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NON-NILPOTENT GRAPH OF COMMUTATIVE
RINGS

H. M. IMDADUL HOQUE, H. K. SAIKIA , J. GOSWAMI∗ AND D. PATWARI

Abstract. Let R be a commutative ring with unity. Let Nil(R)

be the set of all nilpotent elements of R and Nil(R) = R \Nil(R)
be the set of all non-nilpotent elements of R. The non-nilpotent
graph of R is a simple undirected graph GNN (R) with Nil(R)
as vertex set and any two distinct vertices x and y are adjacent
if and only if x + y ∈ Nil(R). In this paper, we introduce and
discuss the basic properties of the graph GNN (R). We also study
the diameter and girth of GNN (R). Further, we determine the
domination number and the bondage number of GNN (R). We
establish a relation between diameter and domination number of
GNN (R). We also establish a relation between girth and bondage
number of GNN (R).

1. Introduction

The study of algebraic structures by associating a graph has become
an interesting research topic now a days, leading to many fascinating
results and questions. This aspect was first introduced by I. Beck [8] in
1988 by defining zero divisor graph of a commutative ring. Following
this, Anderson and Naseer [5] modified the Beck’s definition. Also this
notion was further modified by Anderson and Livingston [4]. After
that many researchers have studied the zero divisor graph in the sense
of Anderson and Livingston [4]. Since then, the concept of zero divisor
graph of ring has been playing a crucial role in its expansion. In 2008,
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Anderson and Badawi [3] introduced the total graph of a commutative
ring. Further this notion has been generalised and studied in many
different ways (see [1, 2, 6, 11, 12, 23]).

The concepts of dominating sets and domination numbers play a
important role in graph theory. Dominating sets are the focus of many
books of graph theory (see [15, 14]). But not much research has been
done on the domination properties of graphs associated to algebraic
structures in terms of algebraic properties. However, some works on
domination of graphs associated to rings and modules have appeared
recently, for instance see [10, 13, 18, 21, 22, 24].

The study of nilpotent elements of a ring is one of the important
aspects of ring theory. Many researchers have characterized nilpotent
elements of a ring with the help of graphs, for instance see [7, 16, 20].
It is equally important to study the non-nilpotent elements of a ring as
they also play a vital role in ring theory. The set of nilpotent elements
of a ring is always an ideal of the ring. The sum of two nilpotent
elements of a ring is always nilpotent. However, it is a challenging task
to determine whether the sum of two non-nilpotent elements of a ring
is nilpotent or not. We try to tackle up this challenge with the help
of graph theory by studying the non-nilpotent graph of a commutative
ring.

In this paper, we introduce the non-nilpotent graph GNN(R) of
a commutative ring R, which is an induced subgraph of the total
graph introduced by Anderson and Badawi [3]. We study the basic
properties of the graph GNN(R). We also discuss the diameter and
girth of GNN(R). Further, we have studied the domination number
and bondage number of GNN(R). We establish a relationship between
diameter and domination number of GNN(R). Finally, a relationship
between girth and bondage number of GNN(R) has been established.

2. Preliminaries

In this section, we recall the basic definitions, concepts and
results which are needed in the later sections. Throughout this
paper, all rings are commutative with non-zero unity 1R. Let R be a
commutative ring with zero element 0. An element a ∈ R is called
nilpotent if there exists a positive integer n such that an = 0, and we
denote Nil(R) to be the set of all nilpotent elements of R. Nil(R)
is always an ideal of R. In fact, Nil(R) is the intersection of prime
ideals of R. Clearly, the sum of two nilpotent elements of R is again
nilpotent and also if a ∈ R is a nilpotent element then for all r ∈ R, ra
and ar are also nilpotent. Let Nil(R) = R \ Nil(R) be the set of all
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non-nilpotent elements of R. The sum of two non-nilpotent elements
of R may not be nilpotent. For any undefined terminology in rings and
modules we refer to [17, 19].

