Journal of Algebraic Systems Vol. 12, No. 1, (2024), pp 163-177

ON (α, τ) -*P*-**DERIVATIONS OF NEAR-RINGS**

S. MOUHSSINE AND A. BOUA*

ABSTRACT. The relationship between derivations and algebraic structures of quotient near-rings has become a fascinating topic in modern algebra in recent decades. Assume \mathcal{N} is a near-ring and P is its prime ideal. In this paper we introduce the notion of (α, τ) -P-derivation in near-rings. Also, we study the structure of the quotient near-rings \mathcal{N}/P that satisfies certain algebraic identities involving (α, τ) -P-derivation.

1. INTRODUCTION

Throughout the paper, \mathcal{N} will denote a left near-ring with multiplicative center $Z(\mathcal{N})$ and additive center $C(\mathcal{N})$. A near-ring \mathcal{N} is said to be zero-symmetric if 0x = 0 for all $x \in \mathcal{N}$ (recall that a left distributivity in \mathcal{N} yields that x0 = 0). Also, \mathcal{N} is said to be 2-torsion free if 2x = 0 implies x = 0 for all $x \in \mathcal{N}$. Recall that \mathcal{N} is called a 3-prime near-ring, if for $x, y \in \mathcal{N}, x\mathcal{N}y = \{0\}$ implies x = 0 or y = 0. For all $x, y \in \mathcal{N}, [x, y] = xy - yx$ and $x \circ y = xy + yx$ shall denote the Lie product and the Jordan product, respectively. The symbol (x, y) will denote the additive-group commutator x + y - x - y. A normal subgroup P of $(\mathcal{N}, +)$ is called a left ideal (resp. a right ideal) if $P\mathcal{N} \subseteq P$ (resp. $(x + p)y - xy \in P$ for all $x, y \in \mathcal{N}$ and $p \in P$), and if P is both a left ideal and a right ideal, then P is said to be an ideal of \mathcal{N} . Following Groenewald [4]; an ideal P is a 3-prime

DOI: 10.22044/JAS.2023.12352.1661.

MSC(2010): Primary: 16U60; Secondary: 16W25.

Keywords: Near-rings; Prime ideals; (α, τ) -derivations; Commutativity.

Received: 20 October 2022, Accepted: 4 January 2023.

^{*}Corresponding author.

if for $a, b \in \mathcal{N}, a\mathcal{N}b \subseteq P \Rightarrow a \in P$ or $b \in P$. An additive mapping $d : \mathcal{N} \to \mathcal{N}$ is a (α, τ) -derivation if there exist automorphisms $\alpha, \tau : \mathcal{N} \to \mathcal{N}$ such that $d(xy) = \tau(x)d(y) + d(x)\alpha(y)$ for all $x, y \in \mathcal{N}$, or equivalently, as noted in [1], such that $d(xy) = d(x)\alpha(y) + \tau(x)d(y)$ for all $x, y \in \mathcal{N}$. A mapping $d : \mathcal{N} \to \mathcal{N}$ is said *P*-additive if $d(x+y) - (d(x)+d(y)) \in P$ for all $x, y \in \mathcal{N}$. A mapping $d : \mathcal{N} \to \mathcal{N}$ is called *P*-trivial if $d(\mathcal{N}) \subseteq P$. An element x of \mathcal{N} for which $d(x) \in P$ is called *P*-constants. A mapping $d : \mathcal{N} \to \mathcal{N}$ will be called (α, τ) -*P*-commuting if $[d(x), x]_{\alpha, \tau} = d(x)\alpha(x) - \tau(x)d(x) \in P$ for all $x \in \mathcal{N}$.

Many results in the literature indicate how the global structure of a near-ring \mathcal{N} is often tightly connected to the behavior of derivations defined on \mathcal{N} . Recently, a series of more general concepts of derivations have been introduced and studied on near-rings (see, for example, [3], [5], and [6]). In the following, we define the notion of (α, τ) -*P*-derivation in near-rings, which generalizes the notion of (α, τ) -derivation, and we enrich this definition by an example, which justifies the existence of this type of application:

Definition 1.1. Let \mathcal{N} be a near-ring and P be a subgroup of $(\mathcal{N}, +)$. A P-additive mapping $d : \mathcal{N} \to \mathcal{N}$ is a (α, τ) -P-derivation of \mathcal{N} , if there exist maps $\alpha, \tau : \mathcal{N} \to \mathcal{N}$ such that $d(xy) - (\tau(x)d(y) + d(x)\alpha(y)) \in P$ for all $x, y \in \mathcal{N}$.

Definition 1.2. Let \mathcal{N} be a near-ring and P be a subgroup of $(\mathcal{N}, +)$. A P-additive mapping $d : \mathcal{N} \to \mathcal{N}$ is a (α, τ) -P⁺-derivation of \mathcal{N} , if d is a (α, τ) -P-derivation such that

(a) $d(d(xy) - (\tau(x)d(y) + d(x)\alpha(y))) \in P$ for all $x, y \in \mathcal{N}$. (b) $d(d(xy) - (d(x)\alpha(y) + \tau(x)d(y))) \in P$ for all $x, y \in \mathcal{N}$.

Definition 1.3. Let \mathcal{N} be a near-ring. A normal subgroup P of $(\mathcal{N}, +)$ is called a symmetric ideal if

- (a) P is an ideal of \mathcal{N} .
- (b) $\mathcal{N}P \subseteq P$.

When $P = \{0\}$ is the symmetric ideal of a near-ring \mathcal{N} , we get the concept of a zero-symmetric near-ring \mathcal{N} .

Definition 1.4. A near-ring \mathcal{N} is called symmetric if each ideal of \mathcal{N} is symmetric.

It is easy to see that any (α, τ) -derivation on \mathcal{N} is a (α, τ) -P-derivation on \mathcal{N} . The following example justifies the existence of a (α, τ) -Pderivation, which is not a (α, τ) -derivation:

Example 1.5. Let S be a left near-ring. Define \mathcal{N} , P by

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array} \right) \mid a, b, c, 0 \in S \right\}, \ P = \left\{ \left(\begin{array}{ccc} 0 & u & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \mid 0, u \in S \right\},$$

then \mathcal{N} is a left near-ring, and P is an ideal of \mathcal{N} . Let us define d, α , and $\tau : \mathcal{N} \longrightarrow \mathcal{N}$ as follow:

$$d\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \alpha \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix}$$

and

$$\tau \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

It is clear to see that d is a (α, τ) - P^+ -derivation, but not a (α, τ) -derivation on \mathcal{N} .

