
Journal of Algebraic Systems
Vol. 12, No. 1, (2024), pp 91-103

R-CONVEX SUBSETS OF BIMODULES OVER ∗-RINGS

I. NIKOUFAR∗ AND A. EBRAHIMI MEYMAND

Abstract. Let M and N be bimodules over the unital ∗-rings
R and B, respectively. We investigate the notion of R-convexity
and the corresponding notion of R-extreme points. We discuss
the effect of an f -homomorphism on R-convex subsets and its
R-extreme points. Namely, we declare how an f -homomorphism
from M to N carries R-convex subsets and its R-extreme points to
B-convex subsets and its B-extreme points and vice versa.
Moreover, we confirm that the R-convex hull of invariant subsets
under f -homomorphisms remains invariant.

1. Introduction

The study of noncommutative convexity or C∗-convexity was
initiated by Loebl and Paulsen in [10] as a non-commutative analog
of the linear convexity. Then, the notion of C∗-extreme points was
studied as a non-commutative analog of linear extreme points. It is
evident that every C∗-convex set is convex in the usual sense but the
converse does not hold in general. Moreover, it was determined whether
C∗-extremeness is distinct from linear extremeness by Hopenwasser,
Moore, and Paulsen [7]. Farenick [5] proved the set of C∗-extreme
points of compact C∗-convex subsets of the finite dimensional algebra
Mn(C) is nonempty and Morenz [14] proved the appropriate variant of
the Krein-Milman theorem for C∗-convex subsets in matrix algebras,
cf. [4, 6, 13]. Some other results of the linear convexity have been
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generalized to C∗-convexity, for instance, a version of the so-called
Hahn-Banach theorem and separation theorem [3, 7]. Later another
version of the non-commutative convexity was studied in the context
of the quantum information theory in [9].

It makes sense in a C∗-algebra or a ∗-ring and, more generally, for
bimodules over C∗-algebras or ∗-rings there is a concept of convexity
that incorporates algebra-valued or ring-valued convex coefficients in a
natural way, cf. [11, 12, 2, 15].

In this paper, we consider the notion of R-convexity and the
corresponding notion of R-extreme points in the bimodules over
unital ∗-rings. We prove that an f -homomorphism g, under certain
conditions, carries R-convex subsets and R-extreme points of its
domain to the B-convex subsets and B-extreme points of its range.
We show that the R-convex hull of invariant subsets is invariant under
g. For more details on bimodules over rings, we refer the readers to [8].

2. R-convex sets of bimodules over ∗-rings

In this section, we distinguish the properties of f -homomorphisms
on R-convex sets of bimodules over ∗-rings and we verify how an
f -homomorphism carries R-convex subsets of its domain to B-convex
subsets of its range and vice versa. We identify the invariance of the
R-convex hull of invariant subsets under f -homomorphisms.
Definition 2.1. Let M be a bimodule over a unital ∗-ring R. A set
K ⊂ M is called R-convex, if K is closed under the formation of finite
sums of the type

∑
i t

∗
ixiti, where ti ∈ R, xi ∈ K and

∑
i t

∗
i ti = 1.

This formation of finite sums is called an R-convex combination
in K and the coefficients ti are called R-convex coefficients. If the
coefficients ti are invertible in R, then they are called proper R-convex
coefficients and the R-convex combination is called a proper R-convex
combination.

By definition it is clear that every subbimodule of M is R-convex
and furthermore, if K ⊂ M is R-convex, R1 is a ∗-subring of R, and
1 ∈ R1, then K is R1-convex. We remark that any module over a
commutative ring is automatically a bimodule. Indeed, if M is a left
module, we can define the multiplication on the right to be the same as
the multiplication on the left. So, if the unital ∗-ringR is commutative,
then we have, amb = (ab)m = m(ab) for m ∈ M and a, b ∈ R.
Therefore, the R-convex combinations are of the form

∑
i aixi, where

ai ∈ R+ and xi ∈ K. Note that R+ denotes the cone of positive
elements in R. Such R-convex combinations are called linear R-convex
combinations.
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Definition 2.2. Let M and N be bimodules over unital ∗-rings R
and B, respectively and f : R → B a ∗-homomorphism. We say the
mapping g : M → N is an f -homomorphism whenever

i) g(m1 +m2) = g(m1) + g(m2), for all m1,m2 ∈ M,
ii) g(amb) = f(a)g(m)f(b), for all a, b ∈ R and m ∈ M.