By a graph G, we mean a simple undirected graph without loops.
For a graph G, we denote by V (G) and E(G) the set of all vertices and
edges respectively. We recall that a graph is finite if both V (G) and
E(G) are finite sets, and we use the symbol |G| to denote the number
of vertices in the graph G. We say that G is a null graph if E(G) = ϕ.
Two vertices x and y of a graph G are connected if there is a path in
G connecting them. Also, a graph G is connected if there is a path
between any two distinct vertices. A graph G is disconnected if it is
not connected. A graph G is complete if any two distinct vertices are
adjacent. We denote the complete graph on n vertices by Kn. If the
vertex set V (G) of the graph G are partitioned into two non-empty
disjoint sets X and Y of cardinality |X| = m and |Y | = n, and two
vertices are adjacent if and only if they are not in the same partite
set, then G is called a bipartite graph. A graph G is called a complete
bipartite graph if every vertex in X is connected to every vertex in
Y . We denote the complete bipartite graph on m and n vertices by
Km,n. For vertices x, y ∈ G one defines the distance d(x, y), as the
length of the shortest path between x and y, if the vertices x, y ∈ G
are connected and d(x, y) = ∞, if they are not. Then, the diameter of
the graph G is

diam(G) = sup{d(x, y)|x, y ∈ G}.
The cycle is a closed path which begins and ends in the same

vertex. The cycle of n vertices is denoted by Cn. The girth of the
graph G,denoted by gr(G) is the length of the shortest cycle in G and
gr(G) = ∞ if G has no cycles.

For a subset S ⊆ V , < S > denotes the subgraph of G induced by
S. For a vertex v ∈ V , deg(v) is the degree of the vertex v,

N(v) = {u ∈ V | u is adjacent to v}

and N [v] = N(v) ∪ {v}. A subset S of V is called a dominating set
if every vertex in V − S is adjacent to atleast one vertex in S. The
domination number γ(G) of G is defined to be minimum cardinality of
a dominating set in G and such a dominating set is called γ-set of G. If
G is a trivial graph, then γ(G) = 0. The bondage number b(G) is the
minimum number of edges whose removal increases the domination
number. For basic definitions and results in domination we refer to
[9, 15, 14] and for any undefined graph-theoretic terminology we refer
to [9].
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Now we present some preliminary results on domination number and
bondage number of a graph which will be needed for the later sections.

Lemma 2.1. [9, 15]
(1) If G is a graph of order n, then 1 ≤ γ(G) ≤ n. A graph G of

order n has domination number 1 if and only if G contains a
vertex v of degree n− 1; while γ(G) = n if and only if G ∼= Kn.

(2) γ(Kn) = 1 for a complete graph Kn, but the converse is not
true, in general and γ(Kn) = n for a null graph Kn.

(3) Let G be a complete r-partite graph (r ≥ 2) with partite sets
V1, V2, ..., Vr. If |Vi| ≥ 2 for 1 ≤ i ≤ r, then γ(G) = 2; because
one vertex of V1 and one vertex of V2 dominate G. If |Vi| = 1
for some i, then γ(G) = 1.

(4) If G is a union of disjoint subgraphs G1, G2, ..., Gk, then
γ(G) = γ(G1) + γ(G2) + ...+ γ(Gk).

(5) Domination number of a bistar graph is 2; because the set
consisting of two centres of the graph is a minimal
dominating set.

Lemma 2.2. [15, 14]
(1) If G is a simple graph of order n, then 1 ≤ b(G) ≤ n− 1.
(2) b(Kn) = n− 1 for a complete graph Kn, but the converse is not

true, in general and b(Kn) = 0 for a null graph Kn.
(3) Let G be a complete r-partite graph with partite sets V1, V2, ..., Vr.

Then
b(G) = min{|V1|, |V2|, ..., |Vr|}.

In particular, b(Km,n) = min{m,n}.
(4) If G is a union of disjoint subgraphs G1, G2, ..., Gk, then

b(G) = min{b(G1), b(G2), ..., b(Gk)}.

3. Non-nilpotent graph GNN(R) of Commutative rings

In this section we introduce the Non-nilpotent Graph GNN(R) of a
commutative ring R and study some of its basic properties. We begin
with the following definition.

Definition 3.1. Let R be a commutative ring with nonzero identity.
The Non-nilpotent graph GNN(R) of R is an undirected simple graph
with all elements of Nil(R) as the vertices and two distinct vertices
x, y ∈ Nil(R) are adjacent if and only if x+ y ∈ Nil(R).

