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UNIFORMLY N-IDEALS OF COMMUTATIVE RINGS

M. BAZIAR∗, A. JAFARI AND E. YETKIN CELIKEL

Abstract. In this paper, we introduce the concept of uniformly
n-ideal of commutative rings which is a special type of n-ideal.
We call a proper ideal I of R a uniformly n-ideal if there exists a
positive integer k for a, b ∈ R whenever ab ∈ I and a /∈ I
implies that bk = 0. The basic properties of uniformly n-ideals
are investigated in detail. Moreover, some characterizations of
uniformly n-ideals are obtained for some special rings.

1. Introduction

Throughout this paper, R denotes a commutative ring with 1 ̸= 0.
The radical of R is given by

√
I = {a ∈ R : an ∈ I for some positive

integer n}. In particular, the nilradical of R is denoted by
√
0 which

is the set of all nilpotent elements. Let A be a nonempty subset of a
ring R. By (I : A), we mean the ideal {r ∈ R : rA ⊆ I} containing
I. Since prime ideals appear in many ring theoretical situations, many
authors generalize this concept, see [1] and [5]. It is well-known that
a proper ideal I of R is called primary if a, b ∈ R and ab ∈ I, then
a ∈ I or b ∈

√
I. In [3], a proper ideal I of R is called 2-absorbing

primary if a, b, c ∈ R with abc ∈ I, then either ab ∈ I or bc ∈
√
I

or ac ∈
√
I. Recall that from [4] a proper ideal I of R is said to

be uniformly primary, if there exists a positive integer n such that
whenever r, s ∈ R satisfying rs ∈ I and r /∈ I, then sn ∈ I. We say
that a uniformly primary ideal I has order N and write ord(I) = N ,
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if N is the smallest positive integer for which the property holds. In
2015, as a generalization of uniformly primary ideals, the concept of
uniformly 2-absorbing primary ideals is introduced in [8]: A proper
ideal I of R is a uniformly 2-absorbing primary ideal if there exists a
positive integer n such that whenever a, b, c ∈ R satisfy abc ∈ I, ab /∈ I
and ac /∈

√
I, then (bc)n ∈ I. They call that N is order of I if N is

the smallest positive integer for which the above property holds and it
is denoted by 2 − ord(I) = N . A different from these concepts, the
concept of n-ideals is introduced and studied in [10]. They call a proper
ideal I of R an n-ideal if whenever a, b ∈ R with ab ∈ I and a /∈ I,
then b ∈

√
0. Observe that prime ideals needs not to be n-ideals; for

instance I = 2Z of Z is not n-ideal as 1 · 2 ∈ I but neither 1 ∈ I nor
2 ∈

√
0.

A ring R is said to be reduced if there is no nonzero nilpotent
element; i.e.

√
0 = 0. By J(R), we denote the intersection of all maximal

ideals of R. In this paper, the special type of n-ideals in commutative
rings, namely uniformly n-ideals are introduced. In section 2, the
basic algebraic properties of uniformly n-ideals are studied and among
many results the characterization of uniformly n-ideals is given in
Theorem 2.11. Also, Theorem 2.13 and Corollary 2.14 give another
characterizations for uniformly n-ideals in terms of some ideals of a
ring. It is shown in Theorem 2.12 that if

√
0 is nilpotent in a ring,

then the concepts of uniformly n-ideals and n-ideals are coincide. In
Theorem 2.9, we establish the (Krull) dimension of R if every nonzero
ideal of R is a uniformly n-ideal. It is shown that if R is not a reduced
ring whose every nonzero ideal is a uniformly n-ideal, then R is a
local ring (see Theorem 2.10). In section 3, we determine under which
condition a noetherian ring has a uniformly n-ideal (see Theorem 3.5).

2. Uniformly n-ideals

In this section, we study the basic properties of uniformly n-ideals
and give some characterizations of them.

Definition 2.1. Let R be a ring and I be a proper ideal of R. We
call I a uniformly n-ideal if there exists a positive integer n such that
whenever a, b ∈ R with ab ∈ I and a /∈ I, then bn = 0. The smallest
integer N which satisfies this property is called the order of I, and is
denoted by ord(I) = N .

