*R***-CONVEX SUBSETS OF BIMODULES OVER *-RINGS**

I. NIKOUFAR* AND A. EBRAHIMI MEYMAND

ABSTRACT. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively. We investigate the notion of \mathcal{R} -convexity and the corresponding notion of \mathcal{R} -extreme points. We discuss the effect of an *f*-homomorphism on \mathcal{R} -convex subsets and its \mathcal{R} -extreme points. Namely, we declare how an *f*-homomorphism from \mathcal{M} to \mathcal{N} carries \mathcal{R} -convex subsets and its \mathcal{R} -extreme points to \mathcal{B} -convex subsets and its \mathcal{R} -extreme points to under the confirm that the \mathcal{R} -convex hull of invariant subsets under *f*-homomorphisms remains invariant.

1. INTRODUCTION

The study of noncommutative convexity or C^* -convexity was initiated by Loebl and Paulsen in [10] as a non-commutative analog of the linear convexity. Then, the notion of C^* -extreme points was studied as a non-commutative analog of linear extreme points. It is evident that every C^* -convex set is convex in the usual sense but the converse does not hold in general. Moreover, it was determined whether C^* -extremeness is distinct from linear extremeness by Hopenwasser, Moore, and Paulsen [7]. Farenick [5] proved the set of C^* -extreme points of compact C^* -convex subsets of the finite dimensional algebra $M_n(\mathbb{C})$ is nonempty and Morenz [14] proved the appropriate variant of the Krein-Milman theorem for C^* -convex subsets in matrix algebras, cf. [4, 6, 13]. Some other results of the linear convexity have been

DOI: 10.22044/JAS.2022.11817.1605.

MSC(2010): Primary: 47L07; Secondary: 52A41, 47A56.

Keywords: \mathcal{R} -convex sets; \mathcal{R} -extreme points; f-homomorphism.

Received: 12 April 2022, Accepted: 23 December 2022.

^{*}Corresponding author.

generalized to C^* -convexity, for instance, a version of the so-called Hahn-Banach theorem and separation theorem [3, 7]. Later another version of the non-commutative convexity was studied in the context of the quantum information theory in [9].

It makes sense in a C^* -algebra or a *-ring and, more generally, for bimodules over C^* -algebras or *-rings there is a concept of convexity that incorporates algebra-valued or ring-valued convex coefficients in a natural way, cf. [11, 12, 2, 15].

In this paper, we consider the notion of \mathcal{R} -convexity and the corresponding notion of \mathcal{R} -extreme points in the bimodules over unital *-rings. We prove that an *f*-homomorphism *g*, under certain conditions, carries \mathcal{R} -convex subsets and \mathcal{R} -extreme points of its domain to the \mathcal{B} -convex subsets and \mathcal{B} -extreme points of its range. We show that the \mathcal{R} -convex hull of invariant subsets is invariant under *g*. For more details on bimodules over rings, we refer the readers to [8].

2. \mathcal{R} -convex sets of bimodules over *-rings

In this section, we distinguish the properties of f-homomorphisms on \mathcal{R} -convex sets of bimodules over *-rings and we verify how an f-homomorphism carries \mathcal{R} -convex subsets of its domain to \mathcal{B} -convex subsets of its range and vice versa. We identify the invariance of the \mathcal{R} -convex hull of invariant subsets under f-homomorphisms.

Definition 2.1. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} . A set $\mathcal{K} \subset \mathcal{M}$ is called \mathcal{R} -convex, if \mathcal{K} is closed under the formation of finite sums of the type $\sum_i t_i^* x_i t_i$, where $t_i \in \mathcal{R}$, $x_i \in \mathcal{K}$ and $\sum_i t_i^* t_i = 1$.

This formation of finite sums is called an \mathcal{R} -convex combination in \mathcal{K} and the coefficients t_i are called \mathcal{R} -convex coefficients. If the coefficients t_i are invertible in \mathcal{R} , then they are called proper \mathcal{R} -convex coefficients and the \mathcal{R} -convex combination is called a proper \mathcal{R} -convex combination.

By definition it is clear that every subbimodule of \mathcal{M} is \mathcal{R} -convex and furthermore, if $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R} -convex, \mathcal{R}_1 is a *-subring of \mathcal{R} , and $1 \in \mathcal{R}_1$, then \mathcal{K} is \mathcal{R}_1 -convex. We remark that any module over a commutative ring is automatically a bimodule. Indeed, if \mathcal{M} is a left module, we can define the multiplication on the right to be the same as the multiplication on the left. So, if the unital *-ring \mathcal{R} is commutative, then we have, amb = (ab)m = m(ab) for $m \in \mathcal{M}$ and $a, b \in \mathcal{R}$. Therefore, the \mathcal{R} -convex combinations are of the form $\sum_i a_i x_i$, where $a_i \in \mathcal{R}^+$ and $x_i \in \mathcal{K}$. Note that \mathcal{R}^+ denotes the cone of positive elements in \mathcal{R} . Such \mathcal{R} -convex combinations are called linear \mathcal{R} -convex combinations. **Definition 2.2.** Let \mathcal{M} and \mathcal{N} be bimodules over unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ a *-homomorphism. We say the mapping $g : \mathcal{M} \to \mathcal{N}$ is an f-homomorphism whenever

- i) $g(m_1 + m_2) = g(m_1) + g(m_2)$, for all $m_1, m_2 \in \mathcal{M}$,
- ii) g(amb) = f(a)g(m)f(b), for all $a, b \in \mathcal{R}$ and $m \in \mathcal{M}$.