It is clear that if f is the identity mapping and R = B, then g is
clearly an R-bimodule homomorphism from M into N , i.e., g is an
additive mapping such that g(amb) = ag(m)b for all a, b ∈ R and
m ∈ M.

One may consider R and B as bimodules over themselves. Let
f : R → B be a ∗-homomorphism. Then, f is an f -homomorphism,
2f is an f -homomorphism, and −f is an f -homomorphism.

An injective f -homomorphism is called an f -monomorphism and a
surjective f -homomorphism is called an f -epimorphism.

Definition 2.3. [1] A ∗-ring is said to satisfy the positive square-root
axiom (briefly, the (PSR)-axiom) in case, for every x > 0, there exists
y ∈ {x}′′ with y > 0 and x = y2.

Definition 2.4. Let M be a bimodule over a unital ∗-ring R. For
x, y ∈ M, the R-segment connecting x and y is defined by

[x, y]R :=
{∑

i

t∗ixti +
∑
j

v∗j yvj :
∑
i

t∗i ti +
∑
j

v∗j vj = 1, ti, vj ∈ R
}
.

Note that in this article the formation of all sums are finite sums.

Proposition 2.5. Let M be a bimodule over a unital ∗-ring R. For
x, y ∈ M, the R-segment [x, y]R is an R-convex set that contains both
of x and y.

Proof. Let x1, . . . , xn ∈ [x, y]R. We prove
∑

k t
∗
kxktk ∈ [x, y]R, where∑

k t
∗
ktk = 1. Since xk ∈ [x, y]R, there exist aik, bjk ∈ R such that

xk =
∑
i

a∗ikxaik +
∑
j

b∗jkybjk,
∑
i

a∗ikaik +
∑
j

b∗jkbjk = 1.

We have∑
k

t∗kxktk =
∑
k

t∗k

(∑
i

a∗ikxaik +
∑
j

b∗jkybjk

)
tk

=
∑
k

∑
i

t∗ka
∗
ikxaiktk +

∑
k

∑
j

t∗kb
∗
jkybjktk,
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where

∑
k

∑
i

t∗ka
∗
ikaiktk +

∑
k

∑
j

t∗kb
∗
jkbjktk =

∑
k

t∗k

(∑
i

a∗ikaik +
∑
j

b∗jkbjk

)
tk

=
∑
k

t∗k(1)tk = 1.

So, the R-segment [x, y]R is closed under the formation of finite sums
of the desired type. One may write x = 1x1+0Ry0R, y = 0Rx0R+1y1,
and hence x and y belong to [x, y]R. □

W remark that Proposition 2.5 is a generalization of Proposition
2.6 (i) of [2]. Let R be a unital ∗-ring. Considering M = R in
Proposition 2.5, the unital ∗-ring R is a bimodule over itself and
so we get Proposition 2.6 (i) of [2]. Let B(H) denote the ∗-ring of
bounded linear operators on a (separable) Hilbert space H.
Considering M = B(H) and R = B(H) in Proposition 2.5, B(H)
is a bimodule over itself and so we reach Lemma 12 of [10].

Theorem 2.6. Suppose that M is a bimodule over R, K ⊂ M, and
the unital ∗-ring R satisfies the (PSR)-axiom. Then the set K is
R-convex if and only if the R-segment [x, y]R is contained in K for
every x, y ∈ K.

