Journal of Algebraic Systems

Vol. 12, No. 1, (2024), pp 91-103

\mathcal{R}-CONVEX SUBSETS OF BIMODULES OVER *-RINGS

I. NIKOUFAR* AND A. EBRAHIMI MEYMAND

Abstract

Let \mathcal{M} and \mathcal{N} be bimodules over the unital $*$-rings \mathcal{R} and \mathcal{B}, respectively. We investigate the notion of \mathcal{R}-convexity and the corresponding notion of \mathcal{R}-extreme points. We discuss the effect of an f-homomorphism on \mathcal{R}-convex subsets and its \mathcal{R}-extreme points. Namely, we declare how an f-homomorphism from \mathcal{M} to \mathcal{N} carries \mathcal{R}-convex subsets and its \mathcal{R}-extreme points to \mathcal{B}-convex subsets and its \mathcal{B}-extreme points and vice versa. Moreover, we confirm that the \mathcal{R}-convex hull of invariant subsets under f-homomorphisms remains invariant.

1. Introduction

The study of noncommutative convexity or C^{*}-convexity was initiated by Loebl and Paulsen in [10] as a non-commutative analog of the linear convexity. Then, the notion of C^{*}-extreme points was studied as a non-commutative analog of linear extreme points. It is evident that every C^{*}-convex set is convex in the usual sense but the converse does not hold in general. Moreover, it was determined whether C^{*}-extremeness is distinct from linear extremeness by Hopenwasser, Moore, and Paulsen [7]. Farenick [5] proved the set of C^{*}-extreme points of compact C^{*}-convex subsets of the finite dimensional algebra $M_{n}(\mathbb{C})$ is nonempty and Morenz [14] proved the appropriate variant of the Krein-Milman theorem for C^{*}-convex subsets in matrix algebras, cf. $[4,6,13]$. Some other results of the linear convexity have been

[^0]generalized to C^{*}-convexity, for instance, a version of the so-called Hahn-Banach theorem and separation theorem [3, 7]. Later another version of the non-commutative convexity was studied in the context of the quantum information theory in [9].

It makes sense in a C^{*}-algebra or a $*$-ring and, more generally, for bimodules over C^{*}-algebras or $*$-rings there is a concept of convexity that incorporates algebra-valued or ring-valued convex coefficients in a natural way, cf. [11, 12, 2, 15].

In this paper, we consider the notion of \mathcal{R}-convexity and the corresponding notion of \mathcal{R}-extreme points in the bimodules over unital *-rings. We prove that an f-homomorphism g, under certain conditions, carries \mathcal{R}-convex subsets and \mathcal{R}-extreme points of its domain to the \mathcal{B}-convex subsets and \mathcal{B}-extreme points of its range. We show that the \mathcal{R}-convex hull of invariant subsets is invariant under g. For more details on bimodules over rings, we refer the readers to [8].

2. \mathcal{R}-CONVEX SETS OF BIMODULES OVER $*$-RINGS

In this section, we distinguish the properties of f-homomorphisms on \mathcal{R}-convex sets of bimodules over $*$-rings and we verify how an f-homomorphism carries \mathcal{R}-convex subsets of its domain to \mathcal{B}-convex subsets of its range and vice versa. We identify the invariance of the \mathcal{R}-convex hull of invariant subsets under f-homomorphisms.

Definition 2.1. Let \mathcal{M} be a bimodule over a unital $*$-ring \mathcal{R}. A set $\mathcal{K} \subset \mathcal{M}$ is called \mathcal{R}-convex, if \mathcal{K} is closed under the formation of finite sums of the type $\sum_{i} t_{i}^{*} x_{i} t_{i}$, where $t_{i} \in \mathcal{R}, x_{i} \in \mathcal{K}$ and $\sum_{i} t_{i}^{*} t_{i}=1$.

This formation of finite sums is called an \mathcal{R}-convex combination in \mathcal{K} and the coefficients t_{i} are called \mathcal{R}-convex coefficients. If the coefficients t_{i} are invertible in \mathcal{R}, then they are called proper \mathcal{R}-convex coefficients and the \mathcal{R}-convex combination is called a proper \mathcal{R}-convex combination.

By definition it is clear that every subbimodule of \mathcal{M} is \mathcal{R}-convex and furthermore, if $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R}-convex, \mathcal{R}_{1} is a $*$-subring of \mathcal{R}, and $1 \in \mathcal{R}_{1}$, then \mathcal{K} is \mathcal{R}_{1}-convex. We remark that any module over a commutative ring is automatically a bimodule. Indeed, if \mathcal{M} is a left module, we can define the multiplication on the right to be the same as the multiplication on the left. So, if the unital $*$-ring \mathcal{R} is commutative, then we have, $a m b=(a b) m=m(a b)$ for $m \in \mathcal{M}$ and $a, b \in \mathcal{R}$. Therefore, the \mathcal{R}-convex combinations are of the form $\sum_{i} a_{i} x_{i}$, where $a_{i} \in \mathcal{R}^{+}$and $x_{i} \in \mathcal{K}$. Note that \mathcal{R}^{+}denotes the cone of positive elements in \mathcal{R}. Such \mathcal{R}-convex combinations are called linear \mathcal{R}-convex combinations.