With these definitions, by using (α, τ) -*P*-derivations, where $\alpha, \tau : \mathcal{N} \to \mathcal{N}$ are two automorphisms and *P* is an ideal of a near-ring \mathcal{N} , we will investigate properties of the near-ring \mathcal{N}/P . The originality in this work is that we use a (α, τ) -*P*-derivation on \mathcal{N} (and not on \mathcal{N}/P), which satisfies some algebraic identities on \mathcal{N} and on *P*, without the primeness (semi-primeness) assumption on the considered near-ring.

2. Some preliminaries

Lemma 2.1. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} . If $d: \mathcal{N} \to \mathcal{N}$

is a (α, τ) -P-derivation of \mathcal{N} such that $d(P) \subseteq P, \alpha(P) \subseteq P, \tau(P) \subseteq P$, then the mapping $\widetilde{d} : \mathcal{N}/P \to \mathcal{N}/P$ defined by $\widetilde{d}(\overline{x}) = \overline{d(x)}$ is a $(\widetilde{\alpha}, \widetilde{\tau})$ -derivation on \mathcal{N}/P , where $\widetilde{\alpha}(\overline{x}) = \overline{\alpha(x)}$ and $\widetilde{\tau}(\overline{x}) = \overline{\tau(x)}$.

Proof. \widetilde{d} is well defined. Indeed, let $y \in \overline{x}$, then y - x = p for some $p \in P$, thus d(y) = d(x) + d(p), hence $\widetilde{d}(\overline{y}) = \overline{d(y)} = \overline{d(x)} = \widetilde{d}(\overline{x})$. Now, let $\overline{x}, \overline{y} \in \mathcal{N}/P$ we have

$$\widetilde{d}(\overline{xy}) = \overline{d(xy)} = \overline{(\tau(x)d(y) + d(x)\alpha(y))} = \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}$$

 $= \tau(x)d(y) + d(x)\alpha(y)$ = $\tilde{\tau}(\overline{x})\tilde{d}(\overline{y}) + \tilde{d}(\overline{x})\tilde{\alpha}(\overline{y}),$

which completes the proof.

Lemma 2.2. Let \mathcal{N} be a near-ring and P be an ideal of \mathcal{N} . A *P*-additive endomorphism *d* on a near-ring \mathcal{N} is a (α, τ) -*P*-derivation if and only if $d(xy) - (d(x)\alpha(y) + \tau(x)d(y)) \in P$ for all $x, y \in \mathcal{N}$.

Proof. Suppose that $d(xy) - (\tau(x)d(y) + d(x)\alpha(y)) \in P$, for all $x, y \in \mathcal{N}$. Since x(y+y) = xy + xy, it follows that

$$\overline{d(x(y+y))} = \overline{\tau(x)d(y+y)} + \overline{d(x)}(\overline{\alpha(y)} + \overline{\alpha(y)})$$

$$= \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)} + \overline{d(x)\alpha(y)}$$
(2.1)
(2.2)

for all $x, y \in \mathcal{N}$. Also,

$$\overline{d(xy+xy)} = \overline{d(xy)} + \overline{d(xy)} = \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}$$
(2.3)

for all $x, y \in \mathcal{N}$. Combining (2.2) and (2.3), we get

$$\overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)} = \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}$$

for all $x, y \in \mathcal{N}$. Hence, $d(xy) - (d(x)\alpha(y) + \tau(x)d(y)) \in P$ for all $x, y \in \mathcal{N}.$

For the converse suppose that $d(xy) - (d(x)\alpha(y) + \tau(x)d(y)) \in P$ for all $x, y \in \mathcal{N}$. We have

$$\overline{d(x(y+y))} = \overline{d(x)\alpha(y+y)} + \overline{\tau(x)d(y+y)} = \overline{d(x)\alpha(y)} + \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)}$$
(2.4)

for all $x, y \in \mathcal{N}$. On the other hand,

$$\overline{d(xy+xy)} = \overline{d(xy)} + \overline{d(xy)} = \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)}$$
(2.5)

for all $x, y \in \mathcal{N}$. From (2.4) and (2.5), we get

$$\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} = \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}$$

for all $x, y \in \mathcal{N}$. Thus, $d(xy) - (\tau(x)d(y) + d(x)\alpha(y)) \in P$ for all $x, y \in \mathcal{N}$. Hence, d is a (α, τ) -P-derivation.

Lemma 2.3. Let \mathcal{N} be a near-ring, P an ideal of \mathcal{N} and d be an arbitrary (α, τ) -P-derivation of \mathcal{N} . Then, \mathcal{N}/P satisfies the following partial distributive laws:

- (a) $\left(\overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}\right)\overline{\alpha(z)} = \overline{\tau(x)d(y)\alpha(z)} + \overline{d(x)\alpha(y)\alpha(z)}$ for $all x, y, z \in \mathcal{N}.$ (b) $\left(\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}\right)\overline{\alpha(z)} = \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(y)\alpha(z)}$ for
- all $x, y, z \in \mathcal{N}$.