It is clear that if f is the identity mapping and $\mathcal{R} = \mathcal{B}$, then g is clearly an \mathcal{R} -bimodule homomorphism from \mathcal{M} into \mathcal{N} , i.e., g is an additive mapping such that g(amb) = ag(m)b for all $a, b \in \mathcal{R}$ and $m \in \mathcal{M}$.

One may consider \mathcal{R} and \mathcal{B} as bimodules over themselves. Let $f : \mathcal{R} \to \mathcal{B}$ be a *-homomorphism. Then, f is an f-homomorphism, 2f is an f-homomorphism, and -f is an f-homomorphism.

An injective f-homomorphism is called an f-monomorphism and a surjective f-homomorphism is called an f-epimorphism.

Definition 2.3. [1] A *-ring is said to satisfy the positive square-root axiom (briefly, the (PSR)-axiom) in case, for every x > 0, there exists $y \in \{x\}''$ with y > 0 and $x = y^2$.

Definition 2.4. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} . For $x, y \in \mathcal{M}$, the \mathcal{R} -segment connecting x and y is defined by

$$[x,y]_{\mathcal{R}} := \Big\{ \sum_{i} t_{i}^{*} x t_{i} + \sum_{j} v_{j}^{*} y v_{j} : \sum_{i} t_{i}^{*} t_{i} + \sum_{j} v_{j}^{*} v_{j} = 1, t_{i}, v_{j} \in \mathcal{R} \Big\}.$$

Note that in this article the formation of all sums are finite sums.

Proposition 2.5. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} . For $x, y \in \mathcal{M}$, the \mathcal{R} -segment $[x, y]_{\mathcal{R}}$ is an \mathcal{R} -convex set that contains both of x and y.

Proof. Let $x_1, \ldots, x_n \in [x, y]_{\mathcal{R}}$. We prove $\sum_k t_k^* x_k t_k \in [x, y]_{\mathcal{R}}$, where $\sum_k t_k^* t_k = 1$. Since $x_k \in [x, y]_{\mathcal{R}}$, there exist $a_{ik}, b_{jk} \in \mathcal{R}$ such that

$$x_k = \sum_{i} a_{ik}^* x a_{ik} + \sum_{j} b_{jk}^* y b_{jk}, \quad \sum_{i} a_{ik}^* a_{ik} + \sum_{j} b_{jk}^* b_{jk} = 1.$$

We have

$$\sum_{k} t_{k}^{*} x_{k} t_{k} = \sum_{k} t_{k}^{*} \Big(\sum_{i} a_{ik}^{*} x a_{ik} + \sum_{j} b_{jk}^{*} y b_{jk} \Big) t_{k}$$
$$= \sum_{k} \sum_{i} t_{k}^{*} a_{ik}^{*} x a_{ik} t_{k} + \sum_{k} \sum_{j} t_{k}^{*} b_{jk}^{*} y b_{jk} t_{k},$$

where

$$\sum_{k} \sum_{i} t_{k}^{*} a_{ik}^{*} a_{ik} t_{k} + \sum_{k} \sum_{j} t_{k}^{*} b_{jk}^{*} b_{jk} t_{k} = \sum_{k} t_{k}^{*} \Big(\sum_{i} a_{ik}^{*} a_{ik} + \sum_{j} b_{jk}^{*} b_{jk} \Big) t_{k}$$
$$= \sum_{k} t_{k}^{*} (1) t_{k} = 1.$$

So, the \mathcal{R} -segment $[x, y]_{\mathcal{R}}$ is closed under the formation of finite sums of the desired type. One may write $x = 1x1 + 0_{\mathcal{R}}y0_{\mathcal{R}}, y = 0_{\mathcal{R}}x0_{\mathcal{R}} + 1y1$, and hence x and y belong to $[x, y]_{\mathcal{R}}$.

W remark that Proposition 2.5 is a generalization of Proposition 2.6 (i) of [2]. Let \mathcal{R} be a unital *-ring. Considering $\mathcal{M} = \mathcal{R}$ in Proposition 2.5, the unital *-ring \mathcal{R} is a bimodule over itself and so we get Proposition 2.6 (i) of [2]. Let $\mathcal{B}(\mathcal{H})$ denote the *-ring of bounded linear operators on a (separable) Hilbert space \mathcal{H} . Considering $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and $\mathcal{R} = \mathcal{B}(\mathcal{H})$ in Proposition 2.5, $\mathcal{B}(\mathcal{H})$ is a bimodule over itself and so we reach Lemma 12 of [10].

