in \mathcal{S}$ and so

$$\operatorname{Ext}_{R}^{1}((0:_{R}x), M) \in \mathcal{S}.$$
(3.7)

Since x is a regular M-sequence with respect to \mathcal{S} and

 $\mathrm{Supp}\left(0_{R}x\right)\subseteq V\left(x\right),$

thus

$$\operatorname{Hom}_{R}((0:_{R}x), M) \in \mathcal{S}$$

$$(3.8)$$

by Lemma 2.2. We claim that $(0:_R x) \in S$. Assume the opposite, then there exists $\mathfrak{q} \in \operatorname{Ass}(0:_R x)$ such that $\frac{R}{\mathfrak{q}} \notin S$. Thus $x \in \mathfrak{q}$ and $\mathfrak{q} \in \operatorname{Ass} R$. Since x is a regular M-sequence with respect to S, $\mathfrak{q} \notin \operatorname{Ass} M$ and so $\mathfrak{q}R_{\mathfrak{q}} \notin \operatorname{Ass} M_{\mathfrak{q}}$. Therefore depth $M_{\mathfrak{q}} \geq 1$, and so $M_{\mathfrak{q}} \neq 0$ and $\mathfrak{q} \in S-Supp_R M$. The exact sequences

$$0 \to (0:_M x) \to M \to xM \to 0$$

and

$$0 \to xM \to M \to \frac{M}{xM} \to 0$$

ARDA AND FARAMARZI

and (3.7) and (3.8) imply that $\operatorname{Hom}_R((0:_R x), \frac{M}{xM}) \in \mathcal{S}$. So, by Lemma 3.2, $\operatorname{Hom}_{R_{\mathfrak{q}}}((0:_{R_{\mathfrak{q}}}\frac{x}{1}), \frac{M_{\mathfrak{q}}}{\frac{x}{1}M_{\mathfrak{q}}}) = 0$. Since $Supp_{R_{\mathfrak{q}}}(0:_{R_{\mathfrak{q}}}\frac{x}{1}) \subseteq V(\frac{x}{1})$ and $\frac{x}{1}$ is a regular $M_{\mathfrak{q}}$ -sequence, we have $\operatorname{Hom}_{R_{\mathfrak{q}}}(\frac{R_{\mathfrak{q}}}{(\frac{x}{1})}, \frac{M_{\mathfrak{q}}}{\frac{x}{1}M_{\mathfrak{q}}}) = 0$ which is a contradiction. Therefore x is a regular R-sequence with respect to \mathcal{S} . Now assume, inductively, that n > 1 and the assertion has been proved for smaller values of n.

Set $\mathfrak{a} := (x_1, ..., x_{n-1})$ and $\mathfrak{b} := (x_1, ..., x_n)$, and assume that $x_1, ..., x_n$ is an regular *M*-sequence in *I* with respect to \mathcal{S} . We show that $\operatorname{Ext}_R^{n+1}(\frac{R}{\mathfrak{a}}, \frac{M}{x_n M}) \in \mathcal{S}$. For this purpose, we can assume that

$$\mathcal{S} - \operatorname{Supp}_R M \subseteq V(x_1, ..., x_n).$$

Let $\mathfrak{p} \in \mathcal{S}-Supp_R M$. The exact sequence

$$0 \to \frac{\mathfrak{b}}{\mathfrak{a}} \to \frac{R}{\mathfrak{a}} \to \frac{R}{\mathfrak{b}} \to 0$$

induces the exact sequence

$$\operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{b}}, M) \to \operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{a}}, M) \to \operatorname{Ext}_{R}^{n+1}(\frac{\mathfrak{b}}{\mathfrak{a}}, M) \to \operatorname{Ext}_{R}^{n+2}(\frac{R}{\mathfrak{b}}, M).$$

Also the exact sequence

$$0 \to (0:_{\frac{R}{\mathfrak{a}}}\mathfrak{b}) \to \frac{R}{\mathfrak{a}} \to \frac{\mathfrak{b}}{\mathfrak{a}} \to 0$$

induces the exact sequence

$$\operatorname{Ext}_{R}^{n}(\frac{R}{\mathfrak{a}}, M) \to \operatorname{Ext}_{R}^{n}((0; \underline{R}_{\mathfrak{a}}, \mathfrak{b}), M) \to \operatorname{Ext}_{R}^{n+1}(\frac{\mathfrak{b}}{\mathfrak{a}}, M) \to \operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{a}}, M)$$