Proof. If the set K is R-convex, then clearly the R-segment [x, y]R
is contained in K for every x, y ∈ K. Conversely, suppose the
R-segment [x, y]R is contained in K for every x, y ∈ K. We show that
K is closed under the R-convex combination of the form

∑m
i=1 t

∗
ixiti,

where xi ∈ K, ti ∈ R, and
∑m

i=1 t
∗
i ti = 1. Let x :=

∑m
i=1 t

∗
ixiti. We

prove that x ∈ K. The proof is given by induction in m. The case of
m = 1 is evident (since the only 1-term R-convex combinations are of
the form is 1∗x11 = x1 ∈ K). Assume that we already know that any
R-convex combination of m − 1 vectors, m ≥ 2, from K is again a
vector from K, and let us prove that this statement remains valid
also for all R-convex combinations of m vectors from K. Let
the representation of x be such an R-convex combination. We can
assume that t∗mtm < 1, since otherwise there is nothing to prove
(indeed, if t∗mtm= 1, then the remaining ti’s should be zero, since
all t∗i ti’s are nonnegative with the unit sum, and we have
x = t∗mxmtm ∈ K). Assuming t∗mtm < 1 and noting that R satisfies the
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(PSR)-axiom, we can write

x = (1− t∗mtm)
1
2

[m−1∑
i=1

(1− t∗mtm)
− 1

2 t∗ixiti(1− t∗mtm)
− 1

2

]
(1− t∗mtm)

1
2

+ t∗mxmtm,

whence
m−1∑
i=1

(1− t∗mtm)−
1
2 t∗i ti(1− t∗mtm)−

1
2 = (1− t∗mtm)−

1
2 (1− t∗mtm)(1− t∗mtm)−

1
2

= 1.

So what is in the brackets, clearly is an R-convex combination of
m − 1 points from K and therefore, by the inductive hypothesis, this
is a point, let it be called z, from K; we have

x = (1− t∗mtm)
1
2 z(1− t∗mtm)

1
2 + t∗mxmtm

with z and xm ∈ K, and so x ∈ [z, xm]R ⊆ K by the assumption. □

W may remark that Theorem 2.6 is a generalization of [10, Theorem
15]. Let Mn denote the ∗-ring of complex n× n matrices. Considering
M = Mn and R = Mn in Theorem 2.6, the unital ∗-ring Mn satisfies
the (PSR)-axiom and it is a bimodule over itself and so we get [10,
Theorem 15].

Definition 2.7. Let M be a bimodule over a unital ∗-ring R and
S ⊂ M. The convex hull of S in M over R is the smallest R-convex
set containing S. We denote it by R−convS.

It is clear that

R−convS =

{∑
i

t∗ixiti : ti ∈ R, xi ∈ S,
∑
i

t∗i ti = 1

}
.

If the unital ∗-ring R is commutative, then R−conv{m} = {m} for
m ∈ M.

Proposition 2.8. Suppose that M and N are bimodules over the
unital ∗-rings R and B, respectively and f : R → B is a unital
∗-homomorphism. If g : M → N is an f -homomorphism and S ⊂ M,
then

g(R−convS) ⊆ f(R)−convg(S).
The equality holds, when f−1(1) = {1}.
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Proof. We have

f(R)−conv g(S)

=

{∑
i

f(ti)
∗g(xi)f(ti) : ti ∈ R, xi ∈ S,

∑
i

f(ti)
∗f(ti) = 1

}

=

{
g(
∑
i

t∗ixiti) : ti ∈ R, xi ∈ S, f(
∑
i

t∗i ti) = 1

}

⊆

{
g(
∑
i

t∗ixiti) : ti ∈ R, xi ∈ S,
∑
i

t∗i ti = 1

}
= g(R−convS).

□

If the unital ∗-ring B is commutative, then g(R−conv{m}) = {g(m)}
for m ∈ M.

