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POLYMATROIDAL IDEALS AND LINEAR
RESOLUTION

S. BANDARI

Abstract. Let S = K[x1, . . . , xn] be a polynomial ring over a
field K and I ⊂ S be a monomial ideal with a linear resolution.
Let m = (x1, . . . , xn) be the unique homogeneous maximal ideal
and Im be a polymatroidal ideal. We prove that if either Im is
polymatroidal with strong exchange property, or I is a monomial
ideal in at most 4 variables, then I is polymatroidal. We also show
that the first homological shift ideal of polymatroidal ideal is again
polymatroidal.

1. Introduction

Throughout the paper, S = K[x1, . . . , xn] denotes the polynomial
ring in n indeterminates over an arbitrary field K with the unique
homogeneous maximal ideal m = (x1, . . . , xn) and I ⊂ S is a monomial
ideal of S. The unique minimal set of monomial generators of I will
be denoted by G(I). The monomial localization of I with respect to a
monomial prime ideal P is the monomial ideal I(P ) which is obtained
from I by substituting the variables xi ̸∈ P by 1. Observe that I(P )
is the unique monomial ideal with the property that I(P )SP = ISP .
The monomial localization I(P ) can also be described as the saturation
I : (

∏
xi ̸∈P xi)

∞. When I is a squarefree monomial ideal, we see that
I(P ) = I : u where u =

∏
xi ̸∈P xi. Note that I(P ) is a monomial ideal
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in S(P ), where S(P ) is the polynomial ring in the variables which
generate P .

It has been observed that a monomial localization of a polymatroidal
ideal is again polymatroidal ([7, Corollary 3.2]).

The author and Herzog conjectured that a monomial ideal I is
polymatroidal if and only if I(P ) has a linear resolution for all
monomial prime ideals P ([1, Conjecture 2.9]). They gave an
affirmative answer to the conjecture in the following cases: 1) I is
generated in degree 2; 2) I contains at least n− 1 pure powers; 3) I is
monomial ideal in at most three variables; 4) I has no embedded prime
ideal and either |Ass (S/I)| ≤ 3 or height (I) = n− 1.

Now, we consider the following statement: (∗) Let I be a monomial
ideal with linear resolution such that Im is polymatroidal. Then I is
polymatroidal.

Observe that (∗) holds if Bandari-Herzog’s conjecture is satisfied,
because I(P ) = (Im)(P ) for all P ̸= m.

In this paper, we prove the statement (∗) in the following cases: 1)
Im is polymatroidal with strong exchange property; 2) I is a monomial
ideal in at most 4 variables.

Due to experimental evidence, the author, Bayati and Herzog
conjectured that the homological shift ideals of a polymatroidal ideal
are again polymatroidal. This conjecture is still open. There is a
positive answer to the conjecture for matroidal ideals [2], and for
polymatroidal ideals with strong exchange property [6]. In this
paper, we prove that the first homological shift ideal of polymatroidal
ideal is again polymatroidal.

2. Main results

Definition 2.1. Let I ⊂ S be a monomial ideal. We say that I has a
d-linear resolution, if I has the following minimal graded free resolution:

0 → Smt(−(d+ t)) → · · · → Smi(−(d+ i)) →

Smi−1(−(d+ (i− 1)) → · · · → Sm1(−(d+ 1)) → Sm0(−d) → I → 0

Lemma 2.2. Let I ⊂ S be a monomial ideal with d-linear resolution
and f be a homogeneous element of I : m \ I. Then deg(f) = d− 1.

Proof. Let 0 ̸= f ∈ I : m\I be a homogeneous element of degree r. We
want to show that r = d− 1. We have the homogeneous isomorphism
of degree n,

φ : (0 :S/I m) → Hn(x1, . . . , xn;S/I)

g 7→ ge1 ∧ · · · ∧ en
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where Hn(x1, . . . , xn;S/I) is the nth Koszul homology module of x1, . . . , xn

(see ([5, page 268]). Hence, there exists K-module isomorphism
(0 :S/I m)r ∼= Hn(x1, . . . , xn;S/I)r+n.

Now, since 0 ̸= f + I ∈ (0 :S/I m)r, we have that

Hn(x1, . . . , xn;S/I)r+n ̸= 0.

Hence, it follows by [5, Corollary A.3.5] that
βn,r+n(S/I) = dimK Hn(x1, . . . , xn;S/I)r+n ̸= 0.

Therefore βn,r+n+1(I) = βn,r+n(S/I) ̸= 0. Now, since I has a d-linear
resolution, it follows that r + n+ 1 = n+ d, and so r = d− 1. □

The next result has been proven in [1, Page 760]. We provide more
explanations of the proof by using Lemma 2.2.

Lemma 2.3. Let I ⊂ S be a monomial ideal with linear resolution.
Then I = Im : m.

