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WEAKLY PRIME AND SUPER-MAX FILTERS IN
BL-ALGEBRAS

J. MOGHADERI AND S. MOTAMED∗

Abstract. In this paper, the concepts of weakly prime filters and
super-max filters in BL-algebras are introduced, and the relation-
ships between them are discussed. Also, some properties and
relations between these filters and other types of filters in
BL-algebras are given. With some examples, it is shown that these
filters have differences. After that, the notions of weakly linear BL-
algebras and weak top BL-algebras are defined and investigated.
Finally, using the notion of a weakly prime filter, a new topology
on BL-algebras is defined and studied.

Basic fuzzy logic, BL for short, and its corresponding BL-algebras
were introduced by Hájek (see [8] and the references given there) with
the purpose of formalizing the many-valued semantics induced by the
continuous t-norms on the real unit interval [0, 1]. BL-algebras are
the algebraic structures for Hájek’s Basic logic [8]. BL-algebras rise
as Lindenbaum algebras from certain logical axioms in a similar
manner that Boolean algebras or MV-algebras [7] do from classical logic
or Lukasiewicz logic, respectively. Turunen [14] studied BL-algebras
by deductive systems. Deductive systems correspond to subsets closed
with respect to Modus Ponens, and they are called filters, too. In
[15], Boolean deductive systems and implicative deductive systems were
introduced. Moreover, it was proved that these deductive systems
coincide. MV-algebras, product algebras, and Godel algebras are the
most common classes of BL-algebras. Filters theory plays an important
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role in studying these algebras. From a logical point of view, various
filters correspond to various sets of provable formulas. Hájek [8]
introduced the concepts of (prime) filters of BL-algebras. Using prime
filters of BL-algebras, he proved the completeness of basic logic.
Turunen [14] studied some properties of the prime filters of BL-algebras.
This is the motivation for the researchers of this study to introduce
some new filters in BL-algebras. The study of algebras motivated by
logic is interesting and very useful, especially when these structures are
not isomorphic. BL-algebras are important classes of algebras inspired
by logic. In fact, the objective of this paper is to develop and define new
concepts for investigating BL-algebras. This paper is motivated by the
previous researches on filters in BL-algebras. The aim of this paper is
to introduce a new filter in BL-algebras, which is weaker than the prime
filter (weakly prime filter) and super-max filter in BL-algebras. In this
paper, we introduce the notions of weakly prime filters and super-max
filters in BL-algebras and study some properties of them. Also, we
define the notion of weakly linear BL-algebra (Wl−BL-algebras) and
a new topology on BL-algebras and characterize them. BL-algebras,
MV-algebras, and lattice implication algebras are closely related. Thus,
all results in this paper will contribute much to studying MV-algebras
and lattice implication algebras.

1. Preliminaries
Definition 1.1 ([8]). A BL-algebra is an algebra (A,∧,∨, ∗,→, 0, 1)
with four binary operations ∧,∨, ∗,→ and two constants 0, 1 satisfying
the following conditions:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice L(A),
(BL2) (A, ∗, 1) is a commutative monoid,
(BL3) ∗ and → form an adjoint pair; that is, c ≤ a → b if and only

if a ∗ c ≤ b, for all a, b, c ∈ A,
(BL4) a ∧ b = a ∗ (a → b),
(BL5) (a → b) ∨ (b → a) = 1.

It is easy to prove that if A is a BL-algebra and x, y, z ∈ A, then we
have the following rules of calculus (for more details, see [5, 6, 8, 16]):

(BL6) x ≤ y if and only if x → y = 1,
(BL7) 1 → x = x and x ≤ y → x,
(BL8) x → (y → z) = (x ∗ y) → z = y → (x → z),
(BL9) If x ≤ y, then y → z ≤ x → z, z → x ≤ z → y, x ∗ z ≤ y ∗ z

and y− ≤ x−, where x− = x → 0,
(BL10) y ≤ (y → x) → x, so y ≤ y−−,

x ∨ y = ((x → y) → y) ∧ ((y → x) → x),
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(BL11) x ∨ (y ∗ z) ≥ (x ∨ y) ∗ (x ∨ z), x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),
(BL12) xm ∨ yn ⩾ (x ∨ y)mn, for all m,n ∈ N.

Let A be a BL-algebra.
• A is said to be an MV-algebra, if for all x ∈ A, x−− = x, where

x− = x → 0; see [7].
• A is said to be an integral, if for all x, y ∈ A, x ∗ y = 0, implies

x = 0 or y = 0; see [4].

