Journal of Algebraic Systems

Vol. 11, No. 2, (2024), pp 113-123

EXTENSION AND TORSION FUNCTORS WITH RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI*

Abstract

In this paper we generalize the Rigidity Theorem and Zero Divisor Conjecture for an arbitrary Serre subcategory of modules. For this purpose, for any regular M-sequence x_{1}, \ldots, x_{n} with respect to \mathcal{S} we prove that if $\operatorname{Tor}_{2}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for all $i \geq 1$. Also we show that if $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for all integers $i \geq 0(i \neq n)$.

1. Introduction

Throughout this paper, R denotes a commutative and Noetherian ring with non-zero identity, I denotes an arbitrary ideal and M denotes a finitely generated R-module. Let \mathcal{S} be a Serre subcategory of the category of R-modules. In 1961, M. Auslander proposed the Zero Divisor Conjecture in [2] as follows:

Zero divisor conjecture. Let R be a local ring and M be a finitely generated R-module of finite projective dimension. If $x \in R$ is a nonzerodivisor on M, then x is a non-zerodivisor of R.

This conjecture was proved by M. Hochster, L. Szpiro, C. Peskin, and P. Robert (see [6]), in special cases. Also M. Auslander introduced rigidity concept as a generalization of Zero Divisor Conjecture.

[^0]Definition. Let (R, \mathfrak{m}) be a local ring. An R-module M is called rigid if $\operatorname{Tor}_{i}^{R}(M, N)=0$ for some finitely generated R-module N, then $\operatorname{Tor}_{j}^{R}(M, N)=0$ for any $j \geq i$ (see [2]).

He also stated the following theorem.
Rigidity Theorem. Let (R, \mathfrak{m}) be a regular local ring and M be a finitely generated R-module. Then M is rigid.

The Rigidity Theorem was proved by M. Auslander in unramified case. S. Lichtenbaum proved the theorem for arbitrary regular local rings in 1966 (see [5]). In this paper, we generalize the Zero Divisor Conjecture and Rigidity Theorem for an arbitrary Serre subcategory of modules. An R-module M is called \mathcal{S}-rigid if $\operatorname{Tor}_{i}^{R}(M, N) \in \mathcal{S}$ for some finitely generated R-module N, then $\operatorname{Tor}_{j}^{R}(M, N) \in \mathcal{S}$ for any $j \geq i$. Also for an R-module M, Generalized Zero Divisor Conjecture holds if every regular M-sequence with respect to \mathcal{S} is a regular R-sequence with respect to \mathcal{S}. For this purpose, we prove the following two main theorems.

Theorem 1. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let x_{1}, \ldots, x_{n} be a poor regular M-sequence with respect to \mathcal{S}. If $\operatorname{Tor}_{2}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for any $i \geq 1$ (see theorem 3.4).

Theorem 2. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $\mathcal{S}-\mathrm{E} . \operatorname{grad}_{R}(I, M)=n \geqslant 1$. Assume that $x_{1}, \ldots, x_{n} \in I$ is a maximal regular M-sequence with respect to \mathcal{S}. If $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for all integers $i \geq 0(i \neq n)$ (see theorem 3.9). Finally, as a consequence of the above theorems, we prove some corollaries for top local cohomology modules (see theorems 3.5 and 3.10).

2. Preliminaries

A subcategory of the category of R-modules and R-homomorphisms \mathcal{S} is said to be a Serre class (or Serre subcategory), if for any exact sequence of R-modules

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

the R-module M belongs to \mathcal{S} if and only if each of L and N belong to \mathcal{S}.

Definition 2.1. [1, Definition 2•2] Suppose that M is an R-module. A sequence x_{1}, \ldots, x_{n} of elements of R is called a poor regular M-sequence with respect to \mathcal{S} if for each $i=1, \ldots, n$ the R-module $\left(0: \frac{M}{\left(x_{1}, \ldots, x_{i-1}\right) M} x_{i}\right)$
belongs to \mathcal{S}. If in addition $\frac{M}{\left(x_{1}, \ldots, x_{n}\right) M} \notin \mathcal{S}$, we say that x_{1}, \ldots, x_{n} is a regular M-sequence with respect to \mathcal{S}.