The following diagram shows the relations among n-ideal, primary
ideal, uniformly primary ideal, uniformly n-ideal, uniformly 2-absorbing
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primary ideal and 2-absorbing primary ideal. Note that the converse
of these implications does not hold in general.

uniformly n-ideal =⇒ n-ideal
⇓ ⇓

uniformly primary =⇒ primary
⇓ ⇓

uniformly 2-absorbing primary =⇒ 2-absorbing primary

Example 2.2. (1) A reduced ring R which is not an integral
domain has no uniformly n-ideal. For instance, in R = Z6 (see
Proposition 3.6): every nonzero proper ideal of Z6 is prime.
The zero ideal of Z6 is a uniformly 2-absorbing primary ideal.
Indeed, since 0 is a 2-absorbing ideal of Z6, by [8, Remark 2.9]
it is a uniformly 2-absorbing primary ideal of Z6.

(2) Consider the ring Z8. Then I =< 4 > is a uniformly n-ideal of
order 3, but it is not prime as 2 · 2 ∈ I but 2 /∈ I.

(3) Let K be a field and
X = {X1, X2, X3, ...}

a set of indeterminates over K. Consider the ring
R = K[X]/({X i

i}∞i=1).
Then the ideal I = ({X1Xi}∞i=2)R of R is clearly an n-ideal.
However, since for each k ≥ 1, X1Xk+1 ∈ I but neither X1 ∈ I
nor Xk

k+1 = 0, it is not a uniformly n-ideal.
Proposition 2.3. Let R be a ring.

(1) If R is an integral domain, then I = {0} is a uniformly n-ideal
of order 1.

(2) {0} is a uniformly n-ideal of R if and only if {0} is a uniformly
primary ideal of R.

Proof. Trivial. □
Lemma 2.4. Let I be a proper ideal of R. The following statements
hold.

(1) If I is an n-ideal of R, then
√
I =

√
0 is a prime ideal of R.

(2) If I is a uniformly n-ideal, then I ⊆
√
0.

Proof. (1) Suppose that I is an n-ideal of R. Then I ⊆
√
0 by [10,

Proposition 2.3]. Thus
√
I =

√
0 and we conclude from [10, Proposition

2.3] that
√
0 is prime.

(2) Suppose that I is a uniformly n-ideal. Then it is an n-ideal and
the result follows from [10, Proposition 2.3]. □
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We note that the converse of Lemma 2.4(2) is not true in general.
For instance, let R = Z6. Then I = {0} ⊆

√
0 and 2 · 3 ∈ I, 2 /∈ I, but

there is no positive integer n such that 3n = 0.

Theorem 2.5. Let R be a ring such that J(R) = 0. Then R has no
nonzero uniformly n-ideal. In particular, if R is a semisimple ring,
then R has no nonzero uniformly n-ideal.
Proof. Suppose that I is a uniformly n-ideal. Then

I ⊆
√
0 ⊆ J(R) = 0.

The “in particular” case is clear as J(R) = 0 for every semisimple
ring. □
Proposition 2.6. Let A be a nonempty subset of a ring R and I be a
uniformly n-ideal of R. Then (I : A) is a uniformly n-ideal of R with
ord((I : A)) ≤ ord(I).
Proof. Suppose that I is a uniformly n-ideal with ord(I) = n and
bc ∈ (I : A) such that b /∈ (I : A). Then there exists a ∈ A such that
ab /∈ I. Since abc ∈ I, ab /∈ I and ord(I) = n, we have cn = 0. Thus
(I : A) is uniformly n-ideal with ord((I : A)) ≤ n. □
Corollary 2.7. Let I be a uniformly n-ideal of R. Then (I : a) is a
uniformly n-ideal of R for all a ∈ R and ord((I : a)) ≤ ord(I).
Proof. It follows from Proposition 2.6. □
Theorem 2.8. Let I be a proper ideal of a ring R.

(1) If I is a prime and uniformly n-ideal of R, then I =
√
0.

(2) If I is a maximal uniformly n-ideal of R, then I =
√
0.