Throughout this paper, it is assumed that (A,∧,∨, ∗,→, 0, 1), in
short A, is a BL-algebra (unless we write otherwise).

Definition 1.2 ([8, 14]). Let F be a nonempty subset of a BL-algebra
A and let a, b ∈ A. We say that F is a filter of A if one of the following
equivalent conditions is satisfied:

(i) Let a, b ∈ F with a ≤ b. If a ∗ b ∈ F , then b ∈ F ;
(ii) 1 ∈ F and x, x → y ∈ F implies y ∈ F ;
A filter F of a BL-algebra A is proper if F ̸= A; that is, 0 ̸∈ F .

Theorem 1.3 ([8, 17]). Let F be a proper filter of a BL-algebra A.
Then the following conditions are equivalent:

(i) x ∨ y ∈ F implies x ∈ F or y ∈ F , for all x, y ∈ A;
(ii) x → y ∈ F or y → x ∈ F , for all x, y ∈ A;
(iii) F is a prime filter of A.

Definition 1.4 ([8, 17, 3]). Consider a proper filter F of a BL-algebra
A.

(i) It is maximal if it is not contained in any other proper filter.
(ii) It is a primary filter, if for any x, y ∈ A, (x ∗ y)− ∈ F implies

(xn)− ∈ F or (yn)− ∈ F , for some n ∈ N .
(iii) It is an obstinate filter, if x, y ̸∈ F implies x → y ∈ F and

y → x ∈ F .
Definition 1.5 ([13]). Let F be a proper filter of a BL-algebra A.
The intersection of all maximal filters of A that contain F is called the
radical of F , and it is denoted by Rad(F ). Clearly, F ⊆ Rad(F ).
Definition 1.6 ([8]). Let F be a proper filter of a BL-algebra A. The
relation ∼F defined on a BL-algebra A by (x, y) ∈∼F if and only if
x → y ∈ F and y → x ∈ F , is a congruence relation on A. The
quotient algebra A/ ∼F denoted by A/F becomes a BL-algebra in
a natural way, with the operations induced from those of A. So, the
order relation on A/F is given by x/F ≤ y/F if and only if x → y ∈ F .
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Hence x/F = 1/F if and only if x ∈ F and x/F = 0/F if and only if
x− ∈ F .

2. Weakly Prime Filters in BL-Algebras
In this section, the concept of a new filter in BL-algebras is intro-

duced and also characterized.
Definition 2.1. A proper filter F of a BL-algebra A is called a weakly
prime filter, if for any x, y ∈ A, x ∨ y ∈ F implies x ∈ F or y−− ∈ F .
Proposition 2.2. In any BL-algebra, every prime filter is a weakly
prime filter.
Proof. Based on Definition 2.1 and the condition (BL10), the proof is
clear. □

In the following example, we show that the converse of Proposition
2.2 is not true, in general.
Example 2.3. (i) Let A = {0, a, b, c, d, e, f, g, 1}, where

0 < a < b, d, e, g < 1, 0 < d < e, g < 1,
0 < f < g < 1, 0 < b < e < 1,

and 0 < c < d, e, f, g < 1. Operations ∗ and → are defined as follows:

∗ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 a a 0 a a 0 a a
b 0 a b 0 a b 0 a b
c 0 0 0 c c c c c c
d 0 a a c d d c d d
e 0 a b c d e c d e
f 0 0 0 c c c f f f
g 0 a a c d d f g g
1 0 a b c d e f g 1

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1
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Its Hasse diagram is as follows:

0

c

f

a

d

g

b

e

1

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra. Moreover, F = {g, 1} is
not a weakly prime filter, since a∨f = g ∈ F , while a, f, a−−, f−− ̸∈ F .
(ii) Let B = {0, a, b, c, d, 1}, where 0 < d < c < a, b < 1. Operations ∗
and → are defined as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a c c d a
b 0 c b c d b
c 0 c c c d c
d 0 d d d 0 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

Its Hasse diagram is as follows:

0

d

c

b

1

a

Then (B,∧,∨, ∗,→, 0, 1) is a BL-algebra. Clearly, {1} is a weakly
prime filter, which is not prime.

Note. In MV-algebras, the notions of prime filters and weakly prime
filters are equal.

Remark 2.4. Let F be a weakly prime filter in a BL-algebra A. Then
F ∩B(A) is a prime filter in B(A).