We now discuss some examples.
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Example 3.2. Let us consider the ring Z9. Clearly, Nil(Z9) = {0, 3, 6}
and Nil(Z9) = {1, 2, 4, 5, 7, 8}. The Non-nilpotent graph GNN(Z9) is
shown in the figure below.

Example 3.3. Let us consider the ring Z12. Clearly, Nil(Z12) = {0, 6}
and Nil(Z12) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}. The Non-nilpotent graph
GNN(Z12) is shown in the figure below.

Theorem 3.4. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β and 2 = 1R + 1R ∈ Nil(R). Then GNN(R) is the
union of β − 1 disjoint Kα’s.

Proof. Let us consider 2 = 1R + 1R ∈ Nil(R) and let x ∈ R/Nil(R).
Since Nil(R) is an ideal of R and 2 ∈ Nil(R), therefore, each coset
x+Nil(R) is complete subgraph of GNN(R) as

(x+ z1) + (x+ z2) = 2x+ z1 + z2 ∈ Nil(R)

for all z1, z2 ∈ Nil(R). We take distinct cosets x + Nil(R) and
y + Nil(R) for some x, y ∈ R/Nil(R). If x + x′ and y + y′ are ad-
jacent for some x′, y′ ∈ Nil(R) then

x+ x′ = (x+ z1) + (x′ + z2)− (z1 + z2) ∈ Nil(R)

and x − x′ = x + x′ − 2x ∈ Nil(R) as Nil(R) is an ideal of R. Thus
x+Nil(R) = x′ +Nil(R), which is a contradiction. Therefore GNN is
the union of β − 1 disjoint subgraphs x + Nil(R), each of which is a
complete graph Kα, where α = |Nil(R)| = |x+Nil(R)|. □

Example 3.5. Let us consider the ring Z8. Then we have
Nil(Z8) = {0, 2, 4, 6}
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and so Nil(Z8) = {1, 3, 5, 7}. Clearly, 2 ∈ Nil(Z8), |Nil(Z8)| = 4 and
|Z8/Nil(Z8)| = 2. Hence by the above Theorem 3.4, we have GNN(Z8)
is a complete graph K4 which can be seen from the following figure.

Theorem 3.6. Let R be an integral domain such that |Nil(R)| = α
and |R/Nil(R)| = β. Then GNN(R) is the union of (β − 1)/2 disjoint
Kα,α’s.

Proof. Let R be an integral domain such that |Nil(R)| = α and
|R/Nil(R)| = β. Then, Nil(R) = {0} which gives α = 1 and

2 = 1R + 1R /∈ Nil(R).

Let x ∈ R/Nil(R). Then no two distinct elements in x + Nil(R) are
adjacent because (x+z1)+(x+z2) ∈ Nil(R) for z1, z2 ∈ Nil(R) which
implies that 2x ∈ Nil(R), a contradiction as 2 /∈ Nil(R).

Again, the two cosets x+Nil(R) and −x+Nil(R) are disjoint, and
each element of x+Nil(R) is adjacent to each element of −x+Nil(R).
Hence, (x+Nil(R))∪ (−x+Nil(R)) is a complete bipartite subgraph
of GNN(R). Also, if y+ z1 is adjacent to x+ z2 for some y ∈ R/Nil(R)
and z1, z2 ∈ Nil(R), then x+ y ∈ Nil(R), and hence

y +Nil(R) = −x+Nil(R).

Thus, GNN(R) is the union of (β − 1)/2 disjoint subgraphs

(x+Nil(R)) ∪ (−x+Nil(R)),

each of which is a complete bipartite graph Kα,α, where

α = |Nil(R)| = |x+Nil(R)|.