Proof. (a) We know that $\overline{d(xy)} = \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}$ for all $x, y \in \mathcal{N}$. So,

$$\overline{d((xy)z)} = \overline{\tau(x)\tau(y)d(z)} + \overline{d(xy)\alpha(z)} = \overline{\tau(x)\tau(y)d(z)} + \left(\overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}\right)\overline{\alpha(z)}$$
(2.6)

for all $x, y, z \in \mathcal{N}$. Also,

$$\overline{d(x(yz))} = \overline{\tau(x)d(yz)} + \overline{d(x)\alpha(y)\alpha(z)}
= \overline{\tau(x)}\left(\overline{\tau(y)d(z)} + \overline{d(y)\alpha(z)}\right) + \overline{d(x)\alpha(y)\alpha(z)}
= \overline{\tau(x)\tau(y)d(z)} + \overline{\tau(x)d(y)\alpha(z)} + \overline{d(x)\alpha(y)\alpha(z)} \quad (2.7)$$

for all $x, y, z \in \mathcal{N}$. From (2.6) and (2.7), we get

$$\overline{\tau(x)\tau(y)d(z)} + \left(\overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}\right)\overline{\alpha(z)}$$
$$= \overline{\tau(x)\tau(y)d(z)} + \overline{\tau(x)d(y)\alpha(z)} + \overline{d(x)\alpha(y)\alpha(z)}$$

for all $x, y, z \in \mathcal{N}$, i.e.,

$$\left(\overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}\right)\overline{\alpha(z)} = \overline{\tau(x)d(y)\alpha(z)} + \overline{d(x)\alpha(y)\alpha(z)}$$

for all
$$x, y, z \in \mathcal{N}$$
.
(b) We have $\overline{d(xy)} = \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}$ for all $x, y \in \mathcal{N}$. Then,
 $\overline{d(x(yz))} = \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(yz)}$
 $= \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)}\left(\overline{d(y)\alpha(z)} + \overline{\tau(y)d(z)}\right)$
 $= \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(y)\alpha(z)} + \overline{\tau(x)\tau(y)d(z)}$ (2.8)

for all $x, y, z \in \mathcal{N}$. On the other side,

$$\overline{d((xy)z)} = \overline{d(xy)\alpha(z)} + \overline{\tau(x)\tau(y)d(z)}$$
$$= \left(\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}\right)\overline{\alpha(z)} + \overline{\tau(x)\tau(y)d(z)}$$
$$= \left(\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}\right)\overline{\alpha(z)} + \overline{\tau(x)\tau(y)d(z)} \quad (2.9)$$

for all $x, y, z \in \mathcal{N}$. Combining (2.8) and (2.9), we obtain

$$\overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(y)\alpha(z)} + \overline{\tau(x)\tau(y)d(z)} = \left(\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}\right)\overline{\alpha(z)} + \overline{\tau(x)\tau(y)d(z)}$$

for all $x, y, z \in \mathcal{N}$. Thus, we have

$$\left(\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)}\right)\overline{\alpha(z)} = \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(y)\alpha(z)}$$

for all $x, y, z \in \mathcal{N}$.

Lemma 2.4. Let P be a 3-prime ideal of a near-ring \mathcal{N} .

- (a) If $\overline{z} \in Z(\mathcal{N}/P) \setminus \{\overline{0}\}$, then \overline{z} is not a zero divisor.
- (b) If $Z(\mathcal{N}/P)$ contains a nonzero element \overline{z} for which $\overline{z} + \overline{z} \in Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian.
- (c) If $\overline{z} \in Z(\mathcal{N}/P) \smallsetminus \{\overline{0}\}$ and $\overline{x} \in \mathcal{N}/P$ such that $\overline{xz} \in Z(\mathcal{N}/P)$, then $\overline{x} \in Z(\mathcal{N}/P)$.

Proof. By hypothesis we have P is a 3-prime ideal of \mathcal{N} . Thus $\{\overline{0}\}$ is a 3-prime ideal of \mathcal{N}/P . Therefore, (**a**), (**b**) and (**c**) are consequences of [2, Lemma 1.2 & Lemma 1.3].

Lemma 2.5. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a non P-trivial (α, τ) -P-derivation on \mathcal{N} . Then

- (a) $\overline{x}\overline{d(\mathcal{N})} = \{\overline{0}\} \text{ implies } \overline{x} = \overline{0},$
- (**b**) $\overline{d(\mathcal{N})\alpha(x)} = \{\overline{0}\}$ implies $\overline{\alpha(x)} = \overline{0}$.

Proof. (a) Suppose that $\overline{x}\overline{d(\mathcal{N})} = \{\overline{0}\}$. Then,

$$\overline{0} = \overline{x}\overline{d(yz)} = \overline{x}\overline{d(y)}\alpha(z) + \overline{x}\overline{\tau(y)}\overline{d(z)} = \overline{x}\overline{\tau(y)}\overline{d(z)}$$

for all $y, z \in \mathcal{N}$. That is, $x\mathcal{N}d(z) \subseteq P$ for all $z \in \mathcal{N}$. By the 3-primeness of P, we have $\overline{0} = \overline{x}$ or $\overline{0} = \overline{d(z)}$ for all $z \in \mathcal{N}$. Since $d(\mathcal{N}) \nsubseteq P$, we conclude that $\overline{0} = \overline{x}$.

(b) A similar argument works if $\overline{d(\mathcal{N})\alpha(x)} = \{\overline{0}\}.$

Lemma 2.6. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P⁺-derivation of \mathcal{N} such that $\overline{\alpha d} = \overline{d\alpha}$ and $\overline{\tau d} = \overline{d\tau}$. If $d^2(\mathcal{N}) \subseteq P$, then, $d(\mathcal{N}) \subseteq P$ or $2(\mathcal{N}/P) = \{\overline{0}\}$.

Proof. Assume that $d(\mathcal{N}) \nsubseteq P$. By the hypothesis, we have

$$\overline{0} = \overline{d^2(xy)}$$

$$= \overline{d(d(x)\alpha(y) + \tau(x)d(y))}$$

$$= \overline{d^2(x)\alpha^2(y) + \tau(d(x))d(\alpha(y))} + \overline{d(\tau(x))\alpha(d(y))} + \overline{\tau^2(x)d^2(y)}$$

$$= \overline{d(\tau(x))(2d(\alpha(y)))}.$$

This implies that $\overline{d(\mathcal{N})\alpha(d(2y))} = \{\overline{0}\}$ for all $y \in \mathcal{N}$. By using Lemma 2.5 (b), we get $\overline{d(2y)} = \overline{0}$ for all $y \in \mathcal{N}$. Hence,

$$\overline{0} = d(2xy)$$

$$= \overline{d(xy)} + \overline{d(xy)}$$

$$= \overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} + \overline{\tau(x)d(y)} + \overline{d(x)\alpha(y)}$$

$$= \overline{d(x)\alpha(y)} + \overline{\tau(x)d(2\alpha(y))} + \overline{d(x)\alpha(y)}$$

$$= \frac{d(x)\alpha(y) + d(x)\alpha(y)}{\overline{d(x)\alpha(2y)}} \text{ for all } x, y \in \mathcal{N},$$

that is, $\overline{d(\mathcal{N})\alpha(2y)} = \{\overline{0}\}$ for all $y \in \mathcal{N}$. By Lemma 2.5 (b), we get $2(\mathcal{N}/P) = \{\overline{0}\}.$

3. Commutativity of \mathcal{N}/P

Lemma 3.1. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P-derivation of \mathcal{N} . Suppose that $\overline{\tau(u)}$ is not a left zero divisor on \mathcal{N}/P . If $[d(u), u]_{\alpha, \tau} \in P$, then $d((x, u)) \in P$ for all $x \in \mathcal{N}$.