Proof. (1) If I is a prime and uniformly n-ideal of R, then I =
√
0.

Now apply Lemma 2.4 (2).
(2) Suppose that I is a maximal uniformly n-ideal and ab ∈ I with

a /∈ I for some a, b ∈ R. Then by Corollary 2.7 (I : a) is a uniformly
n-ideal. Since I is maximal between uniformly n-ideals and I ⊆ (I : a),
I = (I : a). On the other hand, b ∈ (I : a) and so b ∈ I. Therefore I is
prime and so by (1) I =

√
0. □

Theorem 2.9. Let R be a ring. If every nonzero cyclic ideal of R is a
uniformly n-ideal, then dimR ≤ 1.
Proof. Suppose that dimR > 1. Then there exists a chain of prime
ideals P1 ⊂ P2 ⊂ P3. Let a ∈ P2 \ P1 and b ∈ P3 \ P2. Now ab /∈ P1.
Then ab ̸= 0. We have ab ∈< ab >⊂ P2. Since the ideal < ab > is a
uniformly n-ideal and bn ̸= 0 for every positive integer n, a ∈< ab >.
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So a(1− rb) = 0 ∈ P1 for some r ∈ R. Then 1− rb ∈ P1 ⊂ P3. Hence
1 ∈ P3 and this is a contradiction. □

Theorem 2.10. Let R be a ring, the following conditions are
equivalent:

(1) Every nonzero ideal of R is uniformly n-ideal.
(2) Every prime ideal of R is uniformly n-ideal.
(3) R is a local ring with maximal nil ideal.

Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (3) By Theorem 2.8.
(3) ⇒ (1) Let M be a unique maximal ideal of R. By Our assumption

there exist a number k such that Mk = 0 and for every ideal I of R,
I ⊆ M . If for some a, b ∈ R, ab ∈ I and a /∈ I, then b ∈ M , which
implies that bk = 0. □

An important characterization of uniformly n-ideals is given by the
next theorem:

Theorem 2.11. Let I be a proper ideal of a ring R. Then I is a
uniformly n-ideal and 0 is a uniformly primary ideal of order N if and
only if the following conditions hold.

(1) I is an n-ideal of R.
(2) There exists a positive integer n such that

√
0 = {a ∈ R : an = 0}. ord0(I) = N

if and only if N is the smallest integer which satisfies this
property.

Proof. Suppose that I is a uniformly n-ideal of R of order N . Then
(1) is satisfied. Let a ∈

√
0. Hence an = 0 but an−1 ̸= 0 for some

positive integer n. Since an−1a = 0 and 0 is uniformly primary with
ord(0) = N, we have aN = 0. Conversely, suppose that both conditions
(1) and (2) hold. Let a, b ∈ R with ab ∈ I and a /∈ I. It follows b ∈

√
0

by (1). On the other hand, there exists a positive integer n which is
independent of elements of R such that bn = 0 by (2). Thus I is a
uniformly n-ideal of R. □

Theorem 2.12. Let R be a ring and
√
0 a nilpotent ideal of R. The

following statements are equivalent.
(1) I is an n-ideal.
(2) For all ideals J,K of R with JK ⊆ I and K ⊈ I, then there

exists a positive integer n such that Jn = 0.
(3) I is a uniformly n-ideal.
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Proof. (1)⇒(2) Suppose that JK ⊆ I and K ⊈ I for some ideals J,K

of R. Then J ∩ (R −
√
0) = ∅ by [10, Theorem 2.7]. Since

√
0 is

nilpotent, there exists a positive integer n such that Jn ⊆
√
0
n
= 0, as

needed.
(2)⇒(3) Let a, b ∈ R with ab ∈ I and b /∈ I. Put J := (a) and

K := (b). Then we conclude the result from our assumption (2).
(3)⇒(1) It is clear. □
It is well-known that if R is an Artinian ring, then

√
0 is a nilpotent

ideal. Therefore, we note that Theorem 2.12 holds true for Artinian
rings.

Let I be a proper ideal of a ring R. According to [2], the ideal
< {in : i ∈ I} > of R which is generated by n-th powers of elements of
I denoted by In.
Theorem 2.13. Let I be a proper ideal of R. The following statements
are equivalent.