For an R-module L, we denote

$$
\mathcal{S}-\operatorname{Supp}_{R} L:=\left\{\mathfrak{p} \in \operatorname{Supp}_{R} L: \frac{R}{\mathfrak{p}} \notin \mathcal{S}\right\}
$$

and

$$
\mathcal{S}-\operatorname{Ass}_{R} L:=\left\{\mathfrak{p} \in \operatorname{Ass}_{R} L: \frac{R}{\mathfrak{p}} \notin \mathcal{S}\right\} .
$$

Lemma 2.2. [1, Lemma 2•1] Let M be a finitely generated R-module. Then $M \in \mathcal{S}$ if and only if $\frac{R}{\mathfrak{p}} \in \mathcal{S}$ for all $\mathfrak{p} \in \operatorname{Supp}_{R} M$. In particular, for any two finitely generated R-modules N and L with $\operatorname{Supp}_{R} N=\operatorname{Supp}_{R} L$, we have $N \in \mathcal{S}$ if and only if $L \in \mathcal{S}$.

The following statements are equivalent by the definition.
Lemma 2.3. [1, Lemma 2•3] Let M be a finitely generated R-module and x_{1}, \ldots, x_{n} a sequence of elements of R. Then the following are equivalent:
(1) $x_{i} \notin \underset{\mathfrak{p} \in \mathcal{S}-\operatorname{Ass}_{R} \frac{M^{\left(x_{1}, \ldots, x_{i-1}\right)}}{}}{ } \mathfrak{p}$ for all $i=1, \ldots, n$.
(2) The sequence x_{1}, \ldots, x_{n} is a poor regular M-sequence with respect to \mathcal{S}.
(3) For any $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R} M$, the elements $\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}$ of the local ring $R_{\mathfrak{p}}$ form a poor regular $M_{\mathfrak{p}}$-sequence.
(4) The sequence $x_{1}^{t_{1}}, \ldots, x_{n}^{t_{n}}$ is a poor regular M-sequence with respect to \mathcal{S} for all positive integers t_{1}, \ldots, t_{n}.

Definition 2.4. [1, Definition $2 \cdot 6$] Let M be an R-module and \mathfrak{a} be an ideal of R. The notation of Ext grade of \mathfrak{a} on M with respect to \mathcal{S} is defined as follows:

$$
\mathcal{S}-\mathrm{E} . \operatorname{grade}_{R}(\mathfrak{a}, M):=\inf \left\{i \in \mathbb{N}_{0}: \operatorname{Ext}_{R}^{i}\left(\frac{R}{\mathfrak{a}}, M\right) \notin \mathcal{S}\right\}
$$

3. Main Results

Similar to the property of regular sequences we have the following.
Lemma 3.1. Let x_{1}, \ldots, x_{n} be a poor regular M-sequence with respect to \mathcal{S}, then

$$
\operatorname{Tor}_{1}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}
$$

Proof. Let x_{1}, \ldots, x_{n} is a poor M-sequence with respect to \mathcal{S}, then for every $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R}(M), \frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}$ is a poor regular $M_{\mathfrak{p}}$-sequence. Thus $\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}, M_{\mathfrak{p}}\right)=0$, by [4, Exercise 1•1.12]. This implies that $\mathcal{S}-S u p p \operatorname{Tor}_{1}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right)=\emptyset$. Hence $\operatorname{Tor}_{1}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$.

Lemma 3.2. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let x be a poor regular Msequence with respect to \mathcal{S}. If $\operatorname{Tor}_{2}^{R}\left(\frac{R}{(x)}, M\right) \in \mathcal{S}$, then $\left(0:{ }_{R} x\right) \otimes_{R} M \in \mathcal{S}$.

Proof. The exact sequence

$$
\begin{equation*}
0 \rightarrow R x \rightarrow R \rightarrow \frac{R}{R x} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

implies that $\operatorname{Tor}_{2}^{R}\left(\frac{R}{R x}, M\right) \cong \operatorname{Tor}_{1}^{R}(R x, M)$ and hence

$$
\begin{equation*}
\operatorname{Tor}_{1}^{R}(R x, M) \in \mathcal{S} \tag{3.2}
\end{equation*}
$$

Also, the exact sequence

$$
\begin{equation*}
0 \rightarrow\left(0:_{R} x\right) \rightarrow R \rightarrow R x \rightarrow 0 \tag{3.3}
\end{equation*}
$$

induces the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(R x, M) \rightarrow\left(0:{ }_{R} x\right) \otimes_{R} M \rightarrow R \otimes_{R} M \xrightarrow{h} R x \otimes_{R} M \rightarrow 0 .
$$

Now, we have the short exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Tor}_{1}^{R}(R x, M) \rightarrow\left(0:_{R} x\right) \otimes_{R} M \rightarrow \text { Kerh } \rightarrow 0 \tag{3.4}
\end{equation*}
$$

where Kerh $\cong\left(0:_{R} x\right) M$, and $\left(0:_{R} x\right) M \in \mathcal{S}$. Thus by (3.2) and exact sequence (3.4), we get $\left(0:_{R} x\right) \otimes_{R} M \in \mathcal{S}$.