Proof. Obviously we have I ⊆ Im : m. Assume that the inclusion is
strict. Then there exists a homogeneous element f ∈ Im : m \ I and so
f is a homogeneous element of I : m\I. Let I have a d-linear resolution.
it follows by Lemma 2.2 that deg(f) = d− 1. On the other hand, since
Im has (d + 1)-linear resolution and f ∈ Im : m \ Im, it follows again
by Lemma 2.2 that deg(f) = d, which is a contradiction. □
Definition 2.4. Let I ⊂ S be a monomial ideal. We say that I has
linear quotients, if there exists an order u1, . . . , ur of G(I) such that
for j = 2, . . . , r, the minimal monomial generators of the colon ideal
(u1, . . . , uj−1) : uj are variables.

Definition 2.5. Let I ⊂ S be a monomial ideal generated in a single
degree. The ideal I is polymatroidal if for any two elements u, v ∈ G(I)
such that

degxi
(u) > degxi

(v)

there exists an index j with degxj
(u) < degxj

(v) such that xj(u/xi) ∈ I.

In the case that the polymatroidal ideal I is squarefree, it is called
matroidal.

Any polymatroidal ideal I has linear quotients ([8, Lemma 1.3]),
which implies that I has a linear resolution ([3, Lemma 4.1]). We have
also the product of polymatroidal ideals is again polymatroidal ([3,
Theorem 5.3]). In particular, if I is a polymatroidal ideal, then Im is
polymatroidal.
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The author and Herzog conjectured that a monomial ideal I is
polymatroidal if and only if all monomial localizations of I have a linear
resolution. If the conjecture is satisfied, then the following statement
holds:

(∗) Let I be a monomial ideal with linear resolution such that Im is
polymatroidal. Then I is polymatroidal.

The following example shows that the linear resolution condition of
the statement (∗) cannot be weakened.
Example 2.6. The ideal I = (x2

1, x1x2, x
2
3, x2x3) ⊂ S = K[x1, x2, x3]

is generated in a single degree, but it does not have a linear resolution.
On the other hand Im is polymatroidal, but I is not.
Definition 2.7. Let I ⊂ S be a monomial ideal. We say that I
satisfies the strong exchange property if I is generated in a single degree,
and for all u, v ∈ G(I) and for all i, j with degxi

(u) > degxi
(v) and

degxj
(u) < degxj

(v), one has xj(u/xi) ∈ I.
Now, we show that (∗) holds if Im is a polymatroidal with strong

exchange property.
Proposition 2.8. Let I ⊂ S be a monomial ideal with a linear
resolution and Im be polymatroidal with strong exchange property.
Then I is polymatroidal with strong exchange property.
Proof. Let u, v ∈ G(I) with degxi

(u) > degxi
(v) and

degxj
(u) < degxj

(v).
So uxk, vxk ∈ Im for each k = 1, . . . , n. Now, since

degxi
(uxk) > degxi

(vxk)

and degxj
(uxk) < degxj

(vxk), it follows that xj(uxk/xi) ∈ Im for each
k = 1, . . . , n. Hence xj(u/xi)m ⊆ Im. Since I has a linear resolution,
it follows by Lemma 2.3, xj(u/xi) ∈ I. □
Lemma 2.9. ([4, Lemma 3.1]) Let I ⊂ S be a polymatroidal ideal.
Then for any monomials u = xa1

1 · · ·xan
n and v = xb1 · · ·xbn

n in G(I) and
for each i with ai < bi, one has j with aj > bj such that xi(u/xj) ∈ G(I).
Lemma 2.10. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal with
assumption I = Im : m. Let u ∈ G(I) and Im be a polymatroidal ideal.
If for 1 ≤ i ̸= j ≤ n, (u/xj)x

2
i ∈ Im, then (u/xj)xi ∈ I.

Proof. Since I = Im : m, it is enough to show that (uxi/xj)m ⊆ Im.
We have (uxi/xj)xj = uxi ∈ Im and (u/xj)x

2
i ∈ Im. Now, let k ̸= i, j.

Then with considering Lemma 2.9 for monomials (u/xj)x
2
i ∈ Im and

uxk ∈ Im, we have (uxi/xj)xk ∈ Im. □
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Finally, we are ready to prove that (∗) holds for monomial ideals in
at most 4 variables.

Proposition 2.11. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal
with n ≤ 4. Let I have a linear resolution and Im be polymatroidal.
Then I is polymatroidal.

Proof. We have already noted that the claim is true for n ≤ 3. Now,
let n = 4. Since I has a linear resolution, it follows by Lemma 2.3
that I = Im : m. Let degx1

(u) > degx1
(v), so there exists an index j

with degxj
(u) < degxj

(v). For convenience, we assume that j = 2. So
degx2

(u) < degx2
(v). Now, we consider the following cases:

Case 1: degx3
(u) < degx3

(v) and degx4
(u) < degx4

(v). With
considering Lemma 2.9 for ux2 and vx2, we have (ux2/x1)x2 ∈ Im.
So by Lemma 2.10, it follows that (u/x1)x2 ∈ I.