Corollary 2.9. Suppose that M and N are bimodules over the unital
∗-rings R and B, respectively and

f : R → B
is a unital ∗-homomorphism. If g : M → N is an f -homomorphism,
then

g([x, y]R) ⊆ [g(x), g(y)]f(R)

for every x, y ∈ M. Moreover, the equality holds, when f−1(1) = {1}.

Proof. In view of Proposition 2.8, one can see that

g([x, y]R) = g(R−conv{x, y})
⊆ f(R)−conv{g(x), g(y)}
= [g(x), g(y)]f(R).

□

Proposition 2.10. Let M and N be bimodules over the unital
∗-rings R and B, respectively and f : R → B a ∗-homomorphism such
that f−1(1) = {1}. If g : M → N is an f -homomorphism, K ⊂ M is
R-convex, and the unital ∗-ring B satisfies the (PSR)-axiom, then g(K)
is f(R)-convex.

Proof. Note that f(R) is a ∗-subring of B and g(M) is a subbimodule
of N over the unital ∗-subring f(R). According to Theorem 2.6, we
show that [g(x), g(y)]f(R) ⊆ g(K) for every x, y ∈ K. Since K is
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R-convex, [x, y]R ⊆ K and so g([x, y]R) ⊆ g(K). By using Corollary
2.9, we reach

[g(x), g(y)]f(R) = g([x, y]R) ⊆ g(K).

□
Corollary 2.11. Under the hypotheses of Proposition 2.10, if f is an
epimorphism, then Img is a B-convex subset of N .
Corollary 2.12. Let M and N be bimodules over the unital ∗-ring
R. If g : M → N is an R-bimodule homomorphism, K ⊂ M is
R-convex, and the unital ∗-ring R satisfies the (PSR)-axiom, then
g(K) is R-convex.
Proof. Suppose that f : R → R is the identity mapping and apply
Proposition 2.10. □

We state the converse of Proposition 2.10 as follows:
Proposition 2.13. Let M and N be bimodules over the unital ∗-rings
R and B, respectively and f : R → B is a unital ∗-homomorphism. If
g : M → N is an f -monomorphism, K ⊂ M, g(K) is f(R)-convex,
and the unital ∗-ring R satisfies the (PSR)-axiom, then K is R-convex.
Proof. According to Theorem 2.6, we show that [x, y]R ⊆ K for every
x, y ∈ K. Since g(K) is f(R)-convex, [g(x), g(y)]f(R) ⊆ g(K) for every
x, y ∈ K and so g([x, y]R) ⊆ g(K), by Corollary 2.9. Since g is an
f -monomorphism, the desired result follows. □
Corollary 2.14. Let M and N be bimodules over the unital ∗-ring R.
If g : M → N is an R-bimodule monomorphism, K ⊂ M, g(K) is
R-convex, and the unital ∗-ring R satisfies the (PSR)-axiom, then K
is R-convex.
Proof. Suppose that f : R → R is the identity mapping and apply
Proposition 2.13. □
Corollary 2.15. Let M and N be bimodules over the unital ∗-rings
R and B, respectively and f : R → B is a ∗-epimorphism such that
f−1(1) = {1}. If g : M → N is an f -monomorphism and the unital
∗-rings R and B satisfy the (PSR)-axiom, then K ⊂ M is R-convex if
and only if g(K) ⊂ N is B-convex.
Proposition 2.16. Let M and N are bimodules over the unital ∗-rings
R and B, respectively and f : R → B is a unital ∗-homomorphism.
If g : M → N is an f -homomorphism, S ⊂ N is B-convex, and the
unital ∗-ring R satisfies the (PSR)-axiom, then g−1(S) is an R-convex
subset of M.
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Proof. By applying Theorem 2.6, we prove that [x, y]R ⊆ g−1(S) for
every x, y ∈ g−1(S). Since S is B-convex and g(x), g(y) ∈ S,

[g(x), g(y)]B ⊆ S.