Definition 2.2. Let \mathcal{M} and \mathcal{N} be bimodules over unital $*$-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ a $*$-homomorphism. We say the mapping $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-homomorphism whenever
i) $g\left(m_{1}+m_{2}\right)=g\left(m_{1}\right)+g\left(m_{2}\right)$, for all $m_{1}, m_{2} \in \mathcal{M}$,
ii) $g(a m b)=f(a) g(m) f(b)$, for all $a, b \in \mathcal{R}$ and $m \in \mathcal{M}$.

It is clear that if f is the identity mapping and $\mathcal{R}=\mathcal{B}$, then g is clearly an \mathcal{R}-bimodule homomorphism from \mathcal{M} into \mathcal{N}, i.e., g is an additive mapping such that $g(a m b)=a g(m) b$ for all $a, b \in \mathcal{R}$ and $m \in \mathcal{M}$.

One may consider \mathcal{R} and \mathcal{B} as bimodules over themselves. Let $f: \mathcal{R} \rightarrow \mathcal{B}$ be a $*$-homomorphism. Then, f is an f-homomorphism, $2 f$ is an f-homomorphism, and $-f$ is an f-homomorphism.

An injective f-homomorphism is called an f-monomorphism and a surjective f-homomorphism is called an f-epimorphism.

Definition 2.3. [1] A *-ring is said to satisfy the positive square-root axiom (briefly, the (PSR)-axiom) in case, for every $x>0$, there exists $y \in\{x\}^{\prime \prime}$ with $y>0$ and $x=y^{2}$.

Definition 2.4. Let \mathcal{M} be a bimodule over a unital $*$-ring \mathcal{R}. For $x, y \in \mathcal{M}$, the \mathcal{R}-segment connecting x and y is defined by

$$
[x, y]_{\mathcal{R}}:=\left\{\sum_{i} t_{i}^{*} x t_{i}+\sum_{j} v_{j}^{*} y v_{j}: \sum_{i} t_{i}^{*} t_{i}+\sum_{j} v_{j}^{*} v_{j}=1, t_{i}, v_{j} \in \mathcal{R}\right\}
$$

Note that in this article the formation of all sums are finite sums.
Proposition 2.5. Let \mathcal{M} be a bimodule over a unital *-ring \mathcal{R}. For $x, y \in \mathcal{M}$, the \mathcal{R}-segment $[x, y]_{\mathcal{R}}$ is an \mathcal{R}-convex set that contains both of x and y.

Proof. Let $x_{1}, \ldots, x_{n} \in[x, y]_{\mathcal{R}}$. We prove $\sum_{k} t_{k}^{*} x_{k} t_{k} \in[x, y]_{\mathcal{R}}$, where $\sum_{k} t_{k}^{*} t_{k}=1$. Since $x_{k} \in[x, y]_{\mathcal{R}}$, there exist $a_{i k}, b_{j k} \in \mathcal{R}$ such that

$$
x_{k}=\sum_{i} a_{i k}^{*} x a_{i k}+\sum_{j} b_{j k}^{*} y b_{j k}, \quad \sum_{i} a_{i k}^{*} a_{i k}+\sum_{j} b_{j k}^{*} b_{j k}=1 .
$$

We have

$$
\begin{aligned}
\sum_{k} t_{k}^{*} x_{k} t_{k} & =\sum_{k} t_{k}^{*}\left(\sum_{i} a_{i k}^{*} x a_{i k}+\sum_{j} b_{j k}^{*} y b_{j k}\right) t_{k} \\
& =\sum_{k} \sum_{i} t_{k}^{*} a_{i k}^{*} x a_{i k} t_{k}+\sum_{k} \sum_{j} t_{k}^{*} b_{j k}^{*} y b_{j k} t_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
\sum_{k} \sum_{i} t_{k}^{*} a_{i k}^{*} a_{i k} t_{k}+\sum_{k} \sum_{j} t_{k}^{*} b_{j k}^{*} b_{j k} t_{k} & =\sum_{k} t_{k}^{*}\left(\sum_{i} a_{i k}^{*} a_{i k}+\sum_{j} b_{j k}^{*} b_{j k}\right) t_{k} \\
& =\sum_{k} t_{k}^{*}(1) t_{k}=1
\end{aligned}
$$

So, the \mathcal{R}-segment $[x, y]_{\mathcal{R}}$ is closed under the formation of finite sums of the desired type. One may write $x=1 x 1+0_{\mathcal{R}} y 0_{\mathcal{R}}, y=0_{\mathcal{R}} x 0_{\mathcal{R}}+1 y 1$, and hence x and y belong to $[x, y]_{\mathcal{R}}$.

W remark that Proposition 2.5 is a generalization of Proposition 2.6 (i) of [2]. Let \mathcal{R} be a unital $*$-ring. Considering $\mathcal{M}=\mathcal{R}$ in Proposition 2.5, the unital $*$-ring \mathcal{R} is a bimodule over itself and so we get Proposition 2.6 (i) of [2]. Let $\mathcal{B}(\mathcal{H})$ denote the $*$-ring of bounded linear operators on a (separable) Hilbert space \mathcal{H}. Considering $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\mathcal{R}=\mathcal{B}(\mathcal{H})$ in Proposition 2.5, $\mathcal{B}(\mathcal{H})$ is a bimodule over itself and so we reach Lemma 12 of [10].

Theorem 2.6. Suppose that \mathcal{M} is a bimodule over $\mathcal{R}, \mathcal{K} \subset \mathcal{M}$, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom. Then the set \mathcal{K} is \mathcal{R}-convex if and only if the \mathcal{R}-segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$.