Theorem 2.6. Suppose that \mathcal{M} is a bimodule over \mathcal{R} , $\mathcal{K} \subset \mathcal{M}$, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom. Then the set \mathcal{K} is \mathcal{R} -convex if and only if the \mathcal{R} -segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$.

Proof. If the set \mathcal{K} is \mathcal{R} -convex, then clearly the \mathcal{R} -segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$. Conversely, suppose the \mathcal{R} -segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$. We show that \mathcal{K} is closed under the \mathcal{R} -convex combination of the form $\sum_{i=1}^{m} t_i^* x_i t_i$, where $x_i \in \mathcal{K}, t_i \in \mathcal{R}$, and $\sum_{i=1}^{m} t_i^* t_i = 1$. Let $x := \sum_{i=1}^{m} t_i^* x_i t_i$. We prove that $x \in \mathcal{K}$. The proof is given by induction in m. The case of m = 1 is evident (since the only 1-term \mathcal{R} -convex combinations are of the form is $1^*x_1 = x_1 \in \mathcal{K}$). Assume that we already know that any \mathcal{R} -convex combination of m-1 vectors, $m \geq 2$, from \mathcal{K} is again a vector from \mathcal{K} , and let us prove that this statement remains valid also for all \mathcal{R} -convex combinations of m vectors from \mathcal{K} . Let the representation of x be such an \mathcal{R} -convex combination. We can assume that $t_m^* t_m < 1$, since otherwise there is nothing to prove (indeed, if $t_m^* t_m = 1$, then the remaining t_i 's should be zero, since all $t_i^* t_i$'s are nonnegative with the unit sum, and we have $x = t_m^* x_m t_m \in \mathcal{K}$). Assuming $t_m^* t_m < 1$ and noting that \mathcal{R} satisfies the

(PSR)-axiom, we can write

$$x = (1 - t_m^* t_m)^{\frac{1}{2}} \left[\sum_{i=1}^{m-1} (1 - t_m^* t_m)^{-\frac{1}{2}} t_i^* x_i t_i (1 - t_m^* t_m)^{-\frac{1}{2}} \right] (1 - t_m^* t_m)^{\frac{1}{2}} + t_m^* x_m t_m,$$

whence

$$\sum_{i=1}^{m-1} (1 - t_m^* t_m)^{-\frac{1}{2}} t_i^* t_i (1 - t_m^* t_m)^{-\frac{1}{2}} = (1 - t_m^* t_m)^{-\frac{1}{2}} (1 - t_m^* t_m) (1 - t_m^* t_m)^{-\frac{1}{2}} = 1.$$

So what is in the brackets, clearly is an \mathcal{R} -convex combination of m-1 points from \mathcal{K} and therefore, by the inductive hypothesis, this is a point, let it be called z, from \mathcal{K} ; we have

$$x = (1 - t_m^* t_m)^{\frac{1}{2}} z (1 - t_m^* t_m)^{\frac{1}{2}} + t_m^* x_m t_m$$

with z and $x_m \in \mathcal{K}$, and so $x \in [z, x_m]_{\mathcal{R}} \subseteq \mathcal{K}$ by the assumption. \Box

W may remark that Theorem 2.6 is a generalization of [10, Theorem 15]. Let M_n denote the *-ring of complex $n \times n$ matrices. Considering $\mathcal{M} = M_n$ and $\mathcal{R} = M_n$ in Theorem 2.6, the unital *-ring M_n satisfies the (PSR)-axiom and it is a bimodule over itself and so we get [10, Theorem 15].

Definition 2.7. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} and $\mathcal{S} \subset \mathcal{M}$. The convex hull of \mathcal{S} in \mathcal{M} over \mathcal{R} is the smallest \mathcal{R} -convex set containing \mathcal{S} . We denote it by \mathcal{R} -conv \mathcal{S} .

It is clear that

$$\mathcal{R}-\mathrm{conv}\mathcal{S}=\left\{\sum_{i}t_{i}^{*}x_{i}t_{i}:t_{i}\in\mathcal{R},x_{i}\in\mathcal{S},\sum_{i}t_{i}^{*}t_{i}=1\right\}.$$

If the unital *-ring \mathcal{R} is commutative, then \mathcal{R} -conv $\{m\} = \{m\}$ for $m \in \mathcal{M}$.

Proposition 2.8. Suppose that \mathcal{M} and \mathcal{N} are bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ is a unital *-homomorphism. If $g : \mathcal{M} \to \mathcal{N}$ is an f-homomorphism and $\mathcal{S} \subset \mathcal{M}$, then

 $g(\mathcal{R}-conv\mathcal{S}) \subseteq f(\mathcal{R})-convg(\mathcal{S}).$

The equality holds, when $f^{-1}(1) = \{1\}$.

