Journal of Algebraic Systems

Vol. 11, No. 2, (2024), pp 147-153

POLYMATROIDAL IDEALS AND LINEAR RESOLUTION

S. BANDARI

Abstract

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and $I \subset S$ be a monomial ideal with a linear resolution. Let $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ be the unique homogeneous maximal ideal and $I \mathfrak{m}$ be a polymatroidal ideal. We prove that if either $I \mathfrak{m}$ is polymatroidal with strong exchange property, or I is a monomial ideal in at most 4 variables, then I is polymatroidal. We also show that the first homological shift ideal of polymatroidal ideal is again polymatroidal.

1. Introduction

Throughout the paper, $S=K\left[x_{1}, \ldots, x_{n}\right]$ denotes the polynomial ring in n indeterminates over an arbitrary field K with the unique homogeneous maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ and $I \subset S$ is a monomial ideal of S. The unique minimal set of monomial generators of I will be denoted by $\mathrm{G}(I)$. The monomial localization of I with respect to a monomial prime ideal P is the monomial ideal $I(P)$ which is obtained from I by substituting the variables $x_{i} \notin P$ by 1 . Observe that $I(P)$ is the unique monomial ideal with the property that $I(P) S_{P}=I S_{P}$. The monomial localization $I(P)$ can also be described as the saturation $I:\left(\prod_{x_{i} \notin P} x_{i}\right)^{\infty}$. When I is a squarefree monomial ideal, we see that $I(P)=I: u$ where $u=\prod_{x_{i} \notin P} x_{i}$. Note that $I(P)$ is a monomial ideal

DOI: 10.22044/JAS.2022.11950.1610.
MSC(2010): Primary: 13C13; Secondary: 05E40.
Keywords: Polymatroidal ideals; Monomial localization; Linear quotients; Linear resolution; Homological shift ideal.
Received: 27 May 2022, Accepted: 11 November 2022.
in $S(P)$, where $S(P)$ is the polynomial ring in the variables which generate P.

It has been observed that a monomial localization of a polymatroidal ideal is again polymatroidal ([7, Corollary 3.2]).

The author and Herzog conjectured that a monomial ideal I is polymatroidal if and only if $I(P)$ has a linear resolution for all monomial prime ideals P ([1, Conjecture 2.9]). They gave an affirmative answer to the conjecture in the following cases: 1) I is generated in degree 2; 2) I contains at least $n-1$ pure powers; 3) I is monomial ideal in at most three variables; 4) I has no embedded prime ideal and either $|\operatorname{Ass}(S / I)| \leq 3$ or height $(I)=n-1$.

Now, we consider the following statement: $(*)$ Let I be a monomial ideal with linear resolution such that $I \mathfrak{m}$ is polymatroidal. Then I is polymatroidal.

Observe that $(*)$ holds if Bandari-Herzog's conjecture is satisfied, because $I(P)=(I \mathfrak{m})(P)$ for all $P \neq \mathfrak{m}$.

In this paper, we prove the statement $(*)$ in the following cases: 1) $I \mathfrak{m}$ is polymatroidal with strong exchange property; 2) I is a monomial ideal in at most 4 variables.

Due to experimental evidence, the author, Bayati and Herzog conjectured that the homological shift ideals of a polymatroidal ideal are again polymatroidal. This conjecture is still open. There is a positive answer to the conjecture for matroidal ideals [2], and for polymatroidal ideals with strong exchange property [6]. In this paper, we prove that the first homological shift ideal of polymatroidal ideal is again polymatroidal.

2. Main Results

Definition 2.1. Let $I \subset S$ be a monomial ideal. We say that I has a d-linear resolution, if I has the following minimal graded free resolution:

$$
\begin{gathered}
0 \rightarrow S^{m_{t}}(-(d+t)) \rightarrow \cdots \rightarrow S^{m_{i}}(-(d+i)) \rightarrow \\
S^{m_{i-1}}\left(-(d+(i-1)) \rightarrow \cdots \rightarrow S^{m_{1}}(-(d+1)) \rightarrow S^{m_{0}}(-d) \rightarrow I \rightarrow 0\right.
\end{gathered}
$$

Lemma 2.2. Let $I \subset S$ be a monomial ideal with d-linear resolution and f be a homogeneous element of $I: \mathfrak{m} \backslash I$. Then $\operatorname{deg}(f)=d-1$.