Proof. If the set \mathcal{K} is \mathcal{R}-convex, then clearly the \mathcal{R}-segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$. Conversely, suppose the \mathcal{R}-segment $[x, y]_{\mathcal{R}}$ is contained in \mathcal{K} for every $x, y \in \mathcal{K}$. We show that \mathcal{K} is closed under the \mathcal{R}-convex combination of the form $\sum_{i=1}^{m} t_{i}^{*} x_{i} t_{i}$, where $x_{i} \in \mathcal{K}, t_{i} \in \mathcal{R}$, and $\sum_{i=1}^{m} t_{i}^{*} t_{i}=1$. Let $x:=\sum_{i=1}^{m} t_{i}^{*} x_{i} t_{i}$. We prove that $x \in \mathcal{K}$. The proof is given by induction in m. The case of $m=1$ is evident (since the only 1 -term \mathcal{R}-convex combinations are of the form is $\left.1^{*} x_{1} 1=x_{1} \in \mathcal{K}\right)$. Assume that we already know that any \mathcal{R}-convex combination of $m-1$ vectors, $m \geq 2$, from \mathcal{K} is again a vector from \mathcal{K}, and let us prove that this statement remains valid also for all \mathcal{R}-convex combinations of m vectors from \mathcal{K}. Let the representation of x be such an \mathcal{R}-convex combination. We can assume that $t_{m}^{*} t_{m}<1$, since otherwise there is nothing to prove (indeed, if $t_{m}^{*} t_{m}=1$, then the remaining t_{i} 's should be zero, since all $t_{i}^{*} t_{i}$'s are nonnegative with the unit sum, and we have $\left.x=t_{m}^{*} x_{m} t_{m} \in \mathcal{K}\right)$. Assuming $t_{m}^{*} t_{m}<1$ and noting that \mathcal{R} satisfies the
(PSR)-axiom, we can write

$$
\begin{aligned}
x & =\left(1-t_{m}^{*} t_{m}\right)^{\frac{1}{2}}\left[\sum_{i=1}^{m-1}\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}} t_{i}^{*} x_{i} t_{i}\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}}\right]\left(1-t_{m}^{*} t_{m}\right)^{\frac{1}{2}} \\
& +t_{m}^{*} x_{m} t_{m}
\end{aligned}
$$

whence

$$
\begin{aligned}
\sum_{i=1}^{m-1}\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}} t_{i}^{*} t_{i}\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}} & =\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}}\left(1-t_{m}^{*} t_{m}\right)\left(1-t_{m}^{*} t_{m}\right)^{-\frac{1}{2}} \\
& =1
\end{aligned}
$$

So what is in the brackets, clearly is an \mathcal{R}-convex combination of $m-1$ points from \mathcal{K} and therefore, by the inductive hypothesis, this is a point, let it be called z, from \mathcal{K}; we have

$$
x=\left(1-t_{m}^{*} t_{m}\right)^{\frac{1}{2}} z\left(1-t_{m}^{*} t_{m}\right)^{\frac{1}{2}}+t_{m}^{*} x_{m} t_{m}
$$

with z and $x_{m} \in \mathcal{K}$, and so $x \in\left[z, x_{m}\right]_{\mathcal{R}} \subseteq \mathcal{K}$ by the assumption.
W may remark that Theorem 2.6 is a generalization of [10, Theorem 15]. Let M_{n} denote the $*$-ring of complex $n \times n$ matrices. Considering $\mathcal{M}=M_{n}$ and $\mathcal{R}=M_{n}$ in Theorem 2.6, the unital $*$-ring M_{n} satisfies the (PSR)-axiom and it is a bimodule over itself and so we get [10, Theorem 15].

Definition 2.7. Let \mathcal{M} be a bimodule over a unital $*$-ring \mathcal{R} and $\mathcal{S} \subset \mathcal{M}$. The convex hull of \mathcal{S} in \mathcal{M} over \mathcal{R} is the smallest \mathcal{R}-convex set containing \mathcal{S}. We denote it by $\mathcal{R}-$ conv \mathcal{S}.

It is clear that

$$
\mathcal{R}-\operatorname{conv} \mathcal{S}=\left\{\sum_{i} t_{i}^{*} x_{i} t_{i}: t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, \sum_{i} t_{i}^{*} t_{i}=1\right\} .
$$

If the unital $*$-ring \mathcal{R} is commutative, then $\mathcal{R}-\operatorname{conv}\{m\}=\{m\}$ for $m \in \mathcal{M}$.

Proposition 2.8. Suppose that \mathcal{M} and \mathcal{N} are bimodules over the unital *-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ is a unital *-homomorphism. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-homomorphism and $\mathcal{S} \subset \mathcal{M}$, then

$$
g(\mathcal{R}-\operatorname{conv} \mathcal{S}) \subseteq f(\mathcal{R})-\operatorname{convg}(\mathcal{S})
$$

The equality holds, when $f^{-1}(1)=\{1\}$.