We now generalize the rigid concept to an arbitrary Serre subcategory as follows.

Definition 3.3. An R-module M is called \mathcal{S}-rigid if $\operatorname{Tor}_{i}^{R}(M, N) \in \mathcal{S}$ for some finitely generated R-module N, then $\operatorname{Tor}_{j}^{R}(M, N) \in \mathcal{S}$ for any $j \geq i$.

In the following theorem, we introduce and prove conditions for \mathcal{S}-rigidity.

Theorem 3.4. Let R be a Noetherian (not necessary local) ring and M be a non-zero finitely generated R-module. Let x_{1}, \ldots, x_{n} be a poor regular M-sequence with respect to \mathcal{S}. If $\operatorname{Tor}_{2}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for any $i \geq 1$.

Proof. It is enough to show that $\mathcal{S}-\operatorname{Supp} \operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right)=\emptyset$. If $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R}(M)-V\left(x_{1}, \ldots, x_{n}\right)$, then $\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)=R_{\mathfrak{p}}$, hence $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}, M_{\mathfrak{p}}\right)=0$. Therefore without loss of generality, we may assume that $\mathcal{S}-\operatorname{Supp}_{R} M \subseteq V\left(x_{1}, \ldots, x_{n}\right)$ and $M \notin \mathcal{S}$. We use induction on n . Assume that $n=1$ and set $x:=x_{1}$. By Lemma 3.2, we have $\left(0:{ }_{R} x\right) \otimes_{R} M \in \mathcal{S}$.

On the other hand, $\operatorname{Supp} \operatorname{Tor}_{i}^{R}\left(\left(0:_{R} x\right), M\right) \subseteq \operatorname{Supp}\left(\left(0:_{R} x\right) \otimes_{R} M\right)$ for all $i \geq 0$. Thus by Lemma 3.2, for all $i \geqslant 0$

$$
\operatorname{Tor}_{i}^{R}\left(\left(0::_{R} x\right), M\right) \in \mathcal{S}
$$

Also, using the exact sequences (3.1) and (3.2), we have

$$
\operatorname{Tor}_{i}^{R}\left(\left(0:_{R} x\right), M\right) \cong \operatorname{Tor}_{i+1}^{R}(R x, M) \cong \operatorname{Tor}_{i+2}^{R}\left(\frac{R}{R x}, M\right)
$$

for all $i \geq 1$. Therefore, by Lemma 3.1, $\operatorname{Tor}_{i}^{R}\left(\frac{R}{R x}, M\right) \in \mathcal{S}$, for any $i \geq 1$.
Now assume that $n>1$ and the result has been proved for smaller values of n. Set $I:=\left(x_{1}, \ldots, x_{n-1}\right)$ and $J:=\left(x_{1}, \ldots, x_{n}\right)$. Let $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R} M$. By Lemma 2.3, we have the exact sequence

$$
0 \rightarrow \frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}} \stackrel{\frac{x_{\mathfrak{n}}}{\rightarrow}}{ } \frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}} \rightarrow \frac{R_{\mathfrak{p}}}{J R_{\mathfrak{p}}} \rightarrow 0,
$$

which induces the following exact sequence

$$
\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \xrightarrow{\frac{x_{n}}{\rightarrow}} \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \rightarrow \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{J R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) .
$$

Thus, we obtain

$$
\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right)=\frac{x_{n}}{1} \operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right),
$$

and then by Nakayama's Lemma $\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}\left(\frac{R_{\mathfrak{p}}}{I R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right)=0$. This implies that $\operatorname{Tor}_{2}^{R}\left(\frac{R}{I}, M\right) \in \mathcal{S}$. Now, by the inductive hypothesis,

$$
\begin{equation*}
\operatorname{Tor}_{i}^{R}\left(\frac{R}{I}, M\right) \in \mathcal{S} \tag{3.5}
\end{equation*}
$$

for all $i \geq 1$. The exact sequence

$$
0 \rightarrow\left(0:_{\frac{R}{I}} x_{n}\right) \rightarrow \frac{R}{I} \rightarrow \frac{J}{I} \rightarrow 0
$$

induces the exact sequence

$$
\operatorname{Tor}_{i+1}^{R}\left(\frac{R}{I}, M\right) \rightarrow \operatorname{Tor}_{i+1}^{R}\left(\frac{J}{I}, M\right) \rightarrow \operatorname{Tor}_{i}^{R}\left(\left(0:_{\frac{R}{I}} x_{n}\right), M\right)
$$