Proof. Let $0 \neq f \in I: \mathfrak{m} \backslash I$ be a homogeneous element of degree r. We want to show that $r=d-1$. We have the homogeneous isomorphism of degree n,

$$
\begin{aligned}
\varphi:\left(0:_{S / I} \mathfrak{m}\right) & \rightarrow H_{n}\left(x_{1}, \ldots, x_{n} ; S / I\right) \\
g & \mapsto g e_{1} \wedge \cdots \wedge e_{n}
\end{aligned}
$$

where $H_{n}\left(x_{1}, \ldots, x_{n} ; S / I\right)$ is the nth Koszul homology module of x_{1}, \ldots, x_{n} (see ([5, page 268]). Hence, there exists K-module isomorphism

$$
\left(0:_{S / I} \mathfrak{m}\right)_{r} \cong H_{n}\left(x_{1}, \ldots, x_{n} ; S / I\right)_{r+n}
$$

Now, since $0 \neq f+I \in\left(0:_{S / I} \mathfrak{m}\right)_{r}$, we have that

$$
H_{n}\left(x_{1}, \ldots, x_{n} ; S / I\right)_{r+n} \neq 0
$$

Hence, it follows by [5, Corollary A.3.5] that

$$
\beta_{n, r+n}(S / I)=\operatorname{dim}_{K} H_{n}\left(x_{1}, \ldots, x_{n} ; S / I\right)_{r+n} \neq 0 .
$$

Therefore $\beta_{n, r+n+1}(I)=\beta_{n, r+n}(S / I) \neq 0$. Now, since I has a d-linear resolution, it follows that $r+n+1=n+d$, and so $r=d-1$.

The next result has been proven in [1, Page 760]. We provide more explanations of the proof by using Lemma 2.2.

Lemma 2.3. Let $I \subset S$ be a monomial ideal with linear resolution. Then $I=I \mathfrak{m}: \mathfrak{m}$.

Proof. Obviously we have $I \subseteq I \mathfrak{m}: \mathfrak{m}$. Assume that the inclusion is strict. Then there exists a homogeneous element $f \in I \mathfrak{m}: \mathfrak{m} \backslash I$ and so f is a homogeneous element of $I: \mathfrak{m} \backslash I$. Let I have a d-linear resolution. it follows by Lemma 2.2 that $\operatorname{deg}(f)=d-1$. On the other hand, since $I \mathfrak{m}$ has $(d+1)$-linear resolution and $f \in I \mathfrak{m}: \mathfrak{m} \backslash I \mathfrak{m}$, it follows again by Lemma 2.2 that $\operatorname{deg}(f)=d$, which is a contradiction.

Definition 2.4. Let $I \subset S$ be a monomial ideal. We say that I has linear quotients, if there exists an order u_{1}, \ldots, u_{r} of $\mathrm{G}(I)$ such that for $j=2, \ldots, r$, the minimal monomial generators of the colon ideal $\left(u_{1}, \ldots, u_{j-1}\right): u_{j}$ are variables.

Definition 2.5. Let $I \subset S$ be a monomial ideal generated in a single degree. The ideal I is polymatroidal if for any two elements $u, v \in \mathrm{G}(I)$ such that

$$
\operatorname{deg}_{x_{i}}(u)>\operatorname{deg}_{x_{i}}(v)
$$

there exists an index j with $\operatorname{deg}_{x_{j}}(u)<\operatorname{deg}_{x_{j}}(v)$ such that $x_{j}\left(u / x_{i}\right) \in I$.
In the case that the polymatroidal ideal I is squarefree, it is called matroidal.

Any polymatroidal ideal I has linear quotients ([8, Lemma 1.3]), which implies that I has a linear resolution ([3, Lemma 4.1]). We have also the product of polymatroidal ideals is again polymatroidal ([3, Theorem 5.3]). In particular, if I is a polymatroidal ideal, then $I \mathfrak{m}$ is polymatroidal.

The author and Herzog conjectured that a monomial ideal I is polymatroidal if and only if all monomial localizations of I have a linear resolution. If the conjecture is satisfied, then the following statement holds:
$(*)$ Let I be a monomial ideal with linear resolution such that $I \mathfrak{m}$ is polymatroidal. Then I is polymatroidal.

The following example shows that the linear resolution condition of the statement $(*)$ cannot be weakened.

Example 2.6. The ideal $I=\left(x_{1}^{2}, x_{1} x_{2}, x_{3}^{2}, x_{2} x_{3}\right) \subset S=K\left[x_{1}, x_{2}, x_{3}\right]$ is generated in a single degree, but it does not have a linear resolution. On the other hand $I \mathfrak{m}$ is polymatroidal, but I is not.