If $\operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{a}}, M) \in \mathcal{S}$, then by Lemma 3.6, (3.9) and (3.9),

$$\operatorname{Ext}_{R}^{n}((0:\underline{R}\mathfrak{b}),M) \in \mathcal{S}.$$

If $\operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{a}}, M) \notin \mathcal{S}$, then by Lemma 3.6 and hypothesis,

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \cong \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{\mathfrak{b}R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}).$$
(3.9)

Thus by (3.9) and (3.9) $\operatorname{Ext}_{R}^{n}((0; \frac{R}{\mathfrak{g}}, \mathfrak{b}), M) \in \mathcal{S}$. On the other hand, by assumption, $\operatorname{Ext}_{R}^{i}(\frac{R}{\mathfrak{b}}, M) \in \mathcal{S}$ for all integers $0 \leq i \leq n-1$. Thus

$$\operatorname{Ext}_{R}^{i}((0; \underline{\mathbf{a}}, \mathfrak{b}), M) \in \mathcal{S}$$
(3.10)

for all integers $0 \leq i \leq n$. We conclude that $\operatorname{Ext}_{R}^{i}(\frac{R}{\mathfrak{b}}, M) \in \mathcal{S}$, for all integers $0 \leq i \leq n$, by Lemma 2.2. Now, we claim that $(0:_{\frac{R}{\mathfrak{b}}}\mathfrak{b}) \in \mathcal{S}$. Assume the opposite, then there exists $\mathfrak{q} \in \operatorname{Ass}(0:_{\frac{R}{\mathfrak{a}}}\mathfrak{b})$ such that $\frac{R}{\mathfrak{q}} \notin \mathcal{S}$. Since $\mathfrak{q} \in \operatorname{Ass}(\frac{R}{\mathfrak{a}})$, there is $\mathfrak{r} \in \operatorname{Ass} R$ such that $\mathfrak{r} \subseteq \mathfrak{q}$ and $\frac{R}{\mathfrak{r}} \notin \mathcal{S}$. Since x_{1} is a regular M-sequence with respect to \mathcal{S} and $\mathcal{S}-\operatorname{Supp}(M) \subseteq V(x_{1})$, so $\mathfrak{r} \notin \operatorname{Ass} M$. This implies that $M_{\mathfrak{r}} \neq 0$ and so $\mathfrak{r} \in \mathcal{S} - \operatorname{Supp}(M)$. The exact sequences

$$0 \to (0:_M x_1) \to M \to x_1 M \to 0$$

and

$$0 \to x_1 M \to M \to \frac{M}{x_1 M} \to 0$$

and (3.10) imply that

$$\operatorname{Ext}_{R}^{i-1}((0:_{\frac{R}{\mathfrak{a}}}\mathfrak{b}), \frac{M}{x_{1}M}) \in \mathcal{S}$$

for all integers $0 \le i < n$. Therefore

$$\operatorname{Ext}_{R_{\mathfrak{r}}}^{i-1}((0:_{\frac{R_{\mathfrak{r}}}{\mathfrak{a}R_{\mathfrak{r}}}}\mathfrak{b}R_{\mathfrak{r}}), \frac{M_{\mathfrak{r}}}{\frac{x_{1}}{1}M_{\mathfrak{r}}}) = 0$$

for all integers $0 \leq i \leq n$, specially $\operatorname{Hom}_{R_{\mathfrak{r}}}((0:\frac{R_{\mathfrak{r}}}{aR_{\mathfrak{r}}}\mathfrak{b}R_{\mathfrak{r}}),\frac{M_{\mathfrak{r}}}{\frac{x_{1}}{1}M_{\mathfrak{r}}}) = 0$. Since $\operatorname{Supp}_{R_{\mathfrak{r}}}\left(0:\frac{R_{\mathfrak{r}}}{aR_{\mathfrak{r}}}\mathfrak{b}R_{\mathfrak{r}}\right) \subseteq V\left(\frac{x_{1}}{1}\right)$, implies that