Proof. We have

$$\begin{split} f(\mathcal{R}) - \operatorname{conv} g(\mathcal{S}) \\ &= \left\{ \sum_{i} f(t_{i})^{*} g(x_{i}) f(t_{i}) : t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, \sum_{i} f(t_{i})^{*} f(t_{i}) = 1 \right\} \\ &= \left\{ g(\sum_{i} t_{i}^{*} x_{i} t_{i}) : t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, f(\sum_{i} t_{i}^{*} t_{i}) = 1 \right\} \\ &\subseteq \left\{ g(\sum_{i} t_{i}^{*} x_{i} t_{i}) : t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, \sum_{i} t_{i}^{*} t_{i} = 1 \right\} \\ &= g(\mathcal{R} - \operatorname{conv} \mathcal{S}). \end{split}$$

If the unital *-ring \mathcal{B} is commutative, then $g(\mathcal{R}-\operatorname{conv}\{m\}) = \{g(m)\}$ for $m \in \mathcal{M}$.

Corollary 2.9. Suppose that \mathcal{M} and \mathcal{N} are bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and

$$f: \mathcal{R} \to \mathcal{B}$$

is a unital *-homomorphism. If $g: \mathcal{M} \to \mathcal{N}$ is an f-homomorphism, then

$$g([x,y]_{\mathcal{R}}) \subseteq [g(x),g(y)]_{f(\mathcal{R})}$$

for every $x, y \in \mathcal{M}$. Moreover, the equality holds, when $f^{-1}(1) = \{1\}$.

Proof. In view of Proposition 2.8, one can see that

$$g([x,y]_{\mathcal{R}}) = g(\mathcal{R}-\operatorname{conv}\{x,y\})$$
$$\subseteq f(\mathcal{R})-\operatorname{conv}\{g(x),g(y)\}$$
$$= [g(x),g(y)]_{f(\mathcal{R})}.$$

Proposition 2.10. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ a *-homomorphism such that $f^{-1}(1) = \{1\}$. If $g : \mathcal{M} \to \mathcal{N}$ is an f-homomorphism, $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R} -convex, and the unital *-ring \mathcal{B} satisfies the (PSR)-axiom, then $g(\mathcal{K})$ is $f(\mathcal{R})$ -convex.

Proof. Note that $f(\mathcal{R})$ is a *-subring of \mathcal{B} and $g(\mathcal{M})$ is a subbimodule of \mathcal{N} over the unital *-subring $f(\mathcal{R})$. According to Theorem 2.6, we show that $[g(x), g(y)]_{f(\mathcal{R})} \subseteq g(\mathcal{K})$ for every $x, y \in \mathcal{K}$. Since \mathcal{K} is

 \mathcal{R} -convex, $[x, y]_{\mathcal{R}} \subseteq \mathcal{K}$ and so $g([x, y]_{\mathcal{R}}) \subseteq g(\mathcal{K})$. By using Corollary 2.9, we reach

$$[g(x), g(y)]_{f(\mathcal{R})} = g([x, y]_{\mathcal{R}}) \subseteq g(\mathcal{K}).$$

Corollary 2.11. Under the hypotheses of Proposition 2.10, if f is an epimorphism, then $\operatorname{Im} g$ is a \mathcal{B} -convex subset of \mathcal{N} .

Corollary 2.12. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-ring \mathcal{R} . If $g : \mathcal{M} \to \mathcal{N}$ is an \mathcal{R} -bimodule homomorphism, $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R} -convex, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom, then $g(\mathcal{K})$ is \mathcal{R} -convex.

Proof. Suppose that $f : \mathcal{R} \to \mathcal{R}$ is the identity mapping and apply Proposition 2.10.

We state the converse of Proposition 2.10 as follows:

Proposition 2.13. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ is a unital *-homomorphism. If $g : \mathcal{M} \to \mathcal{N}$ is an f-monomorphism, $\mathcal{K} \subset \mathcal{M}$, $g(\mathcal{K})$ is $f(\mathcal{R})$ -convex, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom, then \mathcal{K} is \mathcal{R} -convex.

Proof. According to Theorem 2.6, we show that $[x, y]_{\mathcal{R}} \subseteq \mathcal{K}$ for every $x, y \in \mathcal{K}$. Since $g(\mathcal{K})$ is $f(\mathcal{R})$ -convex, $[g(x), g(y)]_{f(\mathcal{R})} \subseteq g(\mathcal{K})$ for every $x, y \in \mathcal{K}$ and so $g([x, y]_{\mathcal{R}}) \subseteq g(\mathcal{K})$, by Corollary 2.9. Since g is an f-monomorphism, the desired result follows.