By (3.5)

$$
\begin{equation*}
\operatorname{Tor}_{i}^{R}\left(\frac{J}{I}, M\right) \in \mathcal{S} \tag{3.6}
\end{equation*}
$$

for all $i \geq 1$. Finally the exact sequence

$$
0 \rightarrow \frac{J}{I} \rightarrow \frac{R}{I} \rightarrow \frac{R}{J} \rightarrow 0
$$

induces the exact sequence

$$
\operatorname{Tor}_{i+1}^{R}\left(\frac{R}{I}, M\right) \rightarrow \operatorname{Tor}_{i+1}^{R}\left(\frac{R}{J}, M\right) \rightarrow \operatorname{Tor}_{i}^{R}\left(\frac{J}{I}, M\right)
$$

By (3.6) and (3.5), we have $\operatorname{Tor}_{i}^{R}\left(\frac{R}{J}, M\right) \in \mathcal{S}$, for all $i>1$. Hence $\operatorname{Tor}_{i}^{R}\left(\frac{R}{J}, M\right) \in \mathcal{S}$, for all $i \geq 1$, by Lemma 3.1.

Bahmanpour in [3, Corollary $2 \cdot 5]$ proved that if x_{1}, \ldots, x_{n} is a poor regular M-regular sequence, then

$$
\operatorname{Tor}_{n+i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \cong \operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right)
$$

for all $i \geq 0$. Therefore, if x_{1}, \ldots, x_{n} is a poor regular M-sequence with respect to \mathcal{S}, then $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$ if and only if

$$
\operatorname{Tor}_{n+i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \in \mathcal{S}
$$

for all $i \geq 0$. Hence we have the following equivalent statements.
Theorem 3.5. Let R be a Noetherian ring and M be a non-zero finitely generated R-module. Let $n \geq 1$ be an integer and x_{1}, \ldots, x_{n} be a poor regular M-sequence with respect to \mathcal{S}. Then the following statements are equivalent:
(1) $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$ for every $i \geq 1$;
(2) $\operatorname{Tor}_{2}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$;
(3) $\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \in \mathcal{S}$ for all integers $i \geq n+1$;
(4) $\operatorname{Tor}_{n+2}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \in \mathcal{S}$.

By Zero Divisor Conjecture any regular M-sequence is a regular R sequence. We generalize the Zero Divisor Conjecture as follows.
Zero Divisor Conjecture with respect to \mathcal{S}. Every regular M-sequence with respect to \mathcal{S} is a regular R-sequence with respect to \mathcal{S}.
In the following, we provide some conditions in which the conjecture is established.

Lemma 3.6. Let x_{1}, \ldots, x_{n} be a poor regular M-sequence with respect to \mathcal{S}. Then

$$
\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}
$$

Proof. Let x_{1}, \ldots, x_{n} is a poor M-sequence with respect to \mathcal{S}, then for every $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R}(M), \frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}$ is a poor regular $M_{\mathfrak{p}}$-sequence. Thus $\operatorname{Ext}_{R}^{n+1}\left(\frac{R_{\mathfrak{p}}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}, M_{\mathfrak{p}}\right)=0$, by [3, Lemma 3•3]. This implies that $\mathcal{S}-\operatorname{Supp} \operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right)=\emptyset$. Hence

$$
\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S} .
$$

Remark 3.7. The concept of $\mathcal{S}-C . \operatorname{grade}(I, M)$ is defined as the supremum length of poor M-sequences with respect to \mathcal{S} in I. It is shown that any two maximal regular M-sequences in I with respect to \mathcal{S} have the same length. In [1, Theorem 2•8] it is shown that the concepts $\mathcal{S}-C . \operatorname{grade}(I, M)$ and $\mathcal{S}-E . \operatorname{grade}(I, M)$ are the same.