$$\operatorname{Hom}_{R_{\mathfrak{r}}}\left(\frac{R_{\mathfrak{r}}}{\left(\frac{x_{1}}{1}\right)}, \frac{M_{\mathfrak{r}}}{\frac{x_{1}}{1}M_{\mathfrak{r}}}\right) = 0,$$

which is a contradiction. Therefore x_n is a regular $\frac{R}{\mathfrak{a}}$ -sequence with respect to \mathcal{S} . Now, the exact sequence

$$0 \to \frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}} \stackrel{\frac{x_n}{1}}{\to} \frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}} \to \frac{R_{\mathfrak{p}}}{\mathfrak{b}R_{\mathfrak{p}}} \to 0$$

induces the exact sequence

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \xrightarrow{\frac{x_{n}}{1}} \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \to \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{b}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \\ \to \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \xrightarrow{\alpha} \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}).$$

By hypothesis $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{b}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) = 0$ and so α is monomorphism. On the other hand, the exact sequence

$$0 \to M_{\mathfrak{p}} \xrightarrow{\frac{x_n}{1}} M_{\mathfrak{p}} \to \frac{M_{\mathfrak{p}}}{\frac{x_n}{1}M_{\mathfrak{p}}} \to 0$$

induces the exact sequence

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}) \to \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, \frac{M_{\mathfrak{p}}}{\frac{x_{n}}{1}M_{\mathfrak{p}}}) \to \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}})$$
$$\xrightarrow{\alpha} \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, M_{\mathfrak{p}}).$$

Since α is monomorphism, we get $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}(\frac{R_{\mathfrak{p}}}{\mathfrak{a}R_{\mathfrak{p}}}, \frac{M_{\mathfrak{p}}}{\frac{x_n}{1}M_{\mathfrak{p}}}) = 0$, by Nakayama. Thus $\operatorname{Ext}_{R}^{n+1}(\frac{R}{\mathfrak{a}}, \frac{M}{x_n M}) \in \mathcal{S}$. Now, since

$$\mathcal{S} - \operatorname{E}.grad_R(I, \frac{M}{x_n M}) = \mathcal{S} - \operatorname{E}.grad_R(I, M) - 1,$$

it follows from the inductive hypothesis that $x_1, ..., x_{n-1}$ is a regular R-sequence with respect to S. But we have already proved that x_n is a regular $\frac{R}{\mathfrak{a}}$ -sequence with respect to S. Therefore $x_1, ..., x_{n-1}, x_n$ is a regular R-sequence with respect to S.

Next, we prove that for any maximal regular *M*-sequence $x_1, ..., x_n$ in *I* with respect to \mathcal{S} , if $\operatorname{Ext}_R^{n+2}(\frac{R}{(x_1,...,x_n)}, M) \in \mathcal{S}$, then

$$\operatorname{Ext}_{R}^{i}\left(\frac{R}{(x_{1},...,x_{n})},M\right)\in\mathcal{S}$$

for all $i \ge 0$ $(i \ne n)$.

Theorem 3.9. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $S - E .grad_R(I, M) = n \ge 1$. Assume that $x_1, ..., x_n \in I$ is a maximal regular M-sequence with respect to S. If $\operatorname{Ext}_R^{n+2}(\frac{R}{(x_1,...,x_n)}, M) \in S$, then $\operatorname{Ext}_R^i(\frac{R}{(x_1,...,x_n)}, M) \in S$, for all integers $i \ge 0$ $(i \ne n)$.

Proof. Let $\mathfrak{p} \in \mathcal{S}-\text{Supp}(M)$. By Theorems 2.3 and 3.8, $\frac{x_1}{1}, ..., \frac{x_n}{1}$ is a poor regular $R_{\mathfrak{p}}$ -sequence. We show that

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(\tfrac{R_{\mathfrak{p}}}{(\frac{x_{1}}{1},\ldots,\frac{x_{n}}{1})},M_{\mathfrak{p}})=0$$

for all $i \ge n+1$. For this purpose, we may assume that $\mathfrak{p} \in V(x_1, ..., x_n)$. Since $\mathrm{pd}_{R_p}(\frac{R_p}{(\frac{x_1}{(x_1, ..., \frac{x_n}{1})})} = n$, clearly $\mathrm{Ext}_{R_p}^i(\frac{R_p}{(\frac{x_1}{(x_1, ..., \frac{x_n}{1})})}, M_p) = 0$ for all $i \ge n+1$. So $\mathrm{Ext}_R^i(\frac{R}{(x_1, ..., x_n)}, M) \in \mathcal{S}$ for all $i \ge n+1$.