So, it follows from Corollary 2.9 that
g([x, y]R) ⊆ [g(x), g(y)]f(R) ⊆ [g(x), g(y)]B ⊆ S.

Hence, [x, y]R ⊆ g−1(S). □
Corollary 2.17. Under the hypothesis of Proposition 2.16, Kerg is an
R-convex subset of M.

Proof. It follows from the fact that, Kerg = g−1({0}) and {0} is a
B-convex subset of N . □
Corollary 2.18. Let M and N be bimodules over the unital ∗-ring
R. If g : M → N is an R-bimodule homomorphism, S ⊂ N is
R-convex, and the unital ∗-ring R satisfies the (PSR)-axiom, then
g−1(S) is R-convex.

Proof. Suppose that f : R → R is the identity mapping and apply
Proposition 2.16. □
Definition 2.19. Let M be a bimodule over a unital ∗-ring R and
S ⊆ M. The subset S is invariant under an f -homomorphism
g : M → M whenever g(S) ⊆ S.

Proposition 2.20. Suppose that M is a bimodule over the unital
∗-ring R and f : R → R is a unital ∗-homomorphism. If g : M → M
is an f -homomorphism and S ⊂ M is invariant under g, then R-convex
hull of S is invariant under g.

Proof. Taking into account that g(S) ⊆ S we have

R−convg(S) ⊆ R−convS.
Consequently, by Corollary 2.9, we deduce

g(R−convS) ⊆ f(R)−convg(S)
⊆ R−convg(S)
⊆ R−convS.

□
Corollary 2.21. Suppose that M is a bimodule over the unital ∗-ring
R. If g : M → M is an R-bimodule homomorphism and S ⊂ M is
invariant under g, then R-convex hull of S is invariant under g.
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Proof. According to Corollary 2.9 and Proposition 2.20 and for the
identity mapping f : R → R, one has

g(R−convS) ⊆ R−convg(S) ⊆ R−convS.
□

3. R-extreme points of R-convex sets

In this section, we discuss the effect of an f -homomorphism on
R-extreme points of R-convex subsets of bimodules over unital ∗-rings.
Definition 3.1. Let M be a bimodule over a unital ∗-ring R and
K ⊂ M an R-convex subset of M. The point x ∈ K is called
R-extreme point in K, if x =

∑
i t

∗
ixiti is a proper R-convex

combination of elements xi ∈ K, then each xi comes from the
unitary orbit of x, i.e., there exist unitary elements ui ∈ R such that
for all i, x = u∗

ixiui.
If x ∈ K is an R-extreme point of K and x =

∑
i aixi is a proper

linear convex combination, then we have x = xi for each i.
Proposition 3.2. Suppose that M and N are bimodules over unital
∗-rings R and B, respectively. Let f : R → B be a unital ∗-epimorphism,
g : M → N an f -homomorphism and K ⊂ M an R-convex set. If y is
a B-extreme point of g(K) and x is an R-extreme point of g−1(y) ∩K,
then x is an R-extreme point of K.
Proof. Let x =

∑
i t

∗
ixiti be a proper R-convex combination of a finite

number of elements xi ∈ K. Then,
y = g(x) = g(

∑
i

t∗ixiti) =
∑
i

g(t∗ixiti) =
∑
i

f(ti)
∗g(xi)f(ti)

and ∑
i

f(ti)
∗f(ti) =

∑
i

f(t∗i ti) = f(
∑
i

t∗i ti) = f(1) = 1.

Since the coefficients f(ti) are invertible in B and y is a B-extreme
point of g(K), there exist unitary elements vi ∈ R such that

y = f(vi)
∗g(xi)f(vi).

It follows that y = g(v∗i xivi) and so v∗i xivi ∈ g−1(y). We can rewrite

x =
∑
i

t∗ixiti =
∑
i

t∗i (viv
∗
i )xi(viv

∗
i )ti =

∑
i

(v∗i ti)
∗(v∗i xivi)(v

∗
i ti).