Theorem 3.8. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $\mathcal{S}-\mathrm{E.grade}_{R}(I, M)=n$. Let $x_{1}, \ldots x_{n}$ be a maximal regular M-sequence in I with respect to \mathcal{S}. If $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $x_{1}, \ldots, x_{n} \in I$ is a regular R-sequence with respect to \mathcal{S}.

Proof. We use induction on n . Assume that $\mathrm{n}=1$ and set $x:=x_{1}$. The exact sequences (3.1) and (3.3) imply that

$$
\operatorname{Ext}_{R}^{i}\left(\left(0:_{R} x\right), M\right) \cong \operatorname{Ext}_{R}^{i+1}(R x, M) \cong \operatorname{Ext}_{R}^{i+2}\left(\frac{R}{R x}, M\right)
$$

for all $i \geq 1$. By assumption, $\operatorname{Ext}_{R}^{3}\left(\frac{R}{R x}, M\right) \in \mathcal{S}$ and so

$$
\begin{equation*}
\operatorname{Ext}_{R}^{1}\left(\left(0:_{R} x\right), M\right) \in \mathcal{S} \tag{3.7}
\end{equation*}
$$

Since x is a regular M-sequence with respect to \mathcal{S} and

$$
\operatorname{Supp}\left(0:_{R} x\right) \subseteq V(x),
$$

thus

$$
\begin{equation*}
\operatorname{Hom}_{R}\left(\left(0:{ }_{R} x\right), M\right) \in \mathcal{S} \tag{3.8}
\end{equation*}
$$

by Lemma 2.2. We claim that $\left(0:_{R} x\right) \in \mathcal{S}$. Assume the opposite, then there exists $\mathfrak{q} \in \operatorname{Ass}\left(0:_{R} x\right)$ such that $\frac{R}{\mathfrak{q}} \notin \mathcal{S}$. Thus $x \in \mathfrak{q}$ and $\mathfrak{q} \in$ Ass R. Since x is a regular M-sequence with respect to \mathcal{S}, $\mathfrak{q} \notin$ Ass M and so $\mathfrak{q} R_{\mathfrak{q}} \notin$ Ass $M_{\mathfrak{q}}$. Therefore depth $M_{\mathfrak{q}} \geq 1$, and so $M_{\mathfrak{q}} \neq 0$ and $\mathfrak{q} \in \mathcal{S}-$ Supp $_{R} M$. The exact sequences

$$
0 \rightarrow\left(0:_{M} x\right) \rightarrow M \rightarrow x M \rightarrow 0
$$

and

$$
0 \rightarrow x M \rightarrow M \rightarrow \frac{M}{x M} \rightarrow 0
$$

and (3.7) and (3.8) imply that $\operatorname{Hom}_{R}\left(\left(0:_{R} x\right), \frac{M}{x M}\right) \in \mathcal{S}$. So, by Lemma $3.2, \operatorname{Hom}_{R_{\mathrm{q}}}\left(\left(0:_{R_{q}} \frac{x}{1}\right), \frac{M_{\mathrm{q}}}{\frac{x_{1}}{1} M_{\mathrm{q}}}\right)=0$. Since $\operatorname{Supp}_{R_{\mathrm{q}}}\left(0:_{R_{q}} \frac{x}{1}\right) \subseteq V\left(\frac{x}{1}\right)$ and $\frac{x}{1}$ is a regular $M_{\mathfrak{q}}$-sequence, we have $\operatorname{Hom}_{R_{\mathfrak{q}}}\left(\frac{R_{\mathfrak{q}}}{\left(\frac{x_{1}}{1}\right)}, \frac{M_{\mathfrak{q}}}{\frac{1}{1} M_{\mathfrak{q}}}\right)=0$ which is a contradiction. Therefore x is a regular R-sequence with respect to \mathcal{S}. Now assume, inductively, that $n>1$ and the assertion has been proved for smaller values of n.