□

Example 3.7. Let us consider the integral domain Z5. Then we have
Nil(Z5) = {0} and so Nil(Z5) = {1, 2, 3, 4}. Clearly, 2 /∈ Nil(Z5),
|Nil(Z5)| = 1 and |Z5/Nil(Z5)| = 5. Hence by the above Theorem
3.6, we have GNN(Z5) is the union of 2 complete bipartite graph K1,1,
which can be seen from the following figure.
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Remark 3.8. The above Theorem 3.6, is not true in general if the ring
R is not an integral domain. For example, let us consider the reduced
ring Z6. Then we have Nil(Z6) = {0} and so Nil(Z6) = {1, 2, 3, 4, 5}.
Clearly, 2 /∈ Nil(Z6), |Nil(Z6)| = 1 and |Z6/Nil(Z6)| = 6. But the
graph GNN(Z6) is the union of 2 complete bipartite graph K1,1 and an
isolated vertex, which can be seen from the following figure.

Theorem 3.9. Let R be a commutative ring. Then the graph GNN(R)
is complete if and only if either R/Nil(R) ∼= Z2 or

R ∼= R/Nil(R) ∼= Z3.
Proof. Let us assume that |Nil(R)| = α and |R/Nil(R)| = β. By
Theorems 3.4 and 3.6, we have GNN(R) is complete if and only if
GNN(R) is a single Kα or K1,1.
If 2 ∈ Nil(R), then β − 1 = 1. So, β = 2, and hence R/Nil(R) ∼= Z2.
Again, if R is an integral domain then Nil(R) = {0} which gives
2 /∈ Nil(R). Therefore, α = 1 and (β − 1)/2 = 1 which implies β = 3.
Hence, R ∼= R/Nil(R) ∼= Z3. □
Theorem 3.10. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β and 2 = 1R + 1R ∈ Nil(R). Then the graph GNN(R)
is connected if and only if R/Nil(R) ∼= Z2.
Proof. By Theorem 3.4, we have GNN(R) is connected if and only if
GNN(R) is a single Kα. Thus, β − 1 = 1 which implies β = 2. Hence,
R/Nil(R) ∼= Z2. □
Theorem 3.11. Let R be an integral domain. Then the graph GNN(R)
is connected if and only if R ∼= R/Nil(R) ∼= Z3.
Proof. By Theorem 3.6, we have GNN(R) is connected if and only if
GNN(R) is a single K1,1. Therefore, (β − 1)/2 = 1. Also, as R is an
integral domain we have Nil(R) = {0} which gives α = 1. Hence,
β = 3 and so R ∼= R/Nil(R) ∼= Z3. □
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Remark 3.12. The above Theorem 3.11, is not true in general if the ring
R is not an integral domain which can be observed from the following
examples.

(1) Let us consider the ring R = Z27. Then we have
Nil(R) = {0, 3, 6, 9, 12, 15, 18, 21, 24}.

Clearly, |Nil(R)| = 9 and |R/Nil(R)| = 3 which shows that
R/Nil(R) ∼= Z3 . We observe that the graph GNN(R) is
connected.

(2) Let us consider the ring R = Z25. Then we have
Nil(R) = {0, 5, 10, 15, 20}.

Clearly, |Nil(R)| = 5 and |R/Nil(R)| = 5 which shows that
R/Nil(R) ∼= Z5. But the graph GNN(R) is connected.

Theorem 3.13. Let R be a commutative ring.
(1) Let H be an induced subgraph of GNN(R), and two distinct

vertices x and y of H are connected by a path in H. Then
there is a path in H of length at most 2 between x and y. In
particular, if GNN(R) is connected, then diam(GNN(R)) ≤ 2.

(2) Let x and y be distinct elements of R that are connected by
a path. If x and y are not adjacent, then x − (−x) − y and
x− (−y)− y are paths of length 2 between x and y in GNN(R).

Proof. (1) It is enough to show that if x1, x2, x3 and x4 are distinct
vertices of H and there is a path x1 − x2 − x3 − x4 from x1 and
x4, then x1 and x4 are adjacent.

Now, x1 + x2, x2 + x3, x3 + x4 ∈ Nil(R). Implies
x1 + x4 = (x1 + x2)− (x2 + x3) + (x3 + x4) ∈ Nil(R),

as Nil(R) is an ideal of R. Thus x1 and x4 are adjacent.
(2) Since x and y are not adjacent, so x + y /∈ Nil(R) . Then

there is a z ∈ Nil(R) such that x − z − y is a path of length
2, by above part (1). Thus, x + z, z + y ∈ Nil(R), and hence
x − y = (x + z) − (z + y) ∈ Nil(R), as Nil(R) is an ideal of
R. Also, x ̸= −x and y ̸= −x since x + y /∈ Nil(R). Hence,
x− (−x)− y and x− (−y)− y are paths of length 2 between x
and y in GNN(R).