Corollary 2.14. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-ring \mathcal{R} . If $g : \mathcal{M} \to \mathcal{N}$ is an \mathcal{R} -bimodule monomorphism, $\mathcal{K} \subset \mathcal{M}$, $g(\mathcal{K})$ is \mathcal{R} -convex, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom, then \mathcal{K} is \mathcal{R} -convex.

Proof. Suppose that $f : \mathcal{R} \to \mathcal{R}$ is the identity mapping and apply Proposition 2.13.

Corollary 2.15. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ is a *-epimorphism such that $f^{-1}(1) = \{1\}$. If $g : \mathcal{M} \to \mathcal{N}$ is an f-monomorphism and the unital *-rings \mathcal{R} and \mathcal{B} satisfy the (PSR)-axiom, then $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R} -convex if and only if $g(\mathcal{K}) \subset \mathcal{N}$ is \mathcal{B} -convex.

Proposition 2.16. Let \mathcal{M} and \mathcal{N} are bimodules over the unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ is a unital *-homomorphism. If $g : \mathcal{M} \to \mathcal{N}$ is an f-homomorphism, $S \subset \mathcal{N}$ is \mathcal{B} -convex, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom, then $g^{-1}(S)$ is an \mathcal{R} -convex subset of \mathcal{M} .

Proof. By applying Theorem 2.6, we prove that $[x, y]_{\mathcal{R}} \subseteq g^{-1}(S)$ for every $x, y \in g^{-1}(S)$. Since S is \mathcal{B} -convex and $g(x), g(y) \in S$,

$$[g(x), g(y)]_{\mathcal{B}} \subseteq S.$$

So, it follows from Corollary 2.9 that

$$g([x,y]_{\mathcal{R}}) \subseteq [g(x),g(y)]_{f(\mathcal{R})} \subseteq [g(x),g(y)]_{\mathcal{B}} \subseteq S.$$

Hence, $[x, y]_{\mathcal{R}} \subseteq g^{-1}(S)$.

Corollary 2.17. Under the hypothesis of Proposition 2.16, Kerg is an \mathcal{R} -convex subset of \mathcal{M} .

Proof. It follows from the fact that, $\text{Ker}g = g^{-1}(\{0\})$ and $\{0\}$ is a \mathcal{B} -convex subset of \mathcal{N} .

Corollary 2.18. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-ring \mathcal{R} . If $g : \mathcal{M} \to \mathcal{N}$ is an \mathcal{R} -bimodule homomorphism, $S \subset \mathcal{N}$ is \mathcal{R} -convex, and the unital *-ring \mathcal{R} satisfies the (PSR)-axiom, then $g^{-1}(S)$ is \mathcal{R} -convex.

Proof. Suppose that $f : \mathcal{R} \to \mathcal{R}$ is the identity mapping and apply Proposition 2.16.

Definition 2.19. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} and $\mathcal{S} \subseteq \mathcal{M}$. The subset \mathcal{S} is invariant under an *f*-homomorphism $g: \mathcal{M} \to \mathcal{M}$ whenever $g(\mathcal{S}) \subseteq \mathcal{S}$.

Proposition 2.20. Suppose that \mathcal{M} is a bimodule over the unital *-ring \mathcal{R} and $f : \mathcal{R} \to \mathcal{R}$ is a unital *-homomorphism. If $g : \mathcal{M} \to \mathcal{M}$ is an f-homomorphism and $S \subset \mathcal{M}$ is invariant under g, then \mathcal{R} -convex hull of S is invariant under g.

Proof. Taking into account that $g(\mathcal{S}) \subseteq \mathcal{S}$ we have

 \mathcal{R} -conv $g(\mathcal{S}) \subseteq \mathcal{R}$ -conv \mathcal{S} .

Consequently, by Corollary 2.9, we deduce

$$\begin{split} g(\mathcal{R}-\mathsf{conv}\mathcal{S}) &\subseteq f(\mathcal{R}) - \mathsf{conv}g(\mathcal{S}) \\ &\subseteq \mathcal{R} - \mathsf{conv}g(\mathcal{S}) \\ &\subseteq \mathcal{R} - \mathsf{conv}\mathcal{S}. \end{split}$$

Corollary 2.21. Suppose that \mathcal{M} is a bimodule over the unital *-ring \mathcal{R} . If $g : \mathcal{M} \to \mathcal{M}$ is an \mathcal{R} -bimodule homomorphism and $S \subset \mathcal{M}$ is invariant under g, then \mathcal{R} -convex hull of \mathcal{S} is invariant under g.

Proof. According to Corollary 2.9 and Proposition 2.20 and for the identity mapping $f : \mathcal{R} \to \mathcal{R}$, one has

$$g(\mathcal{R}-\mathrm{conv}\mathcal{S})\subseteq \mathcal{R}-\mathrm{conv}g(\mathcal{S})\subseteq \mathcal{R}-\mathrm{conv}\mathcal{S}.$$

3. \mathcal{R} -extreme points of \mathcal{R} -convex sets

In this section, we discuss the effect of an f-homomorphism on \mathcal{R} -extreme points of \mathcal{R} -convex subsets of bimodules over unital *-rings.