Definition 2.7. Let $I \subset S$ be a monomial ideal. We say that I satisfies the strong exchange property if I is generated in a single degree, and for all $u, v \in \mathrm{G}(I)$ and for all i, j with $\operatorname{deg}_{x_{i}}(u)>\operatorname{deg}_{x_{i}}(v)$ and $\operatorname{deg}_{x_{j}}(u)<\operatorname{deg}_{x_{j}}(v)$, one has $x_{j}\left(u / x_{i}\right) \in I$.

Now, we show that $(*)$ holds if $I \mathfrak{m}$ is a polymatroidal with strong exchange property.
Proposition 2.8. Let $I \subset S$ be a monomial ideal with a linear resolution and $I \mathfrak{m}$ be polymatroidal with strong exchange property. Then I is polymatroidal with strong exchange property.
Proof. Let $u, v \in \mathrm{G}(I)$ with $\operatorname{deg}_{x_{i}}(u)>\operatorname{deg}_{x_{i}}(v)$ and

$$
\operatorname{deg}_{x_{j}}(u)<\operatorname{deg}_{x_{j}}(v)
$$

So $u x_{k}, v x_{k} \in I \mathfrak{m}$ for each $k=1, \ldots, n$. Now, since

$$
\operatorname{deg}_{x_{i}}\left(u x_{k}\right)>\operatorname{deg}_{x_{i}}\left(v x_{k}\right)
$$

and $\operatorname{deg}_{x_{j}}\left(u x_{k}\right)<\operatorname{deg}_{x_{j}}\left(v x_{k}\right)$, it follows that $x_{j}\left(u x_{k} / x_{i}\right) \in I \mathfrak{m}$ for each $k=1, \ldots, n$. Hence $x_{j}\left(u / x_{i}\right) \mathfrak{m} \subseteq I \mathfrak{m}$. Since I has a linear resolution, it follows by Lemma 2.3, $x_{j}\left(u / x_{i}\right) \in I$.
Lemma 2.9. ([4, Lemma 3.1]) Let $I \subset S$ be a polymatroidal ideal. Then for any monomials $u=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $v=x^{b_{1}} \cdots x_{n}^{b_{n}}$ in $\mathrm{G}(I)$ and for each i with $a_{i}<b_{i}$, one has j with $a_{j}>b_{j}$ such that $x_{i}\left(u / x_{j}\right) \in \mathrm{G}(I)$.
Lemma 2.10. Let $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal with assumption $I=I \mathfrak{m}: \mathfrak{m}$. Let $u \in \mathrm{G}(I)$ and $I \mathfrak{m}$ be a polymatroidal ideal. If for $1 \leq i \neq j \leq n,\left(u / x_{j}\right) x_{i}^{2} \in I \mathfrak{m}$, then $\left(u / x_{j}\right) x_{i} \in I$.
Proof. Since $I=I \mathfrak{m}: \mathfrak{m}$, it is enough to show that $\left(u x_{i} / x_{j}\right) \mathfrak{m} \subseteq I \mathfrak{m}$. We have $\left(u x_{i} / x_{j}\right) x_{j}=u x_{i} \in I \mathfrak{m}$ and $\left(u / x_{j}\right) x_{i}^{2} \in I \mathfrak{m}$. Now, let $k \neq i, j$. Then with considering Lemma 2.9 for monomials $\left(u / x_{j}\right) x_{i}^{2} \in I \mathfrak{m}$ and $u x_{k} \in I \mathfrak{m}$, we have $\left(u x_{i} / x_{j}\right) x_{k} \in I \mathfrak{m}$.

Finally, we are ready to prove that $(*)$ holds for monomial ideals in at most 4 variables.

Proposition 2.11. Let $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal with $n \leq 4$. Let I have a linear resolution and $I \mathfrak{m}$ be polymatroidal. Then I is polymatroidal.

Proof. We have already noted that the claim is true for $n \leq 3$. Now, let $n=4$. Since I has a linear resolution, it follows by Lemma 2.3 that $I=I \mathfrak{m}: \mathfrak{m}$. Let $\operatorname{deg}_{x_{1}}(u)>\operatorname{deg}_{x_{1}}(v)$, so there exists an index j with $\operatorname{deg}_{x_{j}}(u)<\operatorname{deg}_{x_{j}}(v)$. For convenience, we assume that $j=2$. So $\operatorname{deg}_{x_{2}}(u)<\operatorname{deg}_{x_{2}}(v)$. Now, we consider the following cases:

Case 1: $\operatorname{deg}_{x_{3}}(u)<\operatorname{deg}_{x_{3}}(v)$ and $\operatorname{deg}_{x_{4}}(u)<\operatorname{deg}_{x_{4}}(v)$. With considering Lemma 2.9 for $u x_{2}$ and $v x_{2}$, we have $\left(u x_{2} / x_{1}\right) x_{2} \in I \mathfrak{m}$. So by Lemma 2.10, it follows that $\left(u / x_{1}\right) x_{2} \in I$.