□
Theorem 3.14. Let R be a commutative ring. The following conditions
are equivalent:

(1) The graph GNN(R) is connected.
(2) Either x+ y ∈ Nil(R) or x− y ∈ Nil(R) for all x, y ∈ Nil(R).
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(3) Either x+y ∈ Nil(R) or x+2y ∈ Nil(R) for all x, y ∈ Nil(R).
In particular, either 2x ∈ Nil(R) or 3x ∈ Nil(R) (but not both)
for all x ∈ Nil(R).

(4) R/Nil(R) ∼= Z2 and 2 ∈ Nil(R).

Proof. (1) =⇒ (2) Let the graph GNN(R) is connected. Also, let us
assume that x, y ∈ Nil(R). If x = y, then x − y ∈ Nil(R). Suppose
x ̸= y. If x + y /∈ Nil(R) then x− (−y)− y is a path from x to y, by
Theorem 3.13(2). This implies that x− y ∈ Nil(R).
(2) =⇒ (3) Let x, y ∈ Nil(R), and suppose that x + y /∈ Nil(R).

Since (x+ y)− y = x /∈ Nil(R), thus

x+ 2y = (x+ y) + y ∈ Nil(R),

by the hypothesis. In particular if x ∈ Nil(R), then either 2x ∈ Nil(R)
or 3x ∈ Nil(R). If both 2x and 3x are in Nil(R) then

3x− 2x = x ∈ Nil(R),

a contradiction. Thus both 2x and 3x cannot be in Nil(R).
(3) =⇒ (1) Let x, y ∈ Nil(R) be such that x + y /∈ Nil(R) then

x+2y ∈ Nil(R), by the hypothesis. Since Nil(R) is an ideal of R and
x+2y ∈ Nil(R), this implies that 2y /∈ Nil(R). Thus 3y ∈ Nil(R), by
the hypothesis. Since x + y /∈ Nil(R) and 3y ∈ Nil(R), we conclude
that x ̸= 2y, and thus x − 2y − y is a path from x to y in GNN(R).
Hence, GNN(R) is connected.

(4) ⇐⇒ (1) This follows directly from Theorem 3.10. □
Now we discuss the diameter and girth of the graph GNN(R).

Theorem 3.15. Let R be a commutative ring. Then,
(1) diam(GNN(R)) = 0 if and only if R ∼= Z2.
(2) diam(GNN(R)) = 1 if and only if either R/Nil(R) ∼= Z2 and

R ≇ Z2 (i.e., |Nil(R)| ≥ 2) or R ∼= R/Nil(R) ∼= Z3.
(3) diam(GNN(R)) = ∞ if R is an integral domain such that

R ≇ Z2,Z3.

Proof. (1) The diam(GNN(R)) = 0 if and only if GNN(R) is a null
graph if and only if GNN(R) is the complete graph K1 if and
only if R ∼= Z2.

(2) The diam(GNN(R)) = 1 if and only if GNN(R) is a single K2

or K1,1. So by Theorems 3.10 and 3.11, we get R/Nil(R) ∼= Z2

or R ∼= R/Nil(R) ∼= Z3.
(3) If R is an integral domain such that R ≇ Z2,Z3, then by

Theorem 3.6 we have GNN(R) is a disjoint union of more than
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one K1,1 which gives GNN(R) is a disconnected graph. Hence,
diam(GNN(R)) = ∞.

□
Theorem 3.16. Let R be a commutative ring. Then,

(1) gr(GNN(R)) = 3 if and only if 2 ∈ Nil(R) and |Nil(R)| ≥ 3.
(2) gr(GNN(R)) = ∞ if R is an integral domain.