Proof. Given $x \in \mathcal{N}$. From $u(u+x) = u^2 + ux$, we have

$$\overline{\tau(u)d(u+x)} + \overline{d(u)}(\overline{\alpha(u)} + \overline{\alpha(x)}) \\ = \overline{\tau(u)d(u)} + \overline{d(u)\alpha(u)} + \overline{\tau(u)d(x)} + \overline{d(u)\alpha(x)},$$

which reduces to $\overline{\tau(u)}d(x) + \overline{d(u)}\alpha(u) = \overline{d(u)}\alpha(u) + \overline{\tau(u)}d(x)$. Since $\overline{d(u)}\alpha(u) = \overline{\tau(u)}d(u)$, the above equation can be expressed as

$$\overline{0} = \overline{\tau(u)(d(x) + d(u) - d(x) - d(u))} = \overline{\tau(u)d((x, u))}.$$

$$\overline{d((x, u))} = \overline{0} \text{ for all } x \in \mathcal{N}$$

Thus, d((x, u)) = 0 for all $x \in \mathcal{N}$.

Theorem 3.2. Let P be a 3-prime ideal of a near-ring \mathcal{N} . Suppose that \mathcal{N}/P has no nonzero divisors of zero. If \mathcal{N} admits a non P-trivial (α, τ) -P-commuting P- (α, τ) -derivation d, then $(\mathcal{N}/P, +)$ is abelian.

Proof. Given $x, y \in \mathcal{N}$. Let $c = \alpha^{-1}((x, y))$. Then, by Lemma 3.1, $\overline{d(c)} = \overline{0}$. Moreover, wc is an additive commutator for any $w \in \mathcal{N}$, thus, also a *P*-constant. i.e.,

$$\overline{0} = \overline{d(wc)} = \overline{\tau(w)d(c) + d(w)\alpha(c)} = \overline{d(w)\alpha(c)}$$

for all $w \in \mathcal{N}$. In view of Lemma 2.5 (b), we conclude that

$$\overline{0} = \overline{\alpha(c)} = \overline{(x,y)}$$

for all $x, y \in \mathcal{N}$. The proof is now complete.

Theorem 3.3. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a non P-trivial (α, τ) -P-derivation such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $\overline{d(\mathcal{N})} \subseteq Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian. Moreover, if $d^2(\mathcal{N}) \nsubseteq P$, then \mathcal{N}/P is a commutative ring.

Proof. Suppose that $u \in \mathcal{N}$ such that $\overline{d(u)} \neq \overline{0}$. Then,

$$\overline{d(u)} \in Z(\mathcal{N}/P) \smallsetminus \{\overline{0}\}$$

and $\overline{d(u)} + \overline{d(u)} \in Z(\mathcal{N}/P)$. Let $x, y \in \mathcal{N}$, we have $(\overline{d(u)} + \overline{d(u)})(\overline{x} + \overline{y}) = (\overline{x} + \overline{y})(\overline{d(u)} + \overline{d(u)}),$

i.e.,

$$\overline{x}\overline{d(u)} + \overline{x}\overline{d(u)} + \overline{y}\overline{d(u)} + \overline{y}\overline{d(u)} = \overline{x}\overline{d(u)} + \overline{y}\overline{d(u)} + \overline{x}\overline{d(u)} + \overline{y}\overline{d(u)}$$

and we find that

$$\overline{x}\overline{d(u)} + \overline{y}\overline{d(u)} = \overline{y}\overline{d(u)} + \overline{x}\overline{d(u)}.$$

Hence, $\overline{d(u)}(\overline{x}, \overline{y}) = \overline{0}$ for all $\overline{x}, \overline{y} \in \mathcal{N}/P$. Since $\overline{d(u)} \in Z(\mathcal{N}/P) \setminus \{\overline{0}\}$ and \mathcal{N}/P is a 3-prime near-ring, we see that $(\overline{x}, \overline{y}) = \overline{0}$ for all $\overline{x}, \overline{y} \in \mathcal{N}/P$. Thus, $(\mathcal{N}/P, +)$ is abelian. Using the hypothesis, we have $\overline{\alpha(z)d(xy)} = \overline{d(xy)\alpha(z)}$ for all $x, y, z \in \mathcal{N}$. An application of Lemma 2.3 yields

$$\overline{\alpha(z)d(x)\alpha(y)} + \overline{\alpha(z)\tau(x)d(y)} = \overline{d(x)\alpha(y)\alpha(z)} + \overline{\tau(x)d(y)\alpha(z)}$$

for all $x, y, z \in \mathcal{N}$. Since $\overline{d(N)} \subseteq Z(\mathcal{N}/P)$ and $(\mathcal{N}/P, +)$ is abelian, we get

$$\overline{d(x)\alpha(z)\alpha(y)} + \overline{d(y)\alpha(z)\tau(x)} = \overline{d(x)\alpha(y)\alpha(z)} + \overline{d(y)\tau(x)\alpha(z)}$$

or all $x, y, z \in \mathcal{N}$. Hence

for all $x, y, z \in \mathcal{N}$. Hence,

$$\overline{d(x)}[\overline{\alpha(z)},\overline{\alpha(y)}] = \overline{d(y)}[\overline{\tau(x)},\overline{\alpha(z)}]$$

for all $x, y, z \in \mathcal{N}$. Suppose now that \mathcal{N}/P is not commutative. Choosing $x, z \in \mathcal{N}$ such that $[\overline{\tau(x)}, \overline{\alpha(z)}] \neq \overline{0}$ and replacing y by d(y), we infer that $\overline{d^2(y)}[\overline{\tau(x)}, \overline{\alpha(z)}] = \overline{0}$ for all $y \in \mathcal{N}$. Since the central element $\overline{d^2(y)}$ cannot be a nonzero divisor of zero, we conclude that $\overline{d^2(y)} = \overline{0}$ for all $y \in \mathcal{N}$; a contradiction.