This means that x is a proper R-convex combination of elements in
g−1(y) ∩ K. Since x is an R-extreme point of g−1(y) ∩ K, there exist
unitary elements wi ∈ R such that x = w∗

i (v
∗
i xivi)wi. Let ui = viwi.
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Then, ui is unitary and x = u∗
ixiui, i.e., each xi comes from the unitary

orbit of x. □
Theorem 3.3. Let M and N be bimodules over unital ∗-rings R and
B, respectively and let g : M → N be an f -monomorphism and K ⊂ M
an R-convex subset.

(a) If f : R → B is a ∗-epimorphism such that f−1(1) = {1} and x
is an R-extreme point of K, then g(x) is a B-extreme point of
g(K).

(b) If f : R → B is a unital ∗-epimorphism and g(x) is a B-extreme
point of g(K), then x is an R-extreme point of K.

Proof. (a) Let g(x) =
∑

i b
∗
i yibi be a proper B-convex combination of

a finite number of elements yi ∈ g(K). There exist ti ∈ R and xi ∈ K
such that f(ti) = bi and g(xi) = yi. We observe that

g(x) =
∑
i

b∗i yibi =
∑
i

f(ti)
∗g(xi)f(ti) = g(

∑
i

t∗ixiti),

1 =
∑
i

b∗i bi =
∑
i

f(ti)
∗f(ti) = f(

∑
i

t∗i ti)

and so that x =
∑

i t
∗
ixiti with

∑
i t

∗
i ti = 1. ThisR-convex combination

is proper. Since x is an R-extreme point of K, there exist unitary
elements ui ∈ R such that x = u∗

ixiui. Thus,
g(x) = g(u∗

ixiui)

= f(u∗
i )g(xi)f(ui)

= f(ui)
∗g(xi)f(ui)

= f(ui)
∗yif(ui).

This indicates that each yi comes from the unitary orbit of g(x), i.e.,
g(x) is a B-extreme point of g(K).

(b) Since g is f -monomorphism, g−1(y) = {x}, where y = g(x).
Hence, g−1(y) ∩ K is a singleton subset containing x and so x is
R-extreme. The result now follows from Proposition 3.2 and the fact
that y is a B-extreme point of g(K), □

The following corollary provides the necessary and sufficient
condition.

Corollary 3.4. Let M and N be bimodules over unital ∗-rings R and
B, respectively and f : R → B a ∗-epimorphism such that f−1(1) = {1}.
If g : M → N is an f -monomorphism and K ⊂ M is R-convex, then
x is an R-extreme point of K if and only if g(x) is a B-extreme point
of g(K).
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4. examples

Let H be a Hilbert space and denote by B(H) the collection of
bounded linear operators on H and by B0(H) the compact operators.
The unit ball of B(H); that is,

B = {T ∈ B(H) : ||T || ≤ 1}
is B(H)-convex [10].

Example 4.1. Consider a triangle with the wedges (0, 0), (1, 0), and
(1, 1) in the plane R2. This triangle is R-convex in R2 and its R-extreme
points are its wedges.

Example 4.2. Consider the unit disk in the complex plane. This unit
disk is C-convex in C and its C-extreme points are the set

{z ∈ C : |z| = 1}.

Example 4.3. [7, Corollary 1.2] The B(H)-extreme points of the unit
ball B are precisely the isometries and co-isometries.

The numerical range of an operator T ∈ B(H), denoted by W (T ),
is the collection of complex numbers ⟨Th, h⟩, where h runs through all
vectors in H of norm 1. The numerical radius of T , w(T ), is defined by

w(T ) = sup{|λ| : λ ∈ W (T )}.
Let Mn(C) be the set of n×n matrices with entries in C. We denote by
W1 the set of all matrices T ∈ Mn such that w(T ) ≤ 1. It is a standard
fact that W1 is linearly convex (R-convex) and in [10] it is shown that
W1 is Mn-convex. We denote by W 1

1 the collection of matrices T ∈ Mn

for which w(T ) = 1 and 1 ∈ W (T ).