216 MOGHADERI AND MOTAMED

Theorem 2.5. Let F be a proper filter of a BL-algebra A. Then F
is a weakly prime filter if and only if for all x, y ∈ A, x → y ∈ F or
y−− → x−− ∈ F .

Proof. Let F be a weakly prime filter and let x, y ∈ A. Then as
(x → y) ∨ (y → x) = 1 ∈ F , we have x → y ∈ F or

y−− → x−− = (y → x)−− ∈ F .
Now assume that x → y ∈ F or y−− → x−− ∈ F for all x, y ∈ A and
that x∨y ∈ F for x, y ∈ A. If x → y ∈ F , then as x∨y ≤ (x → y) → y
we have y ∈ F . If y−− → x−− ∈ F , then as x ∨ y ∈ F and

x ∨ y ≤ (y → x) → x ≤ (y−− → x−−) → x−−,
we have (y−− → x−−) → x−− ∈ F and so x−− ∈ F . Therefore F is a
weakly prime filter. □

The following theorem is a straightforward consequence of Theorem
2.5.

Theorem 2.6. Let F be a weakly prime filter of a BL-algebra A and
let G be a proper filter of A containing F . Then G is a weakly prime
filter.

For a filter G of a BL-algebra A, consider G−− = {x ∈ A : x−− ∈ G}.
It is clear that G−− is a filter of A containing G and 0 ∈ G if and only
if 0 ∈ G−−.

Proposition 2.7. Let F be a weakly prime filter of a BL-algebra A.
Then F−− and Rad(F−−) are prime, primary, and weakly prime filters.

Proof. Let F be a weakly prime filter of A. Then F is a proper filter
of A, and according to the definition of F−−, F−− is a proper filter
of A. Using Theorem 2.5, for all x, y ∈ A, x → y ∈ F ⊆ F−− or
y−− → x−− ∈ F , which implies y → x ∈ F−−. So based on the
definition of prime filter, F−− is a prime filter of A. Therefore F−− is a
primary and weakly prime filter of A, too. Also Rad(F−−) is a prime,
primary, and weakly prime filter. □
Proposition 2.8. Let F be a weakly prime filter of a BL-algebra A.
Then T = {G−− : G is a filter of A and F ⊆ G} is a totally order
set (by inclusion).

Proof. Let G−−
1 , G−−

2 ∈ T . Then G1 and G2 are filters of A such that
F ⊆ G1 ∩ G2. Assume that G−−

1 ⊈ G−−
2 and that G−−

2 ⊈ G−−
1 . Thus

there exist x ∈ G−−
1 − G−−

2 and y ∈ G−−
2 − G−−

1 . So x−− ∈ G1 − G2

and y−− ∈ G2 − G1. Based on Theorem 2.5, x → y ∈ F implies
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x−− → y−− ∈ G1 and so y−− ∈ G1, which is a contradiction. Also,
y−− → x−− ∈ F implies y−− → x−− ∈ G2, and so x−− ∈ G2, which is
a contradiction. □

According to [14, Proposition 7], we obtain the following result.

Corollary 2.9. Any proper filter of a BL-algebra can be extended to a
weakly prime one.

Proposition 2.10. Any proper filter of a BL-algebra can be extended
to a maximal weakly prime filter, with respect to inclusion.

Proof. Let F be a proper filter of A. Based on Corollary 2.9, there
exists a weakly prime filter P containing F . Put

T = {G : G is a proper filter of A, P ⊆ G}.

Moreover, P ∈ T , and by Zorn’s Lemma, T has a maximal element like
G0. So F ⊆ P ⊆ G0 and using Theorem 2.6, G0 is a maximal weakly
prime filter of A that contains F . □

Proposition 2.11. Let F1 and F2 be weakly prime filters of an integral
BL-algebra A such that F2 is a maximal filter. Then F1∩F2 is a weakly
prime filter of A.