Corollary 3.4. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a non P-trivial (α, τ) -P⁺-derivation such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $\overline{d(\mathcal{N})} \subseteq Z(\mathcal{N}/P)$, then $(\mathcal{N}/P, +)$ is abelian. Moreover, if $2(\mathcal{N}/P) \neq \{\overline{0}\}$, then \mathcal{N}/P is a commutative ring.

Proof. The proof is given by Lemma 2.6 and Theorem 3.3.

Theorem 3.5. Let P be a 3-prime ideal of a near-ring \mathcal{N} and d be a non P-trivial (α, τ) -P-derivation such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[\overline{d(x)}, \overline{d(y)}] = \overline{0}$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

- (a) $d^2(\mathcal{N}) \subseteq P$.
- (b) \mathcal{N}/P is a commutative ring.

Proof. Suppose that $d^2(\mathcal{N}) \not\subseteq P$. Let $u \in \mathcal{N}$ such that $\overline{d(u)} \neq \overline{0}$. Then, $\overline{d(u)}$ and $\overline{d(u)} + \overline{d(u)}$ commute with $\overline{d(\mathcal{N})}$. Given $x, y \in \mathcal{N}$, we have

$$(\overline{d(u)} + \overline{d(u)})(\overline{d(x)} + \overline{d(y)}) = (\overline{d(x)} + \overline{d(y)})(\overline{d(u)} + \overline{d(u)}).$$

Using our hypothesis, we obtain

$$\begin{aligned} &d(u)d(x) + d(u)d(x) + d(u)d(y) + d(u)d(y) \\ &= \overline{d(u)d(x)} + \overline{d(u)d(y)} + \overline{d(u)d(x)} + \overline{d(u)d(y)}. \end{aligned}$$

Thus,

$$\overline{d(u)d(x)} + \overline{d(u)d(y)} = \overline{d(u)d(y)} + \overline{d(u)d(x)}$$

Hence, $\overline{d(u)d((x,y))} = \overline{0}$ for all $u, x, y \in \mathcal{N}$. Since α is an automorphism of \mathcal{N} , we have

$$\overline{d(\mathcal{N})\alpha(d((x,y)))} = \{\overline{0}\} \text{ for all } x, y \in \mathcal{N}.$$
(3.1)

In view of Lemma 2.5 (b), we conclude that $\overline{\alpha(d((x,y)))} = \overline{0}$ for all $x, y \in \mathcal{N}$. Thus, $\overline{d((x,y))} = \overline{0}$ for all $x, y \in \mathcal{N}$. Which implies that

$$\overline{0} = \overline{d((wx, wy))} = \overline{d(w(x, y))} = \overline{d(w)\alpha((x, y))}$$

for all $w \in \mathcal{N}$. In view of Lemma 2.5 (b), we have $(\overline{x}, \overline{y}) = \overline{0}$ for all $x, y \in \mathcal{N}$, implying that $(\mathcal{N}/P, +)$ is abelian. Using our hypothesis, we have

$$\overline{d(\alpha(z))d(d(x)y)} = \overline{d(d(x)y)d(\alpha(z))}.$$

for all $x, y, z \in \mathcal{N}$. Thus,

$$\overline{d(\alpha(z))}\left(\overline{d^2(x)\alpha(y)} + \overline{\tau(d(x))d(y)}\right) = \left(\overline{d^2(x)\alpha(y)} + \overline{\tau(d(x))d(y)}\right)\overline{d(\alpha(z))}$$

for all $x, y, z \in \mathcal{N}$. According to Lemma 2.3,

$$d(\alpha(z))d^{2}(x)\alpha(y) + d(\alpha(z))d(\tau(x))d(y)$$

= $\overline{d^{2}(x)\alpha(y)d(\alpha(z))} + \overline{d(\tau(x))d(y)d(\alpha(z))}$

for all $x, y, z \in \mathcal{N}$. Using the fact that $(\mathcal{N}/P, +)$ is abelian and $\overline{d(\alpha(z))d(\tau(x))d(y)} = \overline{d(\tau(x))d(y)d(\alpha(z))}$, the last relation yields

$$\overline{d^2(x)d(\alpha(z))\alpha(y)} = \overline{d^2(x)\alpha(y)d(\alpha(z))}.$$

Replacing y by yt, where $t \in \mathcal{N}$, in the last equation and using it again, we infer that

$$\overline{d^2(x)d(\alpha(z))\alpha(y)\alpha(t)} = \overline{d^2(x)\alpha(y)\alpha(t)d(\alpha(z))} \\ = \overline{d^2(x)\alpha(y)d(\alpha(z))\alpha(t)}$$

for all $t, x, y, z \in \mathcal{N}$. Hence,

$$\overline{d^2(x)}(\mathcal{N}/P)[\overline{d(\alpha(z))},\overline{\alpha(t)}] = \{\overline{0}\}$$

for all $t, x, z \in \mathcal{N}$. The 3-primeness of \mathcal{N}/P , forces that

$$\overline{d(\mathcal{N})} \subseteq Z(\mathcal{N}/P)$$

Consequently, \mathcal{N}/P is a commutative ring by Theorem 3.3.

Corollary 3.6. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P⁺-derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[d(x), d(y)] \in P$ for all $x, y \in \mathcal{N}$, then one of the following assertions holds:

(a)
$$2(\mathcal{N}/P) = \{\overline{0}\}.$$

(b)
$$d(\mathcal{N}) \subseteq P$$
.

(c) \mathcal{N}/P is a commutative ring.