Set $\mathfrak{a}:=\left(x_{1}, \ldots, x_{n-1}\right)$ and $\mathfrak{b}:=\left(x_{1}, \ldots, x_{n}\right)$, and assume that x_{1}, \ldots, x_{n} is an regular M-sequence in I with respect to \mathcal{S}. We show that $\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, \frac{M}{x_{n} M}\right) \in \mathcal{S}$. For this purpose, we can assume that

$$
\mathcal{S}-\operatorname{Supp}_{R} M \subseteq V\left(x_{1}, \ldots, x_{n}\right) .
$$

Let $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}_{R} M$. The exact sequence

$$
0 \rightarrow \frac{\mathfrak{b}}{\mathfrak{a}} \rightarrow \frac{R}{\mathfrak{a}} \rightarrow \frac{R}{\mathfrak{b}} \rightarrow 0
$$

induces the exact sequence

$$
\begin{aligned}
\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{b}}, M\right) \rightarrow \operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, M\right) & \rightarrow \operatorname{Ext}_{R}^{n+1}\left(\frac{\mathfrak{b}}{\mathfrak{a}}, M\right) \\
& \rightarrow \operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\mathfrak{b}}, M\right)
\end{aligned}
$$

Also the exact sequence

$$
0 \rightarrow\left(0:_{\frac{R}{\mathfrak{a}}} \mathfrak{b}\right) \rightarrow \frac{R}{\mathfrak{a}} \rightarrow \frac{\mathfrak{b}}{\mathfrak{a}} \rightarrow 0
$$

induces the exact sequence

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{n}\left(\frac{R}{\mathfrak{a}}, M\right) \rightarrow \operatorname{Ext}_{R}^{n}\left(\left(0: \frac{R}{\mathfrak{a}}\right.\right. \\
&\mathfrak{b}), M) \rightarrow \operatorname{Ext}_{R}^{n+1}\left(\frac{\mathfrak{b}}{\mathfrak{a}}, M\right) \\
& \rightarrow \operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, M\right)
\end{aligned}
$$

If $\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, M\right) \in \mathcal{S}$, then by Lemma 3.6, (3.9) and (3.9),

$$
\operatorname{Ext}_{R}^{n}\left(\left(00_{\frac{R}{a}} \mathfrak{b}\right), M\right) \in \mathcal{S}
$$

If $\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, M\right) \notin \mathcal{S}$, then by Lemma 3.6 and hypothesis,

$$
\begin{equation*}
\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \cong \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}\left(\frac{\mathfrak{b} R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \tag{3.9}
\end{equation*}
$$

Thus by (3.9) and (3.9) $\operatorname{Ext}_{R}^{n}\left(\left(0:_{\frac{R}{a}} \mathfrak{b}\right), M\right) \in \mathcal{S}$. On the other hand, by assumption, $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\mathfrak{b}}, M\right) \in \mathcal{S}$ for ${ }^{\text {a }}$ all integers $0 \leq i \leq n-1$. Thus

$$
\begin{equation*}
\operatorname{Ext}_{R}^{i}\left(\left(0:_{\frac{R}{\mathfrak{a}}} \mathfrak{b}\right), M\right) \in \mathcal{S} \tag{3.10}
\end{equation*}
$$

for all integers $0 \leq i \leq n$. We conclude that $\operatorname{Ext}_{R}^{i}\left(\frac{R}{b}, M\right) \in \mathcal{S}$, for all integers $0 \leq i \leq n$, by Lemma 2.2. Now, we claim that $\left(0:_{\underline{R}} \mathfrak{b}\right) \in \mathcal{S}$. Assume the opposite, then there exists $\mathfrak{q} \in \operatorname{Ass}\left(0:_{\frac{R}{\mathfrak{a}}} \mathfrak{b}\right)$ such that $\frac{R}{\mathfrak{a}} \notin \mathcal{S}$. Since $\mathfrak{q} \in \operatorname{Ass}\left(\frac{R}{\mathfrak{a}}\right)$, there is $\mathfrak{r} \in \operatorname{Ass} R$ such that $\mathfrak{r} \subseteq \mathfrak{q}$ and $\frac{R}{\mathfrak{r}} \notin \mathcal{S}$. Since x_{1} is a regular M-sequence with respect to \mathcal{S} and $\mathcal{S}-\operatorname{Supp}(M) \subseteq V\left(x_{1}\right)$, so $\mathfrak{r} \notin$ Ass M. This implies that $M_{\mathfrak{r}} \neq 0$ and so $\mathfrak{r} \in \mathcal{S}-\operatorname{Supp}(M)$. The exact sequences

$$
0 \rightarrow\left(0:_{M} x_{1}\right) \rightarrow M \rightarrow x_{1} M \rightarrow 0
$$

and

$$
0 \rightarrow x_{1} M \rightarrow M \rightarrow \frac{M}{x_{1} M} \rightarrow 0
$$

and (3.10) imply that

$$
\operatorname{Ext}_{R}^{i-1}\left(\left(0:_{\frac{\mathfrak{R}}{\mathfrak{a}}} \mathfrak{b}\right), \frac{M}{x_{1} M}\right) \in \mathcal{S}
$$