(1) I is a uniformly n-ideal of R of order n.
(2) There exists a positive integer n such that for every a ∈ R,

either (I : a) = R or (I : a)n = {0}.
(3) There exists a positive integer n for every a ∈ R, aJ ⊆ I,

implies that either a ∈ I or Jn = {0}.
Proof. (1)⇒(2) Suppose that I is a uniformly n-ideal of R of order n
and (I : a) ̸= R. Hence a /∈ I. Let b ∈ (I : a). Since ab ∈ I and
ord(I) = n, we have bn = 0. Therefore (I : a)n = {0}.

(2)⇒(3) On the contrary, suppose that aJ ⊆ I but neither a ∈ I nor
Jn = {0}. Then there exists nonzero bn ∈ Jn where b ∈ J . Hence we
conclude (I : a) ̸= R and (I : a)n ̸= {0}, a contradiction. Thus a ∈ I
or Jn = {0}.

(3)⇒(1) It is clear. □
In [2, Theorem 5], it has been shown In = In provided that n! is a

unit in R. Then we obtain the following result.
Corollary 2.14. Let R be a ring, I be a proper ideal of R and n be a
positive integer number. If n! is a unit element in R then the following
statements are equivalent.

(1) I is a uniformly n-ideal of R of order n.
(2) There exists a positive integer n such that for every nonunit

elements a, b ∈ R, either (I : a) = R or (I : a)n = {0}.
(3) There exists a positive integer n such that for every nonunit

elements a, b ∈ R such that aJ ⊆ I, either a ∈ I or Jn = {0}.
Proof. It follows from Theorem 2.13. □
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Theorem 2.15. For a ring R, the following statements are equivalent.
(1) Every proper principal ideal of R is a uniformly n-ideal of order

k.
(2) Every proper ideal of R is a uniformly n-ideal of order k.

Proof. (1)⇒(2) Suppose that a, b ∈ I, a /∈ I for some a, b ∈ R. Then
by our assumption, (ab) is a uniformly n-ideal . Since ab ∈ (ab) and
a /∈ (ab), it implies that bk = 0. Thus I is a uniformly n-ideal of order
k.

(2)⇒(1) It is clear. □

In the following, we obtain some elementary properties of uniformly
n-ideals. The first property allows us to compare the orders of the
elements of a chain of uniformly n-ideals.

Proposition 2.16. Let I1 and I2 be uniformly n-ideals of R with
I1 ⊆ I2. Then ord(I1) ≥ ord(I2).

Proof. Put ord(I1) = m and ord(I2) = n for some n,m ≥ 1. Then there
exist r, s ∈ R such that rs ∈ I2, r /∈ I2 and sn = 0 , sn−1 ̸= 0. Now
rsn−1 · s = 0 ∈ I1. If rsn−1 /∈ I1, then sm = 0; so m ≥ n. Now suppose
that rsn−1 ∈ I1. Hence rsn−2 · s ∈ I1. Again we have two cases: if
rsn−2 /∈ I1, then sm = 0; so m ≥ n. Assume that rsn−2 ∈ I1. Hence
rsn−3 · s ∈ I1. Repeating this process, we get rs ∈ I1, r /∈ I1 which
implies sm ∈ I1. Thus m ≥ n. □

Proposition 2.17. Let {Ii}i∈Λ be a chain of uniformly n-ideals of R
with maximum order is n ≥ 1. Then I = ∩i∈ΛIi is a uniformly n-ideal
of R with ord(I) ≤ n.

Proof. Suppose that a, b ∈ R with ab ∈ I, a /∈ I. Then a /∈ Ik for some
k ∈ Λ. Since Ik is uniformly n-ideal with ordn(Ik) ≤ n, we have bn = 0.
Thus I is a uniformly n-ideal of R of order at most n. □

Proposition 2.18. Let I1, ..., In be a chain of uniformly n-ideals of R.
Then I = ∪n

i=1Ii is a uniformly n-ideal of R.