Corollary 3.10. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $S-E.grad_R(I,M) = n \ge 1$. Assume that $x_1, ..., x_n \in I$ is a maximal regular M-sequence with respect to S. Then the following statements are equivalent:

(1) $x_1, ..., x_n$ is an regular R-sequence with respect to S;

- $\begin{array}{ll} (2) \ \operatorname{Ext}_{R}^{i}(\frac{R}{(x_{1},\ldots,x_{n})},M) \in \mathcal{S} \ for \ all \ i > n; \\ (3) \ \operatorname{Ext}_{R}^{n+2}(\frac{R}{(x_{1},\ldots,x_{n})},M) \in \mathcal{S}; \\ (4) \ \operatorname{Ext}_{R}^{2}(\frac{R}{(x_{1},\ldots,x_{n})},\operatorname{H}_{(x_{1},\ldots,x_{n})}^{n}(M)) \in \mathcal{S}; \\ (5) \ \operatorname{Ext}_{R}^{i}(\frac{R}{(x_{1},\ldots,x_{n})},\operatorname{H}_{(x_{1},\ldots,x_{n})}^{n}(M)) \in \mathcal{S} \ for \ all \ integers \ i \geq 1. \end{array}$

Proof. This is an immediate consequence of Theorems 3.8 and 3.9.

Acknowledgments

The authors wish to thank the referee for his/her comments which made many improvemnts.

References

- 1. M. Asgharzadeh and M. Tousi, Cohen Macaulayness with respect to serre classes, Illinois J. Math., 53 (2009), 67–85.
- 2. M. Auslander, Modules over unramified regular local rings, Illinois J. Math., 5 (1961), 631-647.
- 3. K. Bahmanpour, A complex of modules and its applications to local cohomology and extension functors, Math. Scand., 117 (2015), 150-160.
- 4. W. Bruns and J. Herzog, *Chen-Macaulay Rings*, Cambridge University Press, Cambridge, 1998.
- 5. S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math., **10** (1966), 220-236.
- 6. C. Peskin and L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes tudes Sci. Publ. Math., 42 (1973), 47-119.
- 7. J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.

Sajjad Arda

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran.

Email: sajjad.arda@gmail.com

Seadat ollah Faramarzi

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran.

Email: s.o.faramarzi@pnu.ac.ir

Journal of Algebraic Systems

EXTENSION AND TORSION FUNCTORS WITH RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI

تابعگونهای توسیعی و تابدار نسبت به ردههای سر

سجاد اردا و سعادت الله فرامرزی

^{۱,۲}دانشکدهی ریاضی، مرکز تحصیلات تکمیلی دانشگاه پیام نور، تهران، ایران

در این مقاله، ما قضیهی صفرشونده و حدس مقسومعلیه صفر برای یک رستهی سر دلخواه از مدولها تعمیم میدهیم. برای این منظور، به ازای هر M-رشتهی منظم x_1,\ldots,x_n نسبت به ${\mathcal S}$ اگر

 $\operatorname{Tor}_{\mathsf{Y}}^{R}(\frac{R}{(x_1,\dots,x_n)},M) \in \mathcal{S},$

آنگاه به ازای هر $(i \ge 1)$ ، داریم $S \in \mathcal{F}_{i}(\frac{R}{(x_{1},...,x_{n})},M) \in \mathcal{S}$ همچنین ما نشان میدهیم که، آنگاه به ازای هر عدد صحیح $(i \ne n + 1) \in S$ داریم $i \ge i \ge i \ge i$ (که $i \ne n = 1$) داریم $\mathbb{E} \operatorname{xt}_{R}^{i}(\frac{R}{(x_{1},...,x_{n})},M) \in S$. $\mathbb{E} \operatorname{xt}_{R}^{i}(\frac{R}{(x_{1},...,x_{n})},M) \in S$

کلمات کلیدی: ردههای سر، حدس مقسوم علیه صفر، قضیهی صفرشونده، بالاترین مدول کوهمولوژی موضعی.