Proof. We have

$$
\begin{aligned}
f(\mathcal{R}) & -\operatorname{conv} g(\mathcal{S}) \\
& =\left\{\sum_{i} f\left(t_{i}\right)^{*} g\left(x_{i}\right) f\left(t_{i}\right): t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, \sum_{i} f\left(t_{i}\right)^{*} f\left(t_{i}\right)=1\right\} \\
& =\left\{g\left(\sum_{i} t_{i}^{*} x_{i} t_{i}\right): t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, f\left(\sum_{i} t_{i}^{*} t_{i}\right)=1\right\} \\
& \subseteq\left\{g\left(\sum_{i} t_{i}^{*} x_{i} t_{i}\right): t_{i} \in \mathcal{R}, x_{i} \in \mathcal{S}, \sum_{i} t_{i}^{*} t_{i}=1\right\} \\
& =g(\mathcal{R}-\operatorname{conv} \mathcal{S}) .
\end{aligned}
$$

If the unital $*$-ring \mathcal{B} is commutative, then $g(\mathcal{R}-\operatorname{conv}\{m\})=\{g(m)\}$ for $m \in \mathcal{M}$.

Corollary 2.9. Suppose that \mathcal{M} and \mathcal{N} are bimodules over the unital *-rings \mathcal{R} and \mathcal{B}, respectively and

$$
f: \mathcal{R} \rightarrow \mathcal{B}
$$

is a unital $*$-homomorphism. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-homomorphism, then

$$
g\left([x, y]_{\mathcal{R}}\right) \subseteq[g(x), g(y)]_{f(\mathcal{R})}
$$

for every $x, y \in \mathcal{M}$. Moreover, the equality holds, when $f^{-1}(1)=\{1\}$.
Proof. In view of Proposition 2.8, one can see that

$$
\begin{aligned}
g\left([x, y]_{\mathcal{R}}\right) & =g(\mathcal{R}-\operatorname{conv}\{x, y\}) \\
& \subseteq f(\mathcal{R})-\operatorname{conv}\{g(x), g(y)\} \\
& =[g(x), g(y)]_{f(\mathcal{R})}
\end{aligned}
$$

Proposition 2.10. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B} a *$-homomorphism such that $f^{-1}(1)=\{1\}$. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-homomorphism, $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R}-convex, and the unital $*$-ring \mathcal{B} satisfies the (PSR)-axiom, then $g(\mathcal{K})$ is $f(\mathcal{R})$-convex.

Proof. Note that $f(\mathcal{R})$ is a $*$-subring of \mathcal{B} and $g(\mathcal{M})$ is a subbimodule of \mathcal{N} over the unital $*$-subring $f(\mathcal{R})$. According to Theorem 2.6, we show that $[g(x), g(y)]_{f(\mathcal{R})} \subseteq g(\mathcal{K})$ for every $x, y \in \mathcal{K}$. Since \mathcal{K} is
\mathcal{R}-convex, $[x, y]_{\mathcal{R}} \subseteq \mathcal{K}$ and so $g\left([x, y]_{\mathcal{R}}\right) \subseteq g(\mathcal{K})$. By using Corollary 2.9, we reach

$$
[g(x), g(y)]_{f(\mathcal{R})}=g\left([x, y]_{\mathcal{R}}\right) \subseteq g(\mathcal{K})
$$

Corollary 2.11. Under the hypotheses of Proposition 2.10, if f is an epimorphism, then $\operatorname{Im} g$ is a \mathcal{B}-convex subset of \mathcal{N}.
Corollary 2.12. Let \mathcal{M} and \mathcal{N} be bimodules over the unital $*$-ring \mathcal{R}. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an \mathcal{R}-bimodule homomorphism, $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R}-convex, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom, then $g(\mathcal{K})$ is \mathcal{R}-convex.
Proof. Suppose that $f: \mathcal{R} \rightarrow \mathcal{R}$ is the identity mapping and apply Proposition 2.10.

We state the converse of Proposition 2.10 as follows:
Proposition 2.13. Let \mathcal{M} and \mathcal{N} be bimodules over the unital $*$-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ is a unital $*$-homomorphism. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-monomorphism, $\mathcal{K} \subset \mathcal{M}, g(\mathcal{K})$ is $f(\mathcal{R})$-convex, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom, then \mathcal{K} is \mathcal{R}-convex.

Proof. According to Theorem 2.6, we show that $[x, y]_{\mathcal{R}} \subseteq \mathcal{K}$ for every $x, y \in \mathcal{K}$. Since $g(\mathcal{K})$ is $f(\mathcal{R})$-convex, $[g(x), g(y)]_{f(\mathcal{R})} \subseteq g(\mathcal{K})$ for every $x, y \in \mathcal{K}$ and so $g\left([x, y]_{\mathcal{R}}\right) \subseteq g(\mathcal{K})$, by Corollary 2.9. Since g is an f-monomorphism, the desired result follows.
Corollary 2.14. Let \mathcal{M} and \mathcal{N} be bimodules over the unital $*$-ring \mathcal{R}. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an \mathcal{R}-bimodule monomorphism, $\mathcal{K} \subset \mathcal{M}, g(\mathcal{K})$ is \mathcal{R}-convex, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom, then \mathcal{K} is \mathcal{R}-convex.
Proof. Suppose that $f: \mathcal{R} \rightarrow \mathcal{R}$ is the identity mapping and apply Proposition 2.13.
Corollary 2.15. Let \mathcal{M} and \mathcal{N} be bimodules over the unital *-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ is a $*$-epimorphism such that $f^{-1}(1)=\{1\}$. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-monomorphism and the unital *-rings \mathcal{R} and \mathcal{B} satisfy the (PSR)-axiom, then $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R}-convex if and only if $g(\mathcal{K}) \subset \mathcal{N}$ is \mathcal{B}-convex.