Proof. Suppose that each Ii (i = 1, ..., n) is a uniformly n-ideal with
ord(Ii) = ki. Let a, b ∈ R with ab ∈ I and a /∈ I. Then ab ∈ Ij for some
j ∈ {1, ..., n} and a /∈ Ij. It implies that bkj = 0. Then I is a uniformly

n-ideal of order at most k =
n∑

i=1

ki. □

Theorem 2.19. Let R1 and R2 be commutative rings and f : R1 → R2

a homomorphism. The following statements hold.
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(1) Let f be a monomorphism. If I2 is a uniformly n-ideal of R2,
then f−1(I2) is a uniformly n-ideal of R1 with

ordR1(f
−1(I2)) ≤ ordR2(I2).

(2) Let f be an epimorphism. If I1 is a uniformly n-ideal of R1

containing Kerf , then f(I1) is a uniformly n-ideal of R2 with
ordR2(f(I1)) ≤ ordR1(I1).

Proof. (1) Suppose that ab ∈ f−1(I2) and a /∈ f−1(I2) for a, b ∈ R1.
Then f(ab) = f(a)f(b) ∈ I2. Put ordR2(I2) = n. Then f(a) ∈ I2 or
f(b)n = 0. Hence a ∈ f−1(I2) or bn ∈Kerf = 0. Thus f−1(I2) is a
uniformly n-ideal of R1 with ordR1(f

−1(I2)) ≤ n.
(2) Suppose that a2b2 ∈ f(I1) and a2 /∈ f(I1) for a2, b2 ∈ R2. Put

m = ordR1(I1). Since f is onto, there exists a1, b1 ∈ R1 such that
a2 = f(a1), b2 = f(b1). Hence f(a1)f(b1) = f(a1b1) ∈ f(I1),
f(a1) /∈ f(I1), which means a1b1 ∈ I1 and a1 /∈ I1 as Kerf ⊆ I1.
It follows bm1 = 0; so f(b1)

m = f(0) = 0. Thus f(I1) is a uniformly
n- ideal of R2 with ordR2(f(I1)) ≤ m. □
Theorem 2.20. For a uniformly n-ideal I of R of order N , the
following statements hold.

(1) If R1 is a subring of a ring R, then I∩R1 is a uniformly n-ideal
of R1 with ord(I ∩R1)R1 ≤ N .

(2) If J is an ideal of R with J ⊆ I, then I/J is a uniformly n-ideal
of R/J with ord(I/J) ≤ N .

Proof. It is an application of Theorem 2.19. □
Corollary 2.21. Let I be a proper ideal of a ring R and X an
indeterminate. If (I,X) is a uniformly n-ideal of R[X], then I is
a uniformly n-ideal of R
Proof. Define a function Π : R[X] → R by f(x) 7→ f(0). It is
easily seen that Π is an epimorphism and KerΠ = X ⊂ (I,X). Thus
I = Π((I,X)) is a uniformly n-ideal of R by Theorem 2.19 (2). □
Proposition 2.22. Let R = R1×R2 where R1 and R2 are commutative
rings with 1 ̸= 0. Then there is no uniformly n-ideal in R.

Proof. As a uniformly n-ideal is an n-ideal, we are done from
[10, Proposition 2.26]. □

Let R be a ring and I an ideal of R. By Z(R) and ZI(R), we denote
the set of zero divisors of R, and the set

{a ∈ R | ab ∈ I for some b /∈ I},
respectively.
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Theorem 2.23. Let S be a multiplicatively closed subset of R and I a
proper ideal of R. Then the following statements are satisfied.

(1) If I is a uniformly n-ideal of R such that I ∩ S = ∅, then S−1I
is a uniformly n-ideal of S−1R with ords−1R(S

−1I) ≤ ordR(I).
(2) If S−1I is a uniformly n-ideal of S−1R, S ∩ ZI(R) = ∅ and

S ∩ Z(R) = ∅, then I is a uniformly n-ideal of R with
ord(I) ≤ ord(S−1I).