Definition 3.1. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R} and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R} -convex subset of \mathcal{M} . The point $x \in \mathcal{K}$ is called \mathcal{R} -extreme point in \mathcal{K} , if $x = \sum_i t_i^* x_i t_i$ is a proper \mathcal{R} -convex combination of elements $x_i \in \mathcal{K}$, then each x_i comes from the unitary orbit of x, i.e., there exist unitary elements $u_i \in \mathcal{R}$ such that for all i, $x = u_i^* x_i u_i$.

If $x \in \mathcal{K}$ is an \mathcal{R} -extreme point of \mathcal{K} and $x = \sum_i a_i x_i$ is a proper linear convex combination, then we have $x = x_i$ for each *i*.

Proposition 3.2. Suppose that \mathcal{M} and \mathcal{N} are bimodules over unital *-rings \mathcal{R} and \mathcal{B} , respectively. Let $f : \mathcal{R} \to \mathcal{B}$ be a unital *-epimorphism, $g : \mathcal{M} \to \mathcal{N}$ an f-homomorphism and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R} -convex set. If y is a \mathcal{B} -extreme point of $g(\mathcal{K})$ and x is an \mathcal{R} -extreme point of $g^{-1}(y) \cap \mathcal{K}$, then x is an \mathcal{R} -extreme point of \mathcal{K} .

Proof. Let $x = \sum_i t_i^* x_i t_i$ be a proper \mathcal{R} -convex combination of a finite number of elements $x_i \in \mathcal{K}$. Then,

$$y = g(x) = g(\sum_{i} t_{i}^{*} x_{i} t_{i}) = \sum_{i} g(t_{i}^{*} x_{i} t_{i}) = \sum_{i} f(t_{i})^{*} g(x_{i}) f(t_{i})$$

and

$$\sum_{i} f(t_i)^* f(t_i) = \sum_{i} f(t_i^* t_i) = f(\sum_{i} t_i^* t_i) = f(1) = 1.$$

Since the coefficients $f(t_i)$ are invertible in \mathcal{B} and y is a \mathcal{B} -extreme point of $g(\mathcal{K})$, there exist unitary elements $v_i \in \mathcal{R}$ such that

$$y = f(v_i)^* g(x_i) f(v_i).$$

It follows that $y = g(v_i^* x_i v_i)$ and so $v_i^* x_i v_i \in g^{-1}(y)$. We can rewrite

$$x = \sum_{i} t_{i}^{*} x_{i} t_{i} = \sum_{i} t_{i}^{*} (v_{i} v_{i}^{*}) x_{i} (v_{i} v_{i}^{*}) t_{i} = \sum_{i} (v_{i}^{*} t_{i})^{*} (v_{i}^{*} x_{i} v_{i}) (v_{i}^{*} t_{i}).$$

This means that x is a proper \mathcal{R} -convex combination of elements in $g^{-1}(y) \cap \mathcal{K}$. Since x is an \mathcal{R} -extreme point of $g^{-1}(y) \cap \mathcal{K}$, there exist unitary elements $w_i \in \mathcal{R}$ such that $x = w_i^*(v_i^* x_i v_i) w_i$. Let $u_i = v_i w_i$.

Then, u_i is unitary and $x = u_i^* x_i u_i$, i.e., each x_i comes from the unitary orbit of x.

Theorem 3.3. Let \mathcal{M} and \mathcal{N} be bimodules over unital *-rings \mathcal{R} and \mathcal{B} , respectively and let $g : \mathcal{M} \to \mathcal{N}$ be an f-monomorphism and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R} -convex subset.

- (a) If f : R → B is a *-epimorphism such that f⁻¹(1) = {1} and x is an R-extreme point of K, then g(x) is a B-extreme point of g(K).
- (b) If $f : \mathcal{R} \to \mathcal{B}$ is a unital *-epimorphism and g(x) is a \mathcal{B} -extreme point of $g(\mathcal{K})$, then x is an \mathcal{R} -extreme point of \mathcal{K} .