Proposition 2.16. Let \mathcal{M} and \mathcal{N} are bimodules over the unital $*$-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ is a unital $*$-homomorphism. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-homomorphism, $S \subset \mathcal{N}$ is \mathcal{B}-convex, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom, then $g^{-1}(S)$ is an \mathcal{R}-convex subset of \mathcal{M}.

Proof. By applying Theorem 2.6, we prove that $[x, y]_{\mathcal{R}} \subseteq g^{-1}(S)$ for every $x, y \in g^{-1}(S)$. Since S is \mathcal{B}-convex and $g(x), g(y) \in S$,

$$
[g(x), g(y)]_{\mathcal{B}} \subseteq S
$$

So, it follows from Corollary 2.9 that

$$
g\left([x, y]_{\mathcal{R}}\right) \subseteq[g(x), g(y)]_{f(\mathcal{R})} \subseteq[g(x), g(y)]_{\mathcal{B}} \subseteq S
$$

Hence, $[x, y]_{\mathcal{R}} \subseteq g^{-1}(S)$.
Corollary 2.17. Under the hypothesis of Proposition 2.16, Kerg is an \mathcal{R}-convex subset of \mathcal{M}.

Proof. It follows from the fact that, $\operatorname{Ker} g=g^{-1}(\{0\})$ and $\{0\}$ is a \mathcal{B}-convex subset of \mathcal{N}.

Corollary 2.18. Let \mathcal{M} and \mathcal{N} be bimodules over the unital $*$-ring \mathcal{R}. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an \mathcal{R}-bimodule homomorphism, $S \subset \mathcal{N}$ is \mathcal{R}-convex, and the unital $*$-ring \mathcal{R} satisfies the (PSR)-axiom, then $g^{-1}(S)$ is \mathcal{R}-convex.

Proof. Suppose that $f: \mathcal{R} \rightarrow \mathcal{R}$ is the identity mapping and apply Proposition 2.16.

Definition 2.19. Let \mathcal{M} be a bimodule over a unital $*$-ring \mathcal{R} and $\mathcal{S} \subseteq \mathcal{M}$. The subset \mathcal{S} is invariant under an f-homomorphism $g: \mathcal{M} \rightarrow \mathcal{M}$ whenever $g(\mathcal{S}) \subseteq \mathcal{S}$.
Proposition 2.20. Suppose that \mathcal{M} is a bimodule over the unital *-ring \mathcal{R} and $f: \mathcal{R} \rightarrow \mathcal{R}$ is a unital $*$-homomorphism. If $g: \mathcal{M} \rightarrow \mathcal{M}$ is an f-homomorphism and $S \subset \mathcal{M}$ is invariant under g, then \mathcal{R}-convex hull of \mathcal{S} is invariant under g.

Proof. Taking into account that $g(\mathcal{S}) \subseteq \mathcal{S}$ we have

$$
\mathcal{R}-\operatorname{conv} g(\mathcal{S}) \subseteq \mathcal{R}-\operatorname{conv} \mathcal{S}
$$

Consequently, by Corollary 2.9, we deduce

$$
\begin{aligned}
g(\mathcal{R}-\operatorname{conv} \mathcal{S}) & \subseteq f(\mathcal{R})-\operatorname{conv} g(\mathcal{S}) \\
& \subseteq \mathcal{R}-\operatorname{conv} g(\mathcal{S}) \\
& \subseteq \mathcal{R}-\operatorname{conv} \mathcal{S}
\end{aligned}
$$

Corollary 2.21. Suppose that \mathcal{M} is a bimodule over the unital *-ring \mathcal{R}. If $g: \mathcal{M} \rightarrow \mathcal{M}$ is an \mathcal{R}-bimodule homomorphism and $S \subset \mathcal{M}$ is invariant under g, then \mathcal{R}-convex hull of \mathcal{S} is invariant under g.

Proof. According to Corollary 2.9 and Proposition 2.20 and for the identity mapping $f: \mathcal{R} \rightarrow \mathcal{R}$, one has

$$
g(\mathcal{R}-\operatorname{conv} \mathcal{S}) \subseteq \mathcal{R}-\operatorname{conv} g(\mathcal{S}) \subseteq \mathcal{R}-\operatorname{conv} \mathcal{S}
$$

3. \mathcal{R}-extreme points of \mathcal{R}-convex sets

In this section, we discuss the effect of an f-homomorphism on \mathcal{R}-extreme points of \mathcal{R}-convex subsets of bimodules over unital $*$-rings.

Definition 3.1. Let \mathcal{M} be a bimodule over a unital $*$-ring \mathcal{R} and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R}-convex subset of \mathcal{M}. The point $x \in \mathcal{K}$ is called \mathcal{R}-extreme point in \mathcal{K}, if $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ is a proper \mathcal{R}-convex combination of elements $x_{i} \in \mathcal{K}$, then each x_{i} comes from the unitary orbit of x, i.e., there exist unitary elements $u_{i} \in \mathcal{R}$ such that for all i, $x=u_{i}^{*} x_{i} u_{i}$.

If $x \in \mathcal{K}$ is an \mathcal{R}-extreme point of \mathcal{K} and $x=\sum_{i} a_{i} x_{i}$ is a proper linear convex combination, then we have $x=x_{i}$ for each i.
Proposition 3.2. Suppose that \mathcal{M} and \mathcal{N} are bimodules over unital *-rings \mathcal{R} and \mathcal{B}, respectively. Let $f: \mathcal{R} \rightarrow \mathcal{B}$ be a unital $*$-epimorphism, $g: \mathcal{M} \rightarrow \mathcal{N}$ an f-homomorphism and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R}-convex set. If y is a \mathcal{B}-extreme point of $g(\mathcal{K})$ and x is an \mathcal{R}-extreme point of $g^{-1}(y) \cap \mathcal{K}$, then x is an \mathcal{R}-extreme point of \mathcal{K}.