Proof. (1) Let a
s1

b
s2

∈ S−1I for some a, b ∈ I and s1, s2 ∈ S. Put
ordR(I) = n. Suppose that a

s1
/∈ S−1I. Then uab ∈ I for some

u ∈ S and ua /∈ I. Since I is uniformly n-ideal, we have bn = 0. So,(
b
s2

)n

= 0. Thus S−1I is a uniformly n-ideal of S−1R with

ords−1R(S
−1I) ≤ n.

(2) Let ab ∈ I for some a, b ∈ R. Put ord(S−1I) = m. Hence
ab
1

= a
1
b
1
∈ S−1I. Since S−1I is uniformly n-ideal, we have either

a
1
∈ S−1I or

(
b
1

)m
= 0S−1R. If a

1
∈ S−1I, then ua ∈ I for some u ∈ S.

Since u /∈ ZI(R), we conclude that a ∈ I. If
(
b
1

)m
= 0S−1R, then

(tb)m = 0 ∈ I for some t ∈ S. Since S ∩ Z(R) = ∅, we have bm = 0.
Therefore I is a uniformly n-ideal of R with ord(I) ≤ m. □

Let R be a ring and M an R-module. Consider
R(+)M = R×M = {(r,m) : r ∈ R,m ∈ M}

and let (r,m) and (s, n) be two elements of R(+)M. Then R(+)M
is a commutative ring with identity under addition and multiplication
defined by (r,m)+(s, n) = (r+s,m+n) and (r,m)(s, n) = (rs, rn+sm).
For more detail information about idealization refer to [6].

Proposition 2.24. Let I be a proper ideal of R. If I is a uniformly
n-ideal, then I(+)M is a uniformly n-ideal of R(+)M such that

ord(I) + 1 ≥ ord(I + (M)) ≥ ord(I).
In particular if M is a torsion free R-module, then ord(I+(M)) = n+1.

Proof. Let I be uniformly n-ideal of order n. Suppose that

(a,m)(b, n) ∈ I(+)M and (a,m) /∈ I(+)M .

Then ab ∈ I but a /∈ I. Since ord(I) = n, we have bn = 0 and

ord(I) + 1 ≥ ord(I + (M)) ≥ ord(I).

□
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3. Uniformly n-ideals over Noetherian rings

In this section, we characterized uniformly n-ideals in Noetherian
rings. Let R be a ring. Recall that an element a of R is nilpotent if
an = 0 for some positive integer n. A proper ideal I of R is said to
be nil if every element of I is nilpotent; I is nilpotent ideal if In = 0
for some positive integer n. We denote the least positive integer which
satisfies the property In = 0 by e(I). It is clear that every nilpotent
ideal is nil but the converse is not true in general. (for the general
background see [7]). Now we state the next lemma which is necessary
for the proof of Theorem 3.3.

Lemma 3.1. [7, Proposition 2.13, Remark, p.430 ] Let R be a ring.
Then

(1) If R is Noetherian, then every nil ideal is nilpotent.
(2) If R is Artinian, then the radical J(R) is a nilpotent ideal.

Lemma 3.2. Let R be a ring. The following statements hold.
(1) Let I be a P -primary ideal of R where P is a nilpotent ideal.

Then I is a uniformly n-ideal of R with ord(I) ≤ e(P ).
(2) If I is a nilpotent prime ideal, then I is a uniformly n-ideal of

R.

Proof. (1) Let a, b ∈ R with ab ∈ I and a /∈ I. Since I is P -primary, it
implies b ∈ P. Then be(P ) ∈ P e(P ) = 0. Thus I is uniformly n-ideal of
order less than e(P ).

(2) It is clear by (1). □

Theorem 3.3. For a comutative ring with nonzero identity R, the
following are hold.

(1) Let R be a Noetherian ring. Then every prime nil ideal of R is
a uniformly n-ideal of R. In particular, if

√
0 is prime, then it

is a uniformly n-ideal with ord(
√
0) = e(

√
0).

(2) Let R be an Artinian ring. Then every prime nil ideal of R is
uniformly n-ideal.

(3) If R is a Noetherian or Artinian ring, then every
√
0-primary

ideal is uniformly n-ideal.