Proof. (1) Suppose 2 ∈ Nil(R) and |Nil(R)| ≥ 3. Then GNN(R)
is the disjoint union of complete graph Kα, by Theorem 3.4,
and so it must contain a shortest cycle of length 3. Hence,
gr(GNN(R)) = 3.
Conversely, let gr(GNN(R)) = 3. If GNN(R) contains a cycle,
then GNN(R) is the disjoint union of either complete graph
Kα or the complete bipartite graph Kα,α, by Theorem 3.4 and
3.6. Since, gr(GNN(R)) = 3, so the graph GNN(R) cannot be
Kα,α as Kα,α cannot have an odd cycle. Thus, GNN(R) is the
disjoint union of complete graph Kα, α ≥ 3. This implies that
2 ∈ Nil(R), by Theorem 3.4 and α = |Nil(R)| ≥ 3.

(2) If R is an integral domain, then by Theorem 3.6 we have GNN(R)
is a disjoint union of K1,1 which gives GNN(R) contains no
cycle. Hence, gr(GNN(R)) = ∞.

□
Remark 3.17. (1) The condition for which gr(GNN(R)) = ∞ as

mentioned in the statement (2) of Theorem 3.16 is only
necessary but not a sufficient condition.
From Remark 3.8, we can observe that the graph GNN(Z6) of
the reduced ring Z6 is a disjoint union of two K1,1 and an
isolated vertex which gives gr(GNN(Z6)) = ∞ but Z6 is not
an integral domain.

(2) From Example 3.2, we can observe that the girth of the graph
GNN(Z9) is gr(GNN(Z9)) = 4. Also, there are certain rings
whose Non-nilpotent graphs have girth 4.

4. Domination Number and Bondage Number of GNN(R)

In this section we determine the domination number and the
bondage number of the Non-nilpotent graph GNN(R). We establish
a relationship between diameter and domination number of GNN(R).
We also establish a relationship between girth and bondage number of
GNN(R). We begin with the following Theorem.
Theorem 4.1. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β and 2 = 1R+1R ∈ Nil(R). Then γ(GNN(R)) = β−1.
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Proof. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β and 2 ∈ Nil(R). Then by Theorem 3.4, we have
the graph GNN(R) is the union of β − 1 disjoint Kα’s. But γ(Kα) = 1
which gives γ(GNN(R)) = β − 1. □
Example 4.2. From Example 3.5, for the ring Z8, we have
|Nil(Z8)| = 4, |Z8/Nil(Z8)| = 2 and 2 ∈ Nil(Z8). We observe that
GNN(Z8) is a complete graph K4. Thus, γ(GNN(Z8)) = 1.

Theorem 4.3. Let R be an integral domain such that |Nil(R)| = α
and |R/Nil(R)| = β. Then γ(GNN(R)) = β − 1.

Proof. Let R be an integral domain such that |Nil(R)| = α and
|R/Nil(R)| = β. Then, Nil(R) = {0} which gives α = 1 and
2 = 1R + 1R /∈ Nil(R). Now, by Theorem 3.6, we have the graph
GNN(R) is the union of (β − 1)/2 disjoint K1,1’s. But γ(Kα,α) = 2
which implies γ(GNN(R)) = (β − 1)/2× 2 = β − 1. □
Example 4.4. From Example 3.7, for the integral domain Z5, we have
|Nil(Z5)| = 1 and |Z5/Nil(Z5)| = 5. We observe that GNN(Z5) is a
disjoint union of two complete bipartite graph K1,1. Thus,

γ(GNN(Z5)) = 2 + 2 = 4.

Theorem 4.5. Let R be a commutative ring such that
2 = 1R + 1R ∈ Nil(R).

Then γ(GNN(R)) = 1 if and only if R/Nil(R) ∼= Z2.

Proof. Let us suppose that γ(GNN(R)) = 1. Then GNN(R) is
connected. Since 2 ∈ Nil(R), so by Theorem 3.10 we have

R/Nil(R) ∼= Z2.

Conversely, let R/Nil(R) ∼= Z2. Then by Theorem 3.9, GNN(R) is
complete and hence γ(GNN(R)) = 1. □
Theorem 4.6. Let R be an integral domain. Then γ(GNN(R)) = 1 if
and only if R ∼= R/Nil(R) ∼= Z3.