Proof. Let $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ be a proper \mathcal{R}-convex combination of a finite number of elements $x_{i} \in \mathcal{K}$. Then,

$$
y=g(x)=g\left(\sum_{i} t_{i}^{*} x_{i} t_{i}\right)=\sum_{i} g\left(t_{i}^{*} x_{i} t_{i}\right)=\sum_{i} f\left(t_{i}\right)^{*} g\left(x_{i}\right) f\left(t_{i}\right)
$$

and

$$
\sum_{i} f\left(t_{i}\right)^{*} f\left(t_{i}\right)=\sum_{i} f\left(t_{i}^{*} t_{i}\right)=f\left(\sum_{i} t_{i}^{*} t_{i}\right)=f(1)=1 .
$$

Since the coefficients $f\left(t_{i}\right)$ are invertible in \mathcal{B} and y is a \mathcal{B}-extreme point of $g(\mathcal{K})$, there exist unitary elements $v_{i} \in \mathcal{R}$ such that

$$
y=f\left(v_{i}\right)^{*} g\left(x_{i}\right) f\left(v_{i}\right)
$$

It follows that $y=g\left(v_{i}^{*} x_{i} v_{i}\right)$ and so $v_{i}^{*} x_{i} v_{i} \in g^{-1}(y)$. We can rewrite

$$
x=\sum_{i} t_{i}^{*} x_{i} t_{i}=\sum_{i} t_{i}^{*}\left(v_{i} v_{i}^{*}\right) x_{i}\left(v_{i} v_{i}^{*}\right) t_{i}=\sum_{i}\left(v_{i}^{*} t_{i}\right)^{*}\left(v_{i}^{*} x_{i} v_{i}\right)\left(v_{i}^{*} t_{i}\right) .
$$

This means that x is a proper \mathcal{R}-convex combination of elements in $g^{-1}(y) \cap \mathcal{K}$. Since x is an \mathcal{R}-extreme point of $g^{-1}(y) \cap \mathcal{K}$, there exist unitary elements $w_{i} \in \mathcal{R}$ such that $x=w_{i}^{*}\left(v_{i}^{*} x_{i} v_{i}\right) w_{i}$. Let $u_{i}=v_{i} w_{i}$.

Then, u_{i} is unitary and $x=u_{i}^{*} x_{i} u_{i}$, i.e., each x_{i} comes from the unitary orbit of x.

Theorem 3.3. Let \mathcal{M} and \mathcal{N} be bimodules over unital $*$-rings \mathcal{R} and \mathcal{B}, respectively and let $g: \mathcal{M} \rightarrow \mathcal{N}$ be an f-monomorphism and $\mathcal{K} \subset \mathcal{M}$ an \mathcal{R}-convex subset.
(a) If $f: \mathcal{R} \rightarrow \mathcal{B}$ is a $*$-epimorphism such that $f^{-1}(1)=\{1\}$ and x is an \mathcal{R}-extreme point of \mathcal{K}, then $g(x)$ is a \mathcal{B}-extreme point of $g(\mathcal{K})$.
(b) If $f: \mathcal{R} \rightarrow \mathcal{B}$ is a unital $*$-epimorphism and $g(x)$ is a \mathcal{B}-extreme point of $g(\mathcal{K})$, then x is an \mathcal{R}-extreme point of \mathcal{K}.
Proof. (a) Let $g(x)=\sum_{i} b_{i}^{*} y_{i} b_{i}$ be a proper \mathcal{B}-convex combination of a finite number of elements $y_{i} \in g(\mathcal{K})$. There exist $t_{i} \in \mathcal{R}$ and $x_{i} \in \mathcal{K}$ such that $f\left(t_{i}\right)=b_{i}$ and $g\left(x_{i}\right)=y_{i}$. We observe that

$$
\begin{aligned}
g(x) & =\sum_{i} b_{i}^{*} y_{i} b_{i}=\sum_{i} f\left(t_{i}\right)^{*} g\left(x_{i}\right) f\left(t_{i}\right)=g\left(\sum_{i} t_{i}^{*} x_{i} t_{i}\right), \\
1 & =\sum_{i} b_{i}^{*} b_{i}=\sum_{i} f\left(t_{i}\right)^{*} f\left(t_{i}\right)=f\left(\sum_{i} t_{i}^{*} t_{i}\right)
\end{aligned}
$$

and so that $x=\sum_{i} t_{i}^{*} x_{i} t_{i}$ with $\sum_{i} t_{i}^{*} t_{i}=1$. This \mathcal{R}-convex combination is proper. Since x is an \mathcal{R}-extreme point of \mathcal{K}, there exist unitary elements $u_{i} \in \mathcal{R}$ such that $x=u_{i}^{*} x_{i} u_{i}$. Thus,

$$
\begin{aligned}
g(x) & =g\left(u_{i}^{*} x_{i} u_{i}\right) \\
& =f\left(u_{i}^{*}\right) g\left(x_{i}\right) f\left(u_{i}\right) \\
& =f\left(u_{i}\right)^{*} g\left(x_{i}\right) f\left(u_{i}\right) \\
& =f\left(u_{i}\right)^{*} y_{i} f\left(u_{i}\right) .
\end{aligned}
$$

This indicates that each y_{i} comes from the unitary orbit of $g(x)$, i.e., $g(x)$ is a \mathcal{B}-extreme point of $g(\mathcal{K})$.
(b) Since g is f-monomorphism, $g^{-1}(y)=\{x\}$, where $y=g(x)$. Hence, $g^{-1}(y) \cap \mathcal{K}$ is a singleton subset containing x and so x is \mathcal{R}-extreme. The result now follows from Proposition 3.2 and the fact that y is a \mathcal{B}-extreme point of $g(\mathcal{K})$,

The following corollary provides the necessary and sufficient condition.