Case 2: $\operatorname{deg}_{x_{3}}(u)>\operatorname{deg}_{x_{3}}(v)$ and $\operatorname{deg}_{x_{4}}(u)>\operatorname{deg}_{x_{4}}(v)$. With considering exchange property between $u x_{2}$ and $v x_{2}$, we have

$$
\left(u x_{2} / x_{1}\right) x_{2} \in I \mathfrak{m}
$$

So Lemma 2.10, implies that $\left(u / x_{1}\right) x_{2} \in I$.
Case 3: $\operatorname{deg}_{x_{3}}(u)<\operatorname{deg}_{x_{3}}(v)$ and $\operatorname{deg}_{x_{4}}(u)>\operatorname{deg}_{x_{4}}(v)$. With considering exchange property between $u x_{4}$ and $v x_{4}$, it follows that either $\left(u x_{4} / x_{1}\right) x_{2} \in I \mathfrak{m}$ or $\left(u x_{4} / x_{1}\right) x_{3} \in I \mathfrak{m}$.

- Assume $\left(u x_{4} / x_{1}\right) x_{2} \in I \mathfrak{m}$. With considering Lemma 2.9 for $u x_{2}$ and $v x_{2}$, we have either $u x_{2}^{2} / x_{1} \in I \mathfrak{m}$, so there is nothing to prove, or $u x_{2}^{2} / x_{4} \in I \mathfrak{m}$. Now with comparing $\left(u x_{4} / x_{1}\right) x_{2}$ and $u x_{2}^{2} / x_{4}$, we have $u x_{2}^{2} / x_{1} \in I \mathfrak{m}$, which implies that $\left(u / x_{1}\right) x_{2} \in I$.
- Assume $\left(u x_{4} / x_{1}\right) x_{3} \in I \mathfrak{m}$. With considering Lemma 2.9 for $u x_{3}$ and $v x_{3}$, we have either $u x_{3}^{2} / x_{1} \in I \mathfrak{m}$, so there is nothing to prove, or $u x_{3}^{2} / x_{4} \in I \mathfrak{m}$. Now with comparing $\left(u x_{4} / x_{1}\right) x_{3}$ and $u x_{3}^{2} / x_{4}$, we have $u x_{3}^{2} / x_{1} \in I \mathfrak{m}$, which implies that $\left(u / x_{1}\right) x_{3} \in I$.

Case 4: $\operatorname{deg}_{x_{3}}(u)>\operatorname{deg}_{x_{3}}(v)$ and $\operatorname{deg}_{x_{4}}(u)<\operatorname{deg}_{x_{4}}(v)$. This follows by a similar argument of case (3).

In the sequel, we want to show that the first homological shift ideal of polymatroidal ideal is again polymatroidal. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an integer vector with $a_{i} \geq 0$. For a monomial ideal I, we set

$$
I^{\leq \mathbf{a}}=\left(u \in \mathrm{G}(I) \mid \operatorname{deg}_{x_{i}}(u) \leq a_{i} \text { for } i=1, \ldots, n\right)
$$

Obviously, if I is polymatroidal, then $I^{\leq \mathrm{a}}$ is again polymatroidal.
A monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ will be denoted by $\mathbf{x}^{\mathbf{a}}$.

Definition 2.12. Let $I \subset S$ be a monomial ideal with minimal multigraded free S-resolution

$$
\mathcal{F}: 0 \rightarrow F_{t} \rightarrow F_{t-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow I \rightarrow 0
$$

where $F_{i}=\bigoplus_{j=1}^{b_{i}} S\left(-\mathbf{a}_{i j}\right)$ for $i=0, \ldots, t$. The vectors $\mathbf{a}_{i j}$ are called the multigraded shifts of the resolution \mathcal{F}. The monomial ideal

$$
\operatorname{HS}_{i}(I)=\left(\mathbf{x}^{\mathbf{a}_{i j}} \mid j=1, \ldots, b_{i}\right)
$$

is called the i th homological shift ideal of I.
Proposition 2.13. Let $I \subset S$ be a polymatroidal ideal. Then

$$
\operatorname{HS}_{1}(I)=(I \mathfrak{m})^{\leq \mathbf{a}}
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and

$$
a_{i}=\max \left\{\operatorname{deg}_{x_{i}}(u) \mid u \in \mathrm{G}(I)\right\} .
$$