Proof. (a) Let $g(x) = \sum_i b_i^* y_i b_i$ be a proper \mathcal{B} -convex combination of a finite number of elements $y_i \in g(\mathcal{K})$. There exist $t_i \in \mathcal{R}$ and $x_i \in \mathcal{K}$ such that $f(t_i) = b_i$ and $g(x_i) = y_i$. We observe that

$$g(x) = \sum_{i} b_{i}^{*} y_{i} b_{i} = \sum_{i} f(t_{i})^{*} g(x_{i}) f(t_{i}) = g(\sum_{i} t_{i}^{*} x_{i} t_{i}),$$

$$1 = \sum_{i} b_{i}^{*} b_{i} = \sum_{i} f(t_{i})^{*} f(t_{i}) = f(\sum_{i} t_{i}^{*} t_{i})$$

and so that $x = \sum_i t_i^* x_i t_i$ with $\sum_i t_i^* t_i = 1$. This \mathcal{R} -convex combination is proper. Since x is an \mathcal{R} -extreme point of \mathcal{K} , there exist unitary elements $u_i \in \mathcal{R}$ such that $x = u_i^* x_i u_i$. Thus,

$$g(x) = g(u_i^* x_i u_i) = f(u_i^*)g(x_i)f(u_i) = f(u_i)^*g(x_i)f(u_i) = f(u_i)^*y_if(u_i).$$

This indicates that each y_i comes from the unitary orbit of g(x), i.e., g(x) is a \mathcal{B} -extreme point of $g(\mathcal{K})$.

(b) Since g is f-monomorphism, $g^{-1}(y) = \{x\}$, where y = g(x). Hence, $g^{-1}(y) \cap \mathcal{K}$ is a singleton subset containing x and so x is \mathcal{R} -extreme. The result now follows from Proposition 3.2 and the fact that y is a \mathcal{B} -extreme point of $g(\mathcal{K})$,

The following corollary provides the necessary and sufficient condition.

Corollary 3.4. Let \mathcal{M} and \mathcal{N} be bimodules over unital *-rings \mathcal{R} and \mathcal{B} , respectively and $f : \mathcal{R} \to \mathcal{B}$ a *-epimorphism such that $f^{-1}(1) = \{1\}$. If $g : \mathcal{M} \to \mathcal{N}$ is an f-monomorphism and $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R} -convex, then x is an \mathcal{R} -extreme point of \mathcal{K} if and only if g(x) is a \mathcal{B} -extreme point of $g(\mathcal{K})$.

4. EXAMPLES

Let \mathcal{H} be a Hilbert space and denote by $\mathcal{B}(\mathcal{H})$ the collection of bounded linear operators on \mathcal{H} and by $\mathcal{B}_0(\mathcal{H})$ the compact operators. The unit ball of $\mathcal{B}(\mathcal{H})$; that is,

$$B = \{T \in \mathcal{B}(\mathcal{H}) : ||T|| \le 1\}$$

is $\mathcal{B}(\mathcal{H})$ -convex [10].

Example 4.1. Consider a triangle with the wedges (0,0), (1,0), and (1,1) in the plane \mathbb{R}^2 . This triangle is \mathbb{R} -convex in \mathbb{R}^2 and its \mathbb{R} -extreme points are its wedges.

Example 4.2. Consider the unit disk in the complex plane. This unit disk is \mathbb{C} -convex in \mathbb{C} and its \mathbb{C} -extreme points are the set

$$\{z \in \mathbb{C} : |z| = 1\}.$$

Example 4.3. [7, Corollary 1.2] The $\mathcal{B}(\mathcal{H})$ -extreme points of the unit ball B are precisely the isometries and co-isometries.

The numerical range of an operator $T \in \mathcal{B}(\mathcal{H})$, denoted by W(T), is the collection of complex numbers $\langle Th, h \rangle$, where h runs through all vectors in \mathcal{H} of norm 1. The numerical radius of T, w(T), is defined by 1

$$v(T) = \sup\{|\lambda| : \lambda \in W(T)\}.$$

Let $M_n(\mathbb{C})$ be the set of $n \times n$ matrices with entries in \mathbb{C} . We denote by W_1 the set of all matrices $T \in M_n$ such that $w(T) \leq 1$. It is a standard fact that W_1 is linearly convex (\mathbb{R} -convex) and in [10] it is shown that W_1 is M_n -convex. We denote by W_1^1 the collection of matrices $T \in M_n$ for which w(T) = 1 and $1 \in W(T)$.

Example 4.4. [7, Theorem 2.9] $T \in M_n$ is \mathbb{C} -extreme point of W_1 if and only if W(T) is the entire unit disk. Recall that W(T) is an elliptical disk.

Example 4.5. [7, Theorem 2.10] The identity matrix and all nilpotent matrices in W_1^1 are M_n -extreme point in W_1^1 .

Example 4.6. [7, Theorem 3.1] Assume that *H* is infinite dimensional and let $S = \{T \in \mathcal{B}(\mathcal{H}) : 0 \le T \le I\}$ be the unit operator interval and $P \in \mathcal{B}(\mathcal{H})$ a projection (unequal to 0 or I).