Proof. Let x ∨ y ∈ F1 ∩ F2, for x, y ∈ A and let x ̸∈ F1 ∩ F2. If
x ∈ F1 − F2, then F2∨ < x >= A. So 0 ∈ F2∨ < x >; hence
f2 ∗ xn ≤ 0, for some f2 ∈ F2 and n ≥ 1. Thus as A is an integral
BL-algebra, f2 = 0 or xn = 0, that is, F1 = A or F2 = A, which is a
contradiction. If x ∈ F2 − F1, then as F1 is a weakly prime filter and
x ̸∈ F1, so y−− ∈ F1. Hence y−− ∈ F1 ∩F2 (if y−− ̸∈ F2, then similarly
we get F1 = A or F2 = A, which is a contradiction). If x ̸∈ F1 ∪ F2,
then y−− ∈ F1 ∩ F2. Therefore F1 ∩ F2 is a weakly prime filter. □

Proposition 2.12. Let {Pi : i ∈ I} be a nonempty totally ordered
subset of weakly prime filters. Then ∩i∈IPi and ∪i∈IPi are weakly
prime filters.

Proof. Suppose that x ∨ y ∈ ∩i∈IPi, for x, y ∈ A. Assume that there
exists j ∈ I such that x ̸∈ Pj, so y−− ∈ Pj. Assume that t ∈ I. If
Pt ⊆ Pj, then x ̸∈ Pt, and so y−− ∈ Pt. If Pj ⊆ Pt, then y−− ∈ Pt. So
for all t ∈ I, y−− ∈ Pt, and therefore y−− ∈ ∩i∈IPi. Clearly ∪i∈IPi is a
weakly prime filter, according to Theorem 2.6. □

Theorem 2.13. Let F be a proper filter of A. Then for any a ∈ A∖F ,
there exists a weakly prime filter P such that F ⊆ P and a ̸∈ P .



218 MOGHADERI AND MOTAMED

Proof. Consider
∑

= {G : G is a filter of A, F ⊆ G and a ̸∈ G}. It is
clear that F ∈

∑
and so by Zorn’s Lemma,

∑
has a maximal element

like P . We show that P is a weakly prime filter. Suppose on contrary
that P is not a weakly prime filter. Thus there exist x, y ∈ A such
that x ∨ y ∈ P ; while x ̸∈ P and y−− ̸∈ P . So y ̸∈ P , P∨ < x >,
and P∨ < y > ̸∈

∑
, since P is a maximal element of

∑
. So as

F ⊆ P∨ < x > and F ⊆ P∨ < y >, therefore a ∈ P∨ < x > and
a ∈ P∨ < y >. Hence α ∗ xn ≤ a and β ∗ ym ≤ a, for some α, β ∈ P
and n,m ∈ N. By the conditions (BL11) and (BL12), we have

a ≥ (α ∗ xn) ∨ (β ∗ ym) ≥ (α ∨ (β ∗ ym)) ∗ (xn ∨ (β ∗ ym)),
≥ (α ∨ β) ∗ (α ∨ ym) ∗ (xn ∨ β) ∗ (xn ∨ ym),

≥ (α ∨ β) ∗ (α ∨ ym) ∗ (xn ∨ β) ∗ (x ∨ y)mn.

Thus we get a ∈ P , which is a contradiction. So P is a weakly prime
filter of A. □

According to Theorem 2.13, we get the following result.
Corollary 2.14. Every proper filter is the intersection of all weakly
prime filters containing it.
Theorem 2.15. Let P be a proper filter of A. Then P is a weakly
prime filter if and only if for any filters F and G of A, F ∩ G ⊆ P
implies F ⊆ P or G ⊆ P−−.
Proof. Assume that P is a weakly prime filter, and suppose that for
filters F and G of A, F ∩G ⊆ P , but F ⊈ P . So there exists a ∈ F∖P .
Let b ∈ G. Then a∨ b ∈ F ∩G. Thus a∨ b ∈ P and since a ̸∈ P and P
is a weakly prime filter, b−− ∈ P , that is, G ⊆ P−−. Now assume that
for any filters F and G of A, F ∩G ⊆ P implies F ⊆ P or G ⊆ P−−,
and for x, y ∈ A, x ∨ y ∈ P . So < x > ∩ < y >⊆< x ∨ y >⊆ P .
Hence < x >⊆ P , which implies x ∈ P or < y >⊆ P−−, which implies
y ∈ P−−, that is, y−− ∈ P . Therefore, the proof is completed. □
Corollary 2.16. Let P be a weakly prime filter and let Fi