In particular, $\mathrm{HS}_{1}(I)$ is polymatroidal.
Proof. Let $u x_{i} \in(I \mathfrak{m})^{\leq \mathbf{a}}$ such that $u \in \mathrm{G}(I)$. So $\operatorname{deg}_{x_{i}}(u)<a_{i}$. Hence there exists $v \in \mathrm{G}(I)$ such $\operatorname{deg}_{x_{i}}(v)>\operatorname{deg}_{x_{i}}(u)$. Now, since I is polymatroidal it follows by Lemma 2.9 that there exists an index j such that $\operatorname{deg}_{x_{j}}(v)<\operatorname{deg}_{x_{j}}(u)$ and $w=x_{i}\left(u / x_{j}\right) \in \mathrm{G}(I)$. Hence $x_{i} u-x_{j} w=0$. Now, let

$$
\mathrm{G}(I)=\left\{u_{1}, \ldots, u_{t}\right\}
$$

and F be the free S-module with basis e_{1}, \ldots, e_{t}. Let $\varphi: F \rightarrow I$ be the S-module homomorphism with $\varphi\left(e_{i}\right)=u_{i}$ for $i=1, \ldots, t$. Then the multi-degree of e_{i} is the same as that of u_{i}. We assume that $u=u_{r}$ and $w=u_{s}$ for $r, s \in\{1, \ldots, t\}$. So

$$
\varphi\left(x_{i} e_{r}-x_{j} e_{s}\right)=x_{i} u-x_{j} w=0
$$

hence $x_{i} e_{r}-x_{j} e_{s} \in \operatorname{Ker}(\varphi)$. Therefore, $x_{i} u \in \operatorname{HS}{ }_{1}(I)$.
Conversely, By [6, Proposition 1.3], $\mathrm{HS}_{1}(I)$ is generated by all monomials of the form $x_{i} u$ with $u \in \mathrm{G}(I)$ for which there exists $j \neq i$ and $v \in \mathrm{G}(I)$ such that $x_{i} u=x_{j} v$. Therefore HS ${ }_{1}(I) \subseteq(I \mathfrak{m})^{\leq \mathbf{a}}$.

References

1. S. Bandari and J. Herzog, Monomial localizations and polymatroidal ideals, European J. Combin., 34(4) (2013), 752-763.
2. S. Bayati, Multigraded shifts of matroidal ideals, Arch. Math., 111 (2018), 239246.
3. A. Conca and J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math., 54(2) (2003), 137-152.
4. J. Herzog and T. Hibi, Cohen-Macaulay polymatroidal ideals, European J. Combin., 27(4) (2006), 513-517.
5. J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag, 2011.
6. J. Herzog, S. Moradi, M. Rahimbeigi and G. Zhu, Homological shift ideals, Collect. Math., 72 (2021), 157-174.
7. J. Herzog, A. Rauf and M. Vladoiu, The stable set of associated prime ideals of a polymatroidal ideal, Journal of J. Algebraic Combin., 37(2) (2013), 289-312.
8. J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl., 4(2) (2002), 277-294.

Somayeh Bandari

Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.
Email: somayeh.bandari@yahoo.com and s.bandari@bzte.ac.ir

Journal of Algebraic Systems

POLYMATROIDAL IDEALS AND LINEAR RESOLUTION

$$
\begin{aligned}
& \text { S. BANDARI } \\
& \text { ايدهآلهاى پلىماترويدال و تحليل خطى } \\
& \text { سميه بندرى } \\
& \text { گروه رياضى، مركز آموزش عالى فنى و مهندسى بوئين زهرا، بوئين زهرا، قزوين، ايران }
\end{aligned}
$$

 يكجملهاى با تحليل خطى باشد. همیچنين فرض كنيد

 پلى ماترويدال است. همچنین نشان مىدهيم كه ايدآل شيفت اول همولوزيكى يكى ايدهآل پلىماترويدال، پِلىماترويدال است.

كلمات كليدى: ايدهآل هاى پلىماترويدال، موضعى سازى يی جملهاى، خارج قسمتهاى خطى، تحليل خطى، ايدهآل شيفت همولوزيكى.