- 1. If P has infinite rank and co-rank, then P is $\mathcal{B}(\mathcal{H})$ -extreme of S.
- 2. If P has finite rank, then P is $\mathcal{B}(\mathcal{H})$ -extreme of $S \cap \mathcal{B}_0(\mathcal{H})$.
- 3. If P has finite co-rank, then P is $\mathcal{B}(\mathcal{H})$ -extreme of the set

$$\{T \in S : I - T \in \mathcal{B}_0(\mathcal{H})\}.$$

Our goal was to extend the notion of convexity to bimodules over *-rings which is available for *-rings or *-algebras. All of the examples that exist are for *-rings or *-algebras. So, to clarify the distinction between our new concept of convex sets of bimodules over *-rings and the notion of C*-convexity for *-rings or *-algebras, we include an example which is not a bimodule over itself. In other words, the module is distinct from its ring.

Example 4.7. Let G be a commutative group and consider

$$End(G) := \{ f : G \to G : f \text{ is a homomorphism} \}.$$

Then End(G) is a unital non-commutative *-ring with

$$(f+g)(a) = f(a) + g(a)$$

 $(fg)(a) = f(g(a)),$
 $f^*(a) = f(a)$

for every $a \in G$ and $f, g \in End(G)$. In this situation, the group G is an End(G)-bimodule by

$$a.f = f.a = f(a)$$

for every $a \in G$ and $f \in End(G)$. A set $\mathcal{K} \subset G$ is End(G)-convex, if \mathcal{K} is closed under the formation of finite sums of the type $\sum_i f_i^* . x_i . f_i$, where $f_i \in End(G)$, $x_i \in \mathcal{K}$ and $\sum_i f_i^* f_i = I$, I is the identity homomorphism on G. We note that

$$\sum_{i} f_{i}^{*} \cdot x_{i} \cdot f_{i} = \sum_{i} f_{i} \cdot x_{i} \cdot f_{i} = \sum_{i} f_{i} \cdot f_{i}(x_{i}) = \sum_{i} f_{i}^{2}(x_{i}).$$

So, \mathcal{K} is End(G)-convex, when $\sum_i f_i^2(x_i) \in \mathcal{K}$. We now provide an End(G)-convex set in G. Let $g \in End(G)$ be a fixed homomorphism such that gf = fg for every $f \in End(G)$ and consider

$$S_g = \{ x \in G : g(x) = 0 \}.$$

Then S_g is End(G)-convex in G.

References

- 1. S. K. Berberian, Baer *-rings, Springer Verlag, Berlin, 1972.
- A. Ebrahimi and G. H. Esslamzadeh, C*-convexity and C*-faces in *-rings, Turk. J. Math., 36 (2012), 131–145.
- E. G. Effros and S. Winkler, Matrix Convexity: Operator Analogues of the Bipolar and Hahn-Banach Theorems, J. Funct. Anal., 144(1) (1997), 117–152.
- D. R. Farenick, C*-convexity and matricial ranges, Canad. J. Math., 44 (1992), 280–297.
- D. R. Farenick, Krein-Milman type problems for compact matricially convex sets, *Linear Algebra Appl.*, 162–164 (1992), 325–334.

- 6. D. R. Farenick and P. B. Morenz, C^{*}-extreme points of some compact C^{*}convex sets, Proc. Amer. Math. Soc., **118** (1993), 765–775.
- A. Hopenwasser, R. L. Moore and V. I. Pualsen, C^{*}-extreme points, Trans. Amer. Math. Soc. 266(1) (1981), 291–307.
- 8. T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc. 1974.
- A. Jencova, On the convex structure of process POVMs, J. Math. Phys., 57(1) (2016), Article ID: 015207.
- R. Loebl, V. I. Paulsen, Some remarks on C*-convexity, Linear Alg. Appl., 35 (1981), 63–78.
- 11. B. Magajna, C^{*}-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh Section A., **130**(2) (2000), 375–387.
- B. Magajna, C*-convexity and the Numerical Range, Canad. Math. Bull., 43(2) (2000), 193–207.
- B. Magajna, On C*-extreme points, Proc. Amer. Math. Soc., 129(3) (2000), 771–780.
- P. B. Morenz, The structure of C*-convex sets, Canad. J. Math., 46 (1994), 1007–1026.
- I. Nikoufar, A note on non-unital homomorphisms on C*-convex sets in *-rings, Acta Univ. M. Belii Ser. Math., 24, (2016), 21–24.

Ismail Nikoufar

Department of Mathematics, Payame Noor University, Tehran, Iran. Email: nikoufar@pnu.ac.ir

Ali Ebrahimi Meymand

Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. Email: a.ebrahimi@vru.ac.ir Journal of Algebraic Systems

\mathcal{R} -CONVEX SUBSETS OF BIMODULES OVER *-RINGS

I. NIKOUFAR AND A. EBRAHIMI MEYMAND

زیرمجموعههای R-محدب دومدولها روی *-حلقهها اسماعیل نیکوفر و علی ابراهیمی میمند^۲ ^۱گروه ریاضی، دانشگاه پیام نور، تهران، ایران

کروه ریاضی، دانشگاه ولی عصر رفسنجان، رفسنجان، ایران

کلمات کلیدی: مجموعه های R-محدب، نقاط R-انتهایی، f-همریختی.