for all integers $0 \leq i<n$. Therefore

$$
\operatorname{Ext}_{R_{\mathrm{r}}}^{i-1}\left(\left(0: \frac{R_{\mathrm{r}}}{a R_{\mathrm{r}}} \mathfrak{b} R_{\mathrm{r}}\right), \frac{M_{\mathrm{r}}}{\frac{x_{1}}{1} M_{\mathrm{r}}}\right)=0
$$

for all integers $0 \leq i \leq n$, specially $\operatorname{Hom}_{R_{\mathrm{r}}}\left(\left(00_{\frac{R_{\mathrm{r}}}{a R_{\mathrm{r}}}} \mathfrak{b} R_{\mathrm{r}}\right), \frac{M_{\mathrm{r}}}{\frac{x_{1}}{1} M_{\mathrm{r}}}\right)=0$. Since $\operatorname{Supp}_{R_{\mathrm{r}}}\left(0:_{\frac{R_{\mathrm{r}}}{\mathfrak{a} R_{\mathrm{r}}}} \mathfrak{b} R_{\mathrm{r}}\right) \subseteq V\left(\frac{x_{1}}{1}\right)$, implies that

$$
\operatorname{Hom}_{R_{\mathrm{r}}}\left(\frac{R_{\mathrm{r}}}{\left(\frac{(x+1}{1}\right)}, \frac{M_{\mathrm{r}}}{\frac{x_{\mathrm{r}}}{1} M_{\mathrm{r}}}\right)=0
$$

which is a contradiction. Therefore x_{n} is a regular $\frac{R}{\mathfrak{a}}$-sequence with respect to \mathcal{S}. Now, the exact sequence

$$
0 \rightarrow \frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}} \stackrel{\frac{x_{n}}{l}}{\rightarrow} \frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}} \rightarrow \frac{R_{\mathfrak{p}}}{\mathfrak{b} R_{\mathfrak{p}}} \rightarrow 0
$$

induces the exact sequence

$$
\begin{aligned}
\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \stackrel{\frac{x_{n}}{\longrightarrow}}{\rightarrow} & \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \rightarrow \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{b} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \\
& \rightarrow \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right) \xrightarrow{\alpha} \operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{a} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right)
\end{aligned}
$$

By hypothesis $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+2}\left(\frac{R_{\mathfrak{p}}}{\mathfrak{b} R_{\mathfrak{p}}}, M_{\mathfrak{p}}\right)=0$ and so α is monomorphism. On the other hand, the exact sequence

$$
0 \rightarrow M_{\mathfrak{p}} \stackrel{\frac{x_{n}}{\longrightarrow}}{\longrightarrow} M_{\mathfrak{p}} \rightarrow \frac{M_{\mathfrak{p}}}{\frac{x_{n}}{1} M_{\mathfrak{p}}} \rightarrow 0
$$

induces the exact sequence

\[

\]

Since α is monomorphism, we get $\operatorname{Ext}_{R_{\mathfrak{p}}}^{n+1}\left(\frac{R_{\mathfrak{p}}}{\mathrm{a} R_{\mathfrak{p}}}, \frac{M_{\mathfrak{p}}}{\frac{x_{n}}{1} M_{\mathfrak{p}}}\right)=0$, by Nakayama. Thus $\operatorname{Ext}_{R}^{n+1}\left(\frac{R}{\mathfrak{a}}, \frac{M}{x_{n} M}\right) \in \mathcal{S}$. Now, since

$$
\mathcal{S}-\mathrm{E} \cdot \operatorname{grad}_{R}\left(I, \frac{M}{x_{n} M}\right)=\mathcal{S}-\mathrm{E} . \operatorname{grad}_{R}(I, M)-1,
$$

it follows from the inductive hypothesis that x_{1}, \ldots, x_{n-1} is a regular R-sequence with respect to \mathcal{S}. But we have already proved that x_{n} is a regular $\frac{R}{\mathfrak{a}}$-sequence with respect to \mathcal{S}. Therefore $x_{1}, \ldots, x_{n-1}, x_{n}$ is a regular R-sequence with respect to \mathcal{S}.