Proof. (1) It is clear by Lemma 3.1 (1) and Lemma 3.2 (2).
(2) It is well-known that in an Artinian ring, every nil ideal is

nilpotent. So the result follows from Lemma 3.1 (1) and Lemma 3.2
(2).
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(3) It is well-known that if R is Noetherian or Artinian,
√
0 is a

nilpotent ideal of R. Then we conclude the result by Lemma 3.2 (1).
□

Proposition 3.4. Let R be a Noetherian ring. If I is an n-ideal of R,
then

√
I is a uniformly n-ideal of R.

Proof. Suppose that I is an n-ideal of R. Then
√
I =

√
0 is prime by

Lemma 2.4 (1). Thus
√
I is uniformly n-ideal by Theorem 3.3 (1). □

Theorem 3.5. For a Noetherian ring R, the following statements are
equivalent.

(1) There exists a uniformly n-ideal of R.
(2)

√
0 is a prime ideal of R.

Proof. (1)⇒(2) Suppose that I is a uniformly n-ideal of R. Then it is
n-ideal, so we have the result by [10, Theorem 2.12].

(2)⇒(1) Assume that
√
0 is a prime ideal of R. Hence

√
0 is a

uniformly n-ideal by Theorem 3.3 (1). □
In the next proposition, we give equivalent conditions for that every

ideal of the ring Zn is a uniformly n-ideal.

Proposition 3.6. Consider the ring Zn where n ≥ 2 is a positive
integer n. The following are equivalent.

(1) There exists a uniformly n-ideal of Zn of order k.
(2) n = pk for some prime number p and positive integer k.
(3) Every ideal of Zn is a uniformly n-ideal of order k.

Proof. (1)⇒ (2) By Theorem 3.5,
√
0 is a prime ideal of Zn. Therefore

n = pk where p is a prime number and k is a positive integer number.
(2)⇒(3) Suppose that I is a uniformly n-ideal of Zpk . We need to

show that ord(I) = k. Observe that I = (pt) for some positive integer
1 ≤ t ≤ k . Since pt−1p ∈ I and pt−1 /∈ I, we have pord(I) = 0. Then
since pord(I) ≡ 0 (mod pk) and ord(I) ≤ k, we have ord(I) = k.

(3)⇒(1) It is clear. □
Theorem 3.7. Let R be a Noetherian ring. Then R is an integral
domain if and only if the only uniformly n-ideal of R is 0.

Proof. Suppose that R is an integral domain and I ̸= 0 is a uniformly
n-ideal of R. Then I ⊆

√
0 by Lemma 2.4 (2). But since R is an integral

domain, we conclude
√
0 = 0, so I = 0, a contradiction. Conversely,

suppose that 0 is the only uniformly n-ideal of R. Then
√
0 is prime

by Theorem 3.5, and so
√
0 is a uniformly n-ideal by Theorem 3.3
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(1). Hence our assumption implies that
√
0 = 0. Thus 0 is prime, and

therefore R is an integral domain. □
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UNIFORMLY n-IDEALS OF COMMUTATIVE RINGS

M. BAZIAR, A. JAFARI AND E. YETKIN CELIKEL

جابجایی حلقه های یکنواخت n-ایده آل های

کلیکل٣ یتکین اکه و جعفری٢ افروزه بازیار١، محمد

ایران یاسوج، یاسوج، دانشگاه ریاضی، ١,٢گروه

ترکیه آنتپ، گازی یونچ، کالی حسن دانشگاه الکترونیک، مهندسی ٣گروه

می کنیم. معرفی را می باشد n-ایده آل از خاصی نمونه که را یکنواخت n-ایده آل مبحث مقاله این در
باشد موجود k مثبت و صحیح عدد هرگاه گوئیم یکنواخت n-ایده آل را R حلقه از I محض ایده آل یک
خواص همچنین، .bk ∈ I که شود باعث a /∈ I و ab ∈ I که وقتی a, b ∈ R هر برای به طوری که
یکنواخت n-ایده آل های از مشخص سازی به علاوه، است. شده بررسی یکنواخت n-ایده آل های اساسی

است. گردیده ارائه خاص حلقه های بعضی برای

یکنواخت. n-ایده آل n-ایده آل، یکنواخت، اولیه n-ایده آل کلیدی: کلمات
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