Corollary 3.4. Let \mathcal{M} and \mathcal{N} be bimodules over unital $*$-rings \mathcal{R} and \mathcal{B}, respectively and $f: \mathcal{R} \rightarrow \mathcal{B}$ a $*$-epimorphism such that $f^{-1}(1)=\{1\}$. If $g: \mathcal{M} \rightarrow \mathcal{N}$ is an f-monomorphism and $\mathcal{K} \subset \mathcal{M}$ is \mathcal{R}-convex, then x is an \mathcal{R}-extreme point of \mathcal{K} if and only if $g(x)$ is a \mathcal{B}-extreme point of $g(\mathcal{K})$.

4. EXAMPLES

Let \mathcal{H} be a Hilbert space and denote by $\mathcal{B}(\mathcal{H})$ the collection of bounded linear operators on \mathcal{H} and by $\mathcal{B}_{0}(\mathcal{H})$ the compact operators. The unit ball of $\mathcal{B}(\mathcal{H})$; that is,

$$
B=\{T \in \mathcal{B}(\mathcal{H}):\|T\| \leq 1\}
$$

is $\mathcal{B}(\mathcal{H})$-convex [10].
Example 4.1. Consider a triangle with the wedges $(0,0),(1,0)$, and $(1,1)$ in the plane \mathbb{R}^{2}. This triangle is \mathbb{R}-convex in \mathbb{R}^{2} and its \mathbb{R}-extreme points are its wedges.

Example 4.2. Consider the unit disk in the complex plane. This unit disk is \mathbb{C}-convex in \mathbb{C} and its \mathbb{C}-extreme points are the set

$$
\{z \in \mathbb{C}:|z|=1\}
$$

Example 4.3. [7, Corollary 1.2] The $\mathcal{B}(\mathcal{H})$-extreme points of the unit ball B are precisely the isometries and co-isometries.

The numerical range of an operator $T \in \mathcal{B}(\mathcal{H})$, denoted by $W(T)$, is the collection of complex numbers $\langle T h, h\rangle$, where h runs through all vectors in \mathcal{H} of norm 1. The numerical radius of $T, w(T)$, is defined by

$$
w(T)=\sup \{|\lambda|: \lambda \in W(T)\}
$$

Let $M_{n}(\mathbb{C})$ be the set of $n \times n$ matrices with entries in \mathbb{C}. We denote by W_{1} the set of all matrices $T \in M_{n}$ such that $w(T) \leq 1$. It is a standard fact that W_{1} is linearly convex $(\mathbb{R}$-convex) and in [10] it is shown that W_{1} is M_{n}-convex. We denote by W_{1}^{1} the collection of matrices $T \in M_{n}$ for which $w(T)=1$ and $1 \in W(T)$.
Example 4.4. [7, Theorem 2.9] $T \in M_{n}$ is \mathbb{C}-extreme point of W_{1} if and only if $W(T)$ is the entire unit disk. Recall that $W(T)$ is an elliptical disk.

Example 4.5. [7, Theorem 2.10] The identity matrix and all nilpotent matrices in W_{1}^{1} are M_{n}-extreme point in W_{1}^{1}.

Example 4.6. [7, Theorem 3.1] Assume that H is infinite dimensional and let $S=\{T \in \mathcal{B}(\mathcal{H}): 0 \leq T \leq I\}$ be the unit operator interval and $P \in \mathcal{B}(\mathcal{H})$ a projection (unequal to 0 or I).

1. If P has infinite rank and co-rank, then P is $\mathcal{B}(\mathcal{H})$-extreme of S.
2. If P has finite rank, then P is $\mathcal{B}(\mathcal{H})$-extreme of $S \cap \mathcal{B}_{0}(\mathcal{H})$.
3. If P has finite co-rank, then P is $\mathcal{B}(\mathcal{H})$-extreme of the set

$$
\left\{T \in S: I-T \in \mathcal{B}_{0}(\mathcal{H})\right\}
$$

Our goal was to extend the notion of convexity to bimodules over *-rings which is available for $*$-rings or $*$-algebras. All of the examples that exist are for $*$-rings or $*$-algebras. So, to clarify the distinction between our new concept of convex sets of bimodules over $*$-rings and the notion of C^{*}-convexity for $*$-rings or $*$-algebras, we include an example which is not a bimodule over itself. In other words, the module is distinct from its ring.