Example 4.4. [7, Theorem 2.9] T ∈ Mn is C-extreme point of W1

if and only if W (T ) is the entire unit disk. Recall that W (T ) is an
elliptical disk.

Example 4.5. [7, Theorem 2.10] The identity matrix and all nilpotent
matrices in W 1

1 are Mn-extreme point in W 1
1 .

Example 4.6. [7, Theorem 3.1] Assume that H is infinite dimensional
and let S = {T ∈ B(H) : 0 ≤ T ≤ I} be the unit operator interval and
P ∈ B(H) a projection (unequal to 0 or I).

1. If P has infinite rank and co-rank, then P is B(H)-extreme of
S.

2. If P has finite rank, then P is B(H)-extreme of S ∩ B0(H).
3. If P has finite co-rank, then P is B(H)-extreme of the set

{T ∈ S : I − T ∈ B0(H)}.
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Our goal was to extend the notion of convexity to bimodules over
∗-rings which is available for ∗-rings or ∗-algebras. All of the examples
that exist are for ∗-rings or ∗-algebras. So, to clarify the distinction
between our new concept of convex sets of bimodules over ∗-rings and
the notion of C*-convexity for ∗-rings or ∗-algebras, we include an
example which is not a bimodule over itself. In other words, the module
is distinct from its ring.

Example 4.7. Let G be a commutative group and consider
End(G) := {f : G → G : f is a homomorphism}.

Then End(G) is a unital non-commutative ∗-ring with
(f + g)(a) = f(a) + g(a),

(fg)(a) = f(g(a)),

f ∗(a) = f(a)

for every a ∈ G and f, g ∈ End(G). In this situation, the group G is
an End(G)-bimodule by

a.f = f.a = f(a)

for every a ∈ G and f ∈ End(G). A set K ⊂ G is End(G)-convex, if K
is closed under the formation of finite sums of the type

∑
i f

∗
i .xi.fi,

where fi ∈ End(G), xi ∈ K and
∑

i f
∗
i fi = I, I is the identity

homomorphism on G. We note that∑
i

f ∗
i .xi.fi =

∑
i

fi.xi.fi =
∑
i

fi.fi(xi) =
∑
i

f 2
i (xi).

So, K is End(G)-convex, when
∑

i f
2
i (xi) ∈ K. We now provide an

End(G)-convex set in G. Let g ∈ End(G) be a fixed homomorphism
such that gf = fg for every f ∈ End(G) and consider

Sg = {x ∈ G : g(x) = 0}.
Then Sg is End(G)-convex in G.
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I. NIKOUFAR AND A. EBRAHIMI MEYMAND

∗-حلقه ها روی دومدول ها R-محدب زیرمجموعه های

میمند٢ ابراهیمی علی و نیکوفر١ اسماعیل

ایران تهران، نور، پیام دانشگاه ریاضی، ١گروه

ایران رفسنجان، رفسنجان، عصر ولی دانشگاه ریاضی، ٢گروه

و R-تحدب مفهوم باشند. B و R ∗-حلقه های روی ترتیب به دومدول هایی N و M کنیم فرض
زیرمجموعه های روی f-همریختی یک اثر مورد در می کنیم. بررسی را R-انتهایی نقاط متناظر مفهوم
از f-همریختی یک می دهیم نشان دیگر، عبارت به می کنیم. بحث آن R-انتهایی نقاط و R-محدب
و B-محدب زیرمجموعه های به را R-انتهایی نقاط و R-محدب زیرمجموعه های چگونه N به M
پایا زیرمجموعه های R-محدب پوش می دهیم نشان به علاوه، برعکس. و می کند منتقل B-انتهایی نقاط

می ماند. باقی پایا f-همریختی ها، تحت

f-همریختی. R-انتهایی، نقاط R-محدب، مجموعه های کلیدی: کلمات
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