Proof. Let us assume that γ(GNN(R)) = 1. Then GNN(R) is connected
and so by Theorem 3.11 we have R ∼= R/Nil(R) ∼= Z3.
Conversely, let R ∼= R/Nil(R) ∼= Z3. Then by Theorem 3.9 we have
GNN(R) is complete and hence γ(GNN(R)) = 1. □

In the following corollary a relationship between diameter and
domination number of GNN(R) has been established.

Corollary 4.7. Let R be a commutative ring. Then,
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diam(GNN(R)) = 1

if and only if γ(GNN(R)) = 1.

Proof. (1). It is clear by Theorems 3.15(2), 4.5 and 4.6. □
Theorem 4.8. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β and 2 = 1R + 1R ∈ Nil(R). Then b(GNN(R)) = α− 1

Proof. By Theorem 3.4, we see that the graph GNN(R) is the union of
β − 1 disjoint Kα’s. Since b(Kα) = α− 1.
Thus,

b(GNN(R)) = min{b(Kα), b(Kα), b(Kα), ..., b(Kα)}(β−1)copies

= min{α− 1, α− 1, α− 1, ..., α− 1}(β−1)copies

= α− 1.

□
Example 4.9. From Example 3.5, for the ring Z8, we have
|Nil(Z8)| = 4, |Z8/Nil(Z8)| = 2 and 2 ∈ Nil(Z8). We observe that
GNN(Z8) is a complete graph K4. Thus, b(GNN(Z8)) = 4− 1 = 3.

Theorem 4.10. Let R be an integral domain such that |Nil(R)| = α
and |R/Nil(R)| = β. Then b(GNN(R)) = 1

Proof. Since R is an integral domain, so Nil(R) = {0} which gives
α = 1. Then by Theorem 3.6, we have GNN(R) is the union of (β−1)/2
disjoint K1,1’s and we know that b(K1,1) = 1. Hence,

GNN(R) = min{b(K1,1), b(K1,1), ..., b(K1,1)}(β−1)/2copies = 1.
□

In the following theorem a relationship between girth and bondage
number of GNN(R) has been established.

Theorem 4.11. Let R be a commutative ring such that |Nil(R)| = α,
|R/Nil(R)| = β. Then,

gr(GNN(R)) = 3

if and only if b(GNN(R)) = α− 1, α ≥ 3 and 2 = 1R + 1R ∈ Nil(R).

Proof. If gr(GNN(R)) = 3, then 2 ∈ Nil(R) and α = |Nil(R)| ≥ 3,
by Theorem 3.16(1). Since 2 ∈ Nil(R), so by Theorem 3.4, the graph
GNN(R) is the union of β − 1 disjoint Kα’s. Therefore,

b(GNN(R)) = α− 1.
The converse part is clear by Theorem 3.16(1). □
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جابه جایی حلقه های غیرپوچ توان گراف

پاتواری۴ دیکشا و گوسوامی٣ جیتوپارنا سایکیا٢، کوماری هلن امدادالحق١، محمد حسین

هند گواهاتی، گاوهاتی، دانشگاه ریاضیات، ١,٢,٣,۴گروه

عناصر همه ی مجموعه ی Nil(R) کنید فرض همچنین، باشد. یکدار و جابه جایی حلقه ای R کنید فرض
گراف باشد. R غیرپوچ توان عناصر همه ی مجموعه ی Nil(R) = R \ Nil(R) و R پوچ توان
دو آن در که است Nil(R) رئوس مجموعه ی با GNN(R) غیرجهتی و ساده گراف R غیرپوچ توان
اولیه خواص و مفهوم مقاله، این در .x + y ∈ Nil(R) اگر تنها و اگر مجاورند y و x متمایز رأس
همچنین، شده اند. مطالعه GNN(R) کمر و قطر علاوه، به شده اند. بررسی و معرفی GNN(R) گراف
احاطه گری عدد و قطر بین رابطه ای شده اند. تعیین GNN(R) گراف اسارت عدد و احاطه گری عدد

است. آمده بدست GNN(R) اسارت عدد و کمر بین رابطه ای علاوه، به است. شده بیان GNN(R)

غیرپوچ توان. عناصر توان، غیرپوچ گراف جابه جایی، حلقه های کلیدی: کلمات
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