Proof. The proof is obtained by Lemma 2.6 and Theorem 3.5. \Box

Theorem 3.7. Let P be a 3-prime ideal of a near-ring \mathcal{N} with a non P-trivial (α, τ) -P-derivation d and $a \in \mathcal{N}$. If $[d(\mathcal{N}), a]_{(\alpha, \tau)} \subseteq P$, then $\overline{\alpha(a)} \in Z(\mathcal{N}/P)$ or $\overline{d(a)} = \overline{0}$.

Proof. By the hypothesis, we have

$$\overline{d(ax)\alpha(a)} = \overline{\tau(a)d(ax)} \text{ for all } x \in \mathcal{N}.$$

Hence,

$$\left(\overline{d(a)\alpha(x)} + \overline{\tau(a)d(x)}\right)\overline{\alpha(a)} = \overline{\tau(a)}\left(\overline{d(a)\alpha(x)} + \overline{\tau(a)d(x)}\right)$$

for all $x \in \mathcal{N}$. Since \mathcal{N} satisfies the partial distributive law by Lemma 2.3, we have

 $\overline{d(a)\alpha(x)\alpha(a)} + \overline{\tau(a)d(x)\alpha(a)} = \overline{\tau(a)d(a)\alpha(x)} + \overline{\tau(a)\tau(a)d(x)}$

for all $x \in \mathcal{N}$. Using our hypothesis again

$$\overline{d(a)\alpha(x)\alpha(a)} + \overline{\tau(a)\tau(a)d(x)} = \overline{\tau(a)d(a)\alpha(x)} + \overline{\tau(a)\tau(a)d(x)}$$

for all $x \in \mathcal{N}$, i.e.,

$$\overline{d(a)\alpha(x)\alpha(a)} = \overline{\tau(a)d(a)\alpha(x)}$$
 for all $x \in \mathcal{N}$.

Substituting xy, where $y \in \mathcal{N}$, for x in the above equation and using it again, we get

 $d(a)\alpha(x)\alpha(y)\alpha(a) = \tau(a)d(a)\alpha(x)\alpha(y) = d(a)\alpha(x)\alpha(a)\alpha(y)$

for all $x, y \in \mathcal{N}$. The latter relation can be rewritten as

$$d(a)(\mathcal{N}/P)[\alpha(a),\alpha(y)] = \left\{\overline{0}\right\}$$

for all $y \in \mathcal{N}$. Using the 3-primeness of \mathcal{N}/P , we find that $d(a) = \overline{0}$ or $\overline{\alpha(a)} \in Z(\mathcal{N}/P)$. The proof is now complete.

Theorem 3.8. Let P be a 3-prime ideal of a near-ring \mathcal{N} with a non P-trivial (α, τ) -P-derivation d such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[d(\mathcal{N}), d(\mathcal{N})]_{\alpha,\tau} \subseteq P$, then one of the following assertions holds:

- (a) $d^2(\mathcal{N}) \subseteq P$.
- (b) \mathcal{N}/P is a commutative ring.

Proof. According to Theorem 3.7, $\overline{d^2(x)} = \overline{0}$ or $\overline{\alpha(d(x))} \in Z(\mathcal{N}/P)$ for all $x \in \mathcal{N}$. Put $K = \{x \in \mathcal{N} \mid \overline{d^2(x)} = \overline{0}\}$ and

$$L = \{ x \in \mathcal{N} \mid \overline{\alpha(d(x))} \in Z(\mathcal{N}/P) \}.$$

Both K and L are additive subgroups of \mathcal{N} . Moreover, $\mathcal{N} = K \cup L$. But a group cannot be the set-theoretic union of any two of its proper subgroups. Hence, $K = \mathcal{N}$ or $L = \mathcal{N}$.

If $K = \mathcal{N}$ then $d^2(\mathcal{N}) \subseteq P$. If $L = \mathcal{N}$ then $d(\mathcal{N}) \subseteq Z(\mathcal{N}/P)$. As a result, the Theorem 3.3 completes the proof.

Corollary 3.9. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P⁺-derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[d(\mathcal{N}), d(\mathcal{N})]_{\alpha,\tau} \subseteq P$, then one of the following assertions holds:

- (a) $2(\mathcal{N}/P) = \{\overline{0}\}.$
- (b) $d(\mathcal{N}) \subseteq P$.
- (c) \mathcal{N}/P is a commutative ring.

Proof. We get the proof by using Lemma 2.6 and Theorem 3.8. \Box

Theorem 3.10. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P-derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $d(xy) - d(x)d(y) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. Assume that

$$\overline{d(xy)} = \overline{d(x)d(y)} \tag{3.2}$$

for all $x, y \in \mathcal{N}$. First we have

$$\overline{d(xy\alpha(x))} = \overline{d(xy)\alpha^2(x)} + \overline{\tau(x)\tau(y)d(\alpha(x))} \\ = \overline{d(x)\alpha(y)\alpha^2(x)} + \overline{\tau(x)d(y)\alpha^2(x)} + \overline{\tau(x)\tau(y)d(\alpha(x))}$$

for all $x, y \in \mathcal{N}$. Secondly,

$$\overline{d(xy\alpha(x))} = \overline{d(xy)d(\alpha(x))}$$

$$= \frac{d(xy)\alpha(d(x))}{d(x)\alpha(y)\alpha(d(x))} + \overline{\tau(x)d(y)\alpha(d(x))}$$

$$= \overline{d(x)\alpha(y)\alpha(d(x))} + \overline{\tau(x)d(y\alpha(x))}$$

$$= \overline{d(x)\alpha(y)\alpha(d(x))} + \overline{\tau(x)d(y)\alpha^2(x)} + \overline{\tau(x)\tau(y)d(\alpha(x))}$$

for all $x, y \in \mathcal{N}$. Comparing the last relations, we get

$$\overline{d(x)\alpha(y)\alpha^2(x)} = \overline{d(x)\alpha(y)\alpha(d(x))}$$

for all $x, y \in \mathcal{N}$. Equivalently,

$$\overline{d(x)}(\mathcal{N}/P)(\overline{\alpha(d(x))} - \overline{\alpha^2(x)}) = \{\overline{0}\}$$