Case 2: degx3
(u) > degx3

(v) and degx4
(u) > degx4

(v). With consid-
ering exchange property between ux2 and vx2, we have

(ux2/x1)x2 ∈ Im.

So Lemma 2.10, implies that (u/x1)x2 ∈ I.
Case 3: degx3

(u) < degx3
(v) and degx4

(u) > degx4
(v). With

considering exchange property between ux4 and vx4, it follows that
either (ux4/x1)x2 ∈ Im or (ux4/x1)x3 ∈ Im.

- Assume (ux4/x1)x2 ∈ Im. With considering Lemma 2.9 for ux2

and vx2, we have either ux2
2/x1 ∈ Im, so there is nothing to prove, or

ux2
2/x4 ∈ Im. Now with comparing (ux4/x1)x2 and ux2

2/x4, we have
ux2

2/x1 ∈ Im, which implies that (u/x1)x2 ∈ I.

- Assume (ux4/x1)x3 ∈ Im. With considering Lemma 2.9 for ux3

and vx3, we have either ux2
3/x1 ∈ Im, so there is nothing to prove, or

ux2
3/x4 ∈ Im. Now with comparing (ux4/x1)x3 and ux2

3/x4, we have
ux2

3/x1 ∈ Im, which implies that (u/x1)x3 ∈ I.

Case 4: degx3
(u) > degx3

(v) and degx4
(u) < degx4

(v). This follows
by a similar argument of case (3). □

In the sequel, we want to show that the first homological shift ideal
of polymatroidal ideal is again polymatroidal. Let a = (a1, . . . , an) be
an integer vector with ai ≥ 0. For a monomial ideal I, we set

I≤a = (u ∈ G(I) | degxi
(u) ≤ ai for i = 1, . . . , n).

Obviously, if I is polymatroidal, then I≤a is again polymatroidal.
A monomial xa1

1 · · ·xan
n will be denoted by xa.
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Definition 2.12. Let I ⊂ S be a monomial ideal with minimal multi-
graded free S-resolution

F : 0 → Ft → Ft−1 → · · · → F1 → F0 → I → 0,

where Fi =
⊕bi

j=1 S(−aij) for i = 0, . . . , t. The vectors aij are called
the multigraded shifts of the resolution F . The monomial ideal

HS i(I) = (xaij | j = 1, . . . , bi)

is called the ith homological shift ideal of I.

Proposition 2.13. Let I ⊂ S be a polymatroidal ideal. Then
HS 1(I) = (Im)≤a,

where a = (a1, . . . , an) and
ai = max{degxi

(u) | u ∈ G(I)}.
In particular, HS 1(I) is polymatroidal.

Proof. Let uxi ∈ (Im)≤a such that u ∈ G(I). So degxi
(u) < ai. Hence

there exists v ∈ G(I) such degxi
(v) > degxi

(u). Now, since I is
polymatroidal it follows by Lemma 2.9 that there exists an index j
such that degxj

(v) < degxj
(u) and w = xi(u/xj) ∈ G(I). Hence

xiu− xjw = 0. Now, let

G(I) = {u1, . . . , ut}

and F be the free S-module with basis e1, . . . , et. Let φ : F → I be
the S-module homomorphism with φ(ei) = ui for i = 1, . . . , t. Then
the multi-degree of ei is the same as that of ui. We assume that u = ur

and w = us for r, s ∈ {1, . . . , t}. So

φ(xier − xjes) = xiu− xjw = 0,

hence xier − xjes ∈ Ker (φ). Therefore, xiu ∈ HS 1(I).
Conversely, By [6, Proposition 1.3], HS 1(I) is generated by all

monomials of the form xiu with u ∈ G(I) for which there exists j ̸= i
and v ∈ G(I) such that xiu = xjv. Therefore HS 1(I) ⊆ (Im)≤a. □
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خطی تحلیل و پلی ماترویدال ایده آل های

بندری سميه

ایران قزوین، زهرا، بوئین زهرا، بوئین مهندسی و فنی عالی آموزش مرکز ریاضی، گروه

ایده آل یک I ⊂ S و K میدان روی چندجمله ای حلقه یک S = K[x١, . . . , xn] کنید فرض
ماکزیمال یکتای ایده آل m = (x١, . . . , xn) کنید فرض همچنین باشد. خطی تحلیل با یک جمله ای
ایده آل یک Im اگر که می کنیم ثابت باشد. پلی ماترویدال یک جمله ای ایده آل یک Im و همگن
I آنگاه باشد، متغیر ۴ حداکثر با یک جمله ای  ایده آل یک I یا و قوی معاوضه ای ویژگی با پلی ماترویدال
پلی ماترویدال، ایده آل یک همولوژیکی اول شیفت ایده آل که می دهیم نشان همچنین است. پلی ماترویدال

است. پلی ماترویدال

تحلیل خطی، قسمت های خارج جمله ای، یک سازی موضعی پلی ماترویدال، ایده آل های كليدی: كلمات
همولوژیکی. شیفت ایده آل خطی،


	1. Introduction
	2. Main results
	References