Next, we prove that for any maximal regular M-sequence x_{1}, \ldots, x_{n} in I with respect to \mathcal{S}, if $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then

$$
\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}
$$

for all $i \geq 0(i \neq n)$.
Theorem 3.9. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with $\mathcal{S}-\mathrm{E} . \operatorname{grad}_{R}(I, M)=n \geqslant 1$. Assume that $x_{1}, \ldots, x_{n} \in I$ is a maximal regular M-sequence with respect to \mathcal{S}. If $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, then $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$, for all integers $i \geq 0(i \neq n)$.

Proof. Let $\mathfrak{p} \in \mathcal{S}-\operatorname{Supp}(M)$. By Theorems 2.3 and $3.8, \frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}$ is a poor regular $R_{\mathfrak{p}}$-sequence. We show that

$$
\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}\left(\frac{R_{\mathfrak{p}}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}, M_{\mathfrak{p}}\right)=0
$$

for all $i \geq n+1$. For this purpose, we may assume that $\mathfrak{p} \in V\left(x_{1}, \ldots, x_{n}\right)$. Since $\operatorname{pd}_{R_{p}}\left(\frac{R_{p}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}\right)=n$, clearly $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}\left(\frac{R_{\mathfrak{p}}}{\left(\frac{x_{1}}{1}, \ldots, \frac{x_{n}}{1}\right)}, M_{\mathfrak{p}}\right)=0$ for all $i \geq n+1$. So $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$ for all $i \geq n+1$.
Corollary 3.10. Let R be a Noetherian (not necessary local) ring, M be a non-zero finitely generated R-module, and I be an ideal of R with
 regular M-sequence with respect to \mathcal{S}. Then the following statements are equivalent:
(1) x_{1}, \ldots, x_{n} is an regular R-sequence with respect to \mathcal{S};
(2) $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$ for all $i>n$;
(3) $\operatorname{Ext}_{R}^{n+2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$;
(4) $\operatorname{Ext}_{R}^{2}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \in \mathcal{S}$;
(5) $\operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, \mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(M)\right) \in \mathcal{S}$ for all integers $i \geq 1$.

Proof. This is an immediate consequence of Theorems 3.8 and 3.9.

Acknowledgments

The authors wish to thank the referee for his/her comments which made many improvments.

References

1. M. Asgharzadeh and M. Tousi, Cohen Macaulayness with respect to serre classes, Illinois J. Math., 53 (2009), 67-85.
2. M. Auslander, Modules over unramified regular local rings, Illinois J. Math., 5 (1961), 631-647.
3. K. Bahmanpour, A complex of modules and its applications to local cohomology and extension functors, Math. Scand., 117 (2015), 150-160.
4. W. Bruns and J. Herzog, Chen-Macaulay Rings, Cambridge University Press, Cambridge, 1998.
5. S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math., 10 (1966), 220-236.
6. C. Peskin and L. Szpiro, Dimension projective finie et cohomologie locale, Inst. Hautes tudes Sci. Publ. Math., 42 (1973), 47-119.
7. J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.

Sajjad Arda

Department of Mathematics, Payame Noor University (PNU), P.O. Box 193954697, Tehran, Iran.
Email: sajjad.arda@gmail.com

Seadat ollah Faramarzi

Department of Mathematics, Payame Noor University (PNU), P.O. Box 193954697, Tehran, Iran.
Email: s.o.faramarzi@pnu.ac.ir

Journal of Algebraic Systems

EXTENSION AND TORSION FUNCTORS WITH RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI

تابعگونهاى توسيعى و تابدار نسبت به ردههاى سر
سجاد اردا' و سعادت الله فرامرزى「
「, 'ادانشكدمى رياضى، مركز تحصيلات تكميلى دانشگاه پیام نور، تهران، ايران
در اين مقاله، ما قضيهى صفرشونده و حدس مقسومعليه صفر براى يك رستهى سر دلخواه از مدولها
 $\operatorname{Tor}_{\Gamma}^{R}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}$,

آنگاه به ازاى هر اگر

$$
. \operatorname{Ext}_{R}^{i}\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, M\right) \in \mathcal{S}
$$

كلمات كليدى: ردههاى سر، حدس مقسوم عليه صفر، قضيهى صفرشونده، بالاترين مدول كوهمولوزى موضعى.

[^0]: DOI: 10.22044/JAS.2022.11683.1597.
 MSC(2010): Primary: 13D45; Secondary: 13D07.
 Keywords: Serre classes; Zero Divisor Conjecture; Rigidity Theorem; Top local cohomology module.
 Received: 20 February 2022, Accepted 28 October 2022.
 ${ }^{*}$ Corresponding author.