for all $x \in \mathcal{N}$. Using the 3-primeness of \mathcal{N}/P , we find

$$\overline{d(x)} = \overline{0} \text{ or } \overline{d(x)} = \overline{\alpha(x)}$$

for all $x \in \mathcal{N}$. The subsets $A = \{x \in \mathcal{N} \mid \overline{d(x)} = \overline{0}\}$ and

$$B = \{ x \in \mathcal{N} \mid \overline{d(x)} = \overline{\alpha(x)} \}$$

are additive subgroups of \mathcal{N} and their union is equal to \mathcal{N} . Hence, either $\mathcal{N} = A$ or $\mathcal{N} = B$. If $\mathcal{N} = A$, then $d(\mathcal{N}) \subseteq P$. If $\mathcal{N} = B$, then $\overline{d(x)} = \overline{\alpha(x)}$ for all $x \in \mathcal{N}$. Putting xy instead of x in the last equation, we find

$$\overline{d(xy)} = \overline{\alpha(xy)} = \overline{\alpha(x)\alpha(y)} = \overline{d(x)\alpha(y)}$$

for all $x, y \in \mathcal{N}$. So,

$$\overline{d(x)\alpha(y)} + \overline{\tau(x)d(y)} = \overline{d(x)\alpha(y)}$$

for all $x, y \in \mathcal{N}$. In view of Lemma 2.5 (a), we conclude that $d(\mathcal{N}) \subseteq P$ and the proof is complete.

Theorem 3.11. Let P be a symmetric 3-prime ideal of a near-ring \mathcal{N} and d be a (α, τ) -P-derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $d(xy) - d(y)d(x) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. Assume that $\overline{d(xy)} = \overline{d(y)d(x)}$ for all $x, y \in \mathcal{N}$. It follows that

$$d(\alpha(x)\alpha(x)y) = d(\alpha(x))\alpha^2(x)\alpha(y) + \tau(\alpha(x))d(\alpha(x)y)$$

=
$$\overline{d(\alpha(x))\alpha^2(x)\alpha(y)} + \overline{\tau(\alpha(x))d(\alpha(x))d(y)}$$

for all $x, y \in \mathcal{N}$. On the other hand, we have

$$\overline{d(\alpha(x)\alpha(x)y)} = \overline{d(\alpha(x)y)d(\alpha(x))} = \overline{d(\alpha(x)y)\alpha(d(x))} = \overline{d(\alpha(x)y)\alpha(d(x))} + \overline{\tau(\alpha(x))d(\alpha(y))\alpha(d(x))}$$

$$=\overline{d(\alpha(x))\alpha(y)d(\alpha(x))}+\overline{\tau(\alpha(x))d(\alpha(y))d(\alpha(x))}$$

for all $x, y \in \mathcal{N}$. When we combine the last two expressions, we get

$$d(\alpha(x))\alpha^2(x)\alpha(y) = d(\alpha(x))\alpha(y)d(\alpha(x))$$

for all $x, y \in \mathcal{N}$. Substituting yz, where $z \in \mathcal{N}$, for y in the last equation yields

$$\overline{d(\alpha(x))\alpha^2(x)\alpha(y)\alpha(z)} = \overline{d(\alpha(x))\alpha(y)d(\alpha(x))\alpha(z)}$$
$$= \overline{d(\alpha(x))\alpha(y)\alpha(z)d(\alpha(x))}$$

for all $x, y, z \in \mathcal{N}$, which implies that

$$\overline{d(\alpha(x))\alpha(y)}[\overline{\alpha(z)},\overline{d(\alpha(x))}] = \overline{0}$$

for all $x, y, z \in \mathcal{N}$, that is, $\overline{d(\alpha(x))}(\mathcal{N}/P)[\overline{\alpha(z)}, \overline{d(\alpha(x))}] = \{\overline{0}\}$ for all $x, z \in \mathcal{N}$. Using the 3-primeness of \mathcal{N}/P , we obtain

$$d(\mathcal{N}) \subseteq Z(\mathcal{N}/P).$$

Thus, using our hypothesis, we obtain $\overline{d(xy)} = \overline{d(x)d(y)}$ for all $x, y \in \mathcal{N}$. Hence, by Theorem 3.10, we conclude that $d(\mathcal{N}) \subseteq P$. \Box

4. Semiprime ideal and (α, τ) -derivation

Theorem 4.1. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , where \mathcal{N}/P is 2-torsion free, d be a (α, τ) -derivation such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $\overline{d(\mathcal{N})} \subset Z(\mathcal{N}/P)$.

then one of the following assertions holds:

- (a) There exists a prime ideal $P_{\lambda} \supseteq P$ such that $d(\mathcal{N}) \subseteq P_{\lambda}$.
- (b) \mathcal{N}/P is a commutative ring.

Proof. The semiprimeness of P implies that there exists a family \mathcal{P} of 3-prime ideals P_{λ} such that $\cap P_{\lambda} = P$. Therefore,

$$\overline{d(N)} \subseteq Z(\mathcal{N}/P_{\lambda}) \tag{4.1}$$

for all $P_{\lambda} \in \mathcal{P}$. Since *d* is a (α, τ) -derivation, we get *d* is a (α, τ) - P_{λ} -derivation on \mathcal{N} for all $P_{\lambda} \in \mathcal{P}$. By using (4.1) and the fact that $2(\mathcal{N}/P_{\lambda}) \neq \{\overline{0}\}$, then the corollary 3.4 gives

$$d(\mathcal{N}) \subseteq P_{\lambda}$$
 or \mathcal{N}/P_{λ} is a commutative ring for all $P_{\lambda} \in \mathcal{P}$. (4.2)

Suppose that $d(\mathcal{N}) \nsubseteq P_{\lambda}$ for all $P_{\lambda} \in \mathcal{P}$. Thus, (4.2) implies that $\mathcal{N}/P = \mathcal{N}/\cap P_{\lambda}$ is a commutative ring.