Example 4.7. Let G be a commutative group and consider

$$
\operatorname{End}(G):=\{f: G \rightarrow G: f \text { is a homomorphism }\} .
$$

Then $\operatorname{End}(G)$ is a unital non-commutative *-ring with

$$
\begin{aligned}
(f+g)(a) & =f(a)+g(a), \\
(f g)(a) & =f(g(a)), \\
f^{*}(a) & =f(a)
\end{aligned}
$$

for every $a \in G$ and $f, g \in \operatorname{End}(G)$. In this situation, the group G is an $\operatorname{End}(G)$-bimodule by

$$
a . f=f . a=f(a)
$$

for every $a \in G$ and $f \in \operatorname{End}(G)$. A set $\mathcal{K} \subset G$ is $\operatorname{End}(G)$-convex, if \mathcal{K} is closed under the formation of finite sums of the type $\sum_{i} f_{i}^{*} . x_{i} . f_{i}$, where $f_{i} \in \operatorname{End}(G), x_{i} \in \mathcal{K}$ and $\sum_{i} f_{i}^{*} f_{i}=I, I$ is the identity homomorphism on G. We note that

$$
\sum_{i} f_{i}^{*} \cdot x_{i} \cdot f_{i}=\sum_{i} f_{i} \cdot x_{i} \cdot f_{i}=\sum_{i} f_{i} \cdot f_{i}\left(x_{i}\right)=\sum_{i} f_{i}^{2}\left(x_{i}\right) .
$$

So, \mathcal{K} is $\operatorname{End}(G)$-convex, when $\sum_{i} f_{i}^{2}\left(x_{i}\right) \in \mathcal{K}$. We now provide an $\operatorname{End}(G)$-convex set in G. Let $g \in \operatorname{End}(G)$ be a fixed homomorphism such that $g f=f g$ for every $f \in \operatorname{End}(G)$ and consider

$$
S_{g}=\{x \in G: g(x)=0\} .
$$

Then S_{g} is $\operatorname{End}(G)$-convex in G.

References

1. S. K. Berberian, Baer *-rings, Springer Verlag, Berlin, 1972.
2. A. Ebrahimi and G. H. Esslamzadeh, C^{*}-convexity and C^{*}-faces in $*$-rings, Turk. J. Math., 36 (2012), 131-145.
3. E. G. Effros and S. Winkler, Matrix Convexity: Operator Analogues of the Bipolar and Hahn-Banach Theorems, J. Funct. Anal., 144(1) (1997), 117-152.
4. D. R. Farenick, C^{*}-convexity and matricial ranges, Canad. J. Math., 44 (1992), 280-297.
5. D. R. Farenick, Krein-Milman type problems for compact matricially convex sets, Linear Algebra Appl., 162-164 (1992), 325-334.
6. D. R. Farenick and P. B. Morenz, C^{*}-extreme points of some compact C^{*} convex sets, Proc. Amer. Math. Soc., 118 (1993), 765-775.
7. A. Hopenwasser, R. L. Moore and V. I. Pualsen, C^{*}-extreme points, Trans. Amer. Math. Soc. 266(1) (1981), 291-307.
8. T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc. 1974.
9. A. Jencova, On the convex structure of process POVMs, J. Math. Phys., $\mathbf{5 7}(1)$ (2016), Article ID: 015207.
10. R. Loebl, V. I. Paulsen, Some remarks on C^{*}-convexity, Linear Alg. Appl., 35 (1981), 63-78.
11. B. Magajna, C^{*}-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh Section A., 130(2) (2000), 375-387.
12. B. Magajna, C^{*}-convexity and the Numerical Range, Canad. Math. Bull., 43(2) (2000), 193-207.
13. B. Magajna, On C^{*}-extreme points, Proc. Amer. Math. Soc., 129(3) (2000), 771-780.
14. P. B. Morenz, The structure of C^{*}-convex sets, Canad. J. Math., 46 (1994), 1007-1026.
15. I. Nikoufar, A note on non-unital homomorphisms on C^{*}-convex sets in $*$-rings, Acta Univ. M. Belii Ser. Math., 24, (2016), 21-24.

Ismail Nikoufar

Department of Mathematics, Payame Noor University, Tehran, Iran.
Email: nikoufar@pnu.ac.ir

Ali Ebrahimi Meymand

Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
Email: a.ebrahimi@vru.ac.ir

Journal of Algebraic Systems

\mathcal{R}－CONVEX SUBSETS OF BIMODULES OVER $*$－RINGS

I．NIKOUFAR AND A．EBRAHIMI MEYMAND

$$
\begin{aligned}
& \text { زيرمجموعههاى R-محدب دومدولها روى *-حلقهها } \\
& \text { اسماعيل نيكوفر' و على ابراهيمى ميمند’ } \\
& \text { 'كروه رياضى، دانشگاه پیام نور، تهران، ايران } \\
& \text { 「「گروه رياضى، دانشگاه ولى عصر رفسنجان، رفسنجان، ايران }
\end{aligned}
$$

فرض كنيم M و \mathcal{M} دومدولهايى به ترتيب روى＊－حلقههاى R \mathcal{A} و \mathcal{A} باشند．مفهوم R مفهوم متناظر نقاط R R－انتهاييى را بررسى مى R － \mathcal{R}

كلمات كليدى：مجموعههاى R－محدب، نقاط R－انتهايى، f－همريختى．

[^0]: DOI: 10.22044/JAS.2022.11817.1605.
 MSC(2010): Primary: 47L07; Secondary: 52A41, 47A56.
 Keywords: \mathcal{R}-convex sets; \mathcal{R}-extreme points; f-homomorphism.
 Received: 12 April 2022, Accepted: 23 December 2022.

 * Corresponding author.