Theorem 4.2. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , where \mathcal{N}/P is 2-torsion free, and d be a (α, τ) -derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[d(\mathcal{N}), d(\mathcal{N})] \subseteq P$, then one of the following assertions holds:

- (a) There exists a prime ideal $P_{\lambda} \supseteq P$ such that $d(\mathcal{N}) \subseteq P_{\lambda}$.
- (b) \mathcal{N}/P is a commutative ring.

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{λ} such that $\cap P_{\lambda} = P$. Hence,

$$[d(\mathcal{N}), d(\mathcal{N})] \subseteq P_{\lambda} \text{ for all } P_{\lambda} \in \mathcal{P}.$$

$$(4.3)$$

Using the fact that d is a (α, τ) -derivation, we have d is a (α, τ) - P_{λ}^+ -derivation on \mathcal{N} for all $P_{\lambda} \in \mathcal{P}$. Since $2(\mathcal{N}/P_{\lambda}) \neq \{\overline{0}\}$, by using (4.3), then corollary 3.6 gives

 $d(\mathcal{N}) \subseteq P_{\lambda}$ or \mathcal{N}/P_{λ} is a commutative ring for all $P_{\lambda} \in \mathcal{P}$. (4.4) If $d(\mathcal{N}) \not\subseteq P_{\lambda}$ for all $P_{\lambda} \in \mathcal{P}$, then $\mathcal{N}/P = \mathcal{N}/\cap P_{\lambda}$ is a commutative ring by (4.4).

Theorem 4.3. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , where \mathcal{N}/P is 2-torsion free, and d be a (α, τ) -derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $[d(\mathcal{N}), d(\mathcal{N})]_{\alpha,\tau} \subseteq P$, then one of the following assertions holds:

- (a) There exists a prime ideal $P_{\lambda} \supseteq P$ such that $d(\mathcal{N}) \subseteq P_{\lambda}$.
- (b) \mathcal{N}/P is a commutative ring.

Proof. We obtain the desired result by applying arguments similar to those used in the proof of Theorem 4.2. \Box

Theorem 4.4. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , and d be a (α, τ) -derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$ and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $d(xy) - d(x)d(y) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. Since P is semiprime, there exists a family \mathcal{P} of 3-prime ideals P_{λ} such that $\cap P_{\lambda} = P$. Hence,

$$d(xy) - d(x)d(y) \in P_{\lambda}$$
 for all $x, y \in \mathcal{N}, P_{\lambda} \in \mathcal{P}.$ (4.5)

Since d is a (α, τ) -derivation, we find that d is (α, τ) - P_{λ} -derivations on \mathcal{N} for all $P_{\lambda} \in \mathcal{P}$. By using (4.5), Theorem 3.10 forces that $d(\mathcal{N}) \subseteq P_{\lambda}$ for all $P_{\lambda} \in \mathcal{P}$. Hence, $d(\mathcal{N}) \subseteq P$.

Theorem 4.5. Let P be a semiprime ideal of a symmetric near-ring \mathcal{N} , and d be a (α, τ) -derivation of \mathcal{N} such that $\alpha(d(\mathcal{N})) - d(\alpha(\mathcal{N})) \subseteq P$

and $\tau(d(\mathcal{N})) - d(\tau(\mathcal{N})) \subseteq P$. If $d(xy) - d(y)d(x) \in P$ for all $x, y \in \mathcal{N}$, then $d(\mathcal{N}) \subseteq P$.

Proof. By using similar arguments to those used in the proof of Theorem 4.4, we get the required result. \Box

Acknowledgments

The authors would like to thank the referee for the valuable suggestions and comments.

References

- M. Ashraf, A. Ali and A. Shakir, (σ, τ)-derivations on prime near-rings, Arch. Math. (Brno), 40 (2004), 281–286.
- H. E. Bell, On derivations in near-rings II. In: Nearrings, Nearfields and K-loops (Hamburg, 1995), *Math. Appl.*, **426** (1997), Kluwer Acad. Publ., Dordrecht, 191–197.
- A. Boua and A. A. M. Kamal, Some results on 3-Prime near-rings with derivations, *Indian J. Pure Appl. Math.*, 47 (2016), 705–716.
- N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra, 19(10) (1991), 2667–2675.
- 5. S. Mouhssine and A. Boua, Homoderivations and semigroup ideals in 3-prime near-rings, Algebraic Structures and their Applications, 8(2) (2021), 177–194.
- S. Mouhssine and A. Boua, Right multipliers and commutativity of 3-prime near-rings, Int. J. Appl. Math., 34(1) (2021), 169–181.

Samir Mouhssine

Department of Mathematics, University Sidi Mohammed Ben Abdellah-Fez, Polydisciplinary Faculty-Taza, LSI, P.O. Box 1223, Taza, Morocco. Email: samir.mouhssine@usmba.ac.ma or samirfes27@gmail.com

Abdelkarim Boua

Department of Mathematics, University Sidi Mohammed Ben Abdellah-Fez, Polydisciplinary Faculty-Taza, LSI, P.O. Box 1223, Taza, Morocco. Email: abdelkarimboua@yahoo.fr or abdelkarim.boua@usmba.ac.ma Journal of Algebraic Systems

ON $(\alpha; \tau)$ -P-DERIVATIONS OF NEAR-RINGS

S. MOUHSSINE AND A. BOUA

بررسی P-(lpha; au)مشتقهای شبه حلقه ها

سمير محسن و عبد الكريم بوا

^{۱,۲}گروه ریاضیات، دانشگاه سیدی محمد بن عبدالله فاس، دانشکده چند رشتهای، LSI، تازا، مراکش

رابطهی بین مشتقها و ساختارهای جبری شبه حلقهی خارج قسمتی به یک موضوع جذاب در دهههای $(\alpha; \tau)$ اخیر تبدیل شده است. فرض کنید \mathcal{N} شبه حلقه و P ایده آل اول آن باشد. در این مقاله، مفهوم $(\alpha; \tau)$ - مشتق در شبه حلقه ها معرفی شده است. همچنین، ساختار شبه حلقههای خارج قسمتی \mathcal{N}/P که در برخی خواص جبری $(\alpha; \tau)$ - مشتق صدق میکنند، بررسی شده اند.

کلمات کلیدی: شبه حلقه ها، اید هآل های اول، P-(lpha; au) - مشتق ها، جابه جایی.