(i ∈ I = {1, . . . , n}) be filters of A such that ∩i∈IFi ⊆ P . Then
there exists j ∈ I such that Fj ⊆ P or there exists t ∈ I such that
Ft ⊆ P−−.
Proof. Let ∩i∈IFi ⊆ P . Then ∩i∈I∖{1}Fi ∩ F1 ⊆ P . Therefore by
Theorem 2.15, we have two cases:
(1) ∩i∈I∖{1}Fi ⊆ P or F1 ⊆ P−−. If F1 ⊆ P−−, then the proof is

completed. Now if ∩i∈I∖{1}Fi ⊆ P , then by continuing this process,
the proof is completed.
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(2) ∩i∈I∖{1}Fi ⊆ P−− or F1 ⊆ P . If F1 ⊆ P , then the proof is
completed. Now let ∩i∈I∖{1}Fi ⊆ P−−. As P ⊆ P−−, so P−− is
a weakly prime filter. Hence by continuing this process and using
Theorem 2.15, the proof is completed. □
Corollary 2.17. Let P be a weakly prime filter and let F and G be
filters of A such that P = F ∩G. Then F = P or G−− = P−−.
Proof. According to Theorem 2.15, we have F ⊆ P or G ⊆ P−−. If
F ⊆ P , then F = P . Suppose that G ⊆ P−− and that x ∈ G−−. Then
x−− ∈ G ⊆ P−−, so x−− = (x−−)−− ∈ P . Hence x ∈ P−−, that is,
G−− ⊆ P−−. On the other hand, P−− ⊆ G−−, since P ⊆ G. Therefore
G−− = P−−. □

Using Corollary 2.17, we have the following result.
Corollary 2.18. Let P be a weakly prime filter and let Fi

(i ∈ I = {1, . . . , n}) be filters of A such that P = ∩i∈IFi. Then
there exists j ∈ I such that P = Fj or there exists t ∈ I such that
P−− = F−−

t .
Proposition 2.19. Let f : A −→ B be a BL-homomorphism. If P is
a weakly prime filter of B, then f−1(P ) is a weakly prime filter of A.
Proof. It is clear that f−1(P ) is a proper filter of A. Now let
x∨ y ∈ f−1(P ), for x, y ∈ A. Thus f(x)∨ f(y) ∈ P and so x ∈ f−1(P )
or y−− ∈ f−1(P ). Therefore f−1(P ) is a weakly prime filter of A. □

Recall that for a BL-homomorphism f : A −→ B, we set
ker(f) = {x ∈ A : f(x) = 1}.

Proposition 2.20. Let f : A −→ B be a BL-epimorphism. If P is a
weakly prime filter of A such that ker(f) ⊆ P , then f(P ) is a weakly
prime filter of B.
Proof. As f is onto, it is clear that f(P ) is a proper filter of B. Now
let x ∨ y ∈ f(P ), for x, y ∈ B. Then there exist a, b ∈ A such that
x = f(a) and y = f(b). Hence f(a ∨ b) ∈ f(P ) and so there exists
c ∈ P such that f(a ∨ b) = f(c). So c → (a ∨ b) ∈ ker(f) ⊆ P . Then
a ∨ b ∈ P . Thus a ∈ P or b−− ∈ P . Hence x ∈ f(P ) or y−− ∈ f(P ).
Therefore f(P ) is a weakly prime filter of B. □
Proposition 2.21. Let F and G be proper filters of A such that F ⊆ G.
Then G is a weakly prime filter of A if and only if G/F is a weakly
prime filter of A/F .
Proof. By the property of quotient BL-algebras (Definition 1.6), the
proof is clear. □
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Proposition 2.22. Let F be a proper filter of A. Then F is a weakly
prime filter of A if and only if every proper filter of A/F is a weakly
prime filter.

Proof. By the property of quotient BL-algebras (Definition 1.6), the
proof is clear. □

From [12], for a filter F of A and x ∈ A, set
(F : x) = {a ∈ A : a ∨ x ∈ F},

which is a filter of A containing F .

Proposition 2.23. Let F be a weakly prime filter of A. Then the
following properties hold:

(i) Rad(F ), (F : x), and Rad((F : x)) are weakly prime filters of A,
for x ∈ A∖ F .

(ii) (Rad(F ) : x) is a weakly prime filter of A, for x ∈ A∖Rad(F ).
(iii) (F : x) = F , for x ∈ A∖ F−−.

Proof. By [12, Proposition 4.2(1)], we have F ⊆ (F : x).
(i) It is clear from Theorem 2.6.
(ii) It is clear from Theorem 2.6.
(iii) Let y ∈ (F : x), for x ∈ A∖F−−. Then x∨y ∈ F and x−− /∈ F .

So as F is weakly prime, y ∈ F , and thus (F : x) = F .
□

Theorem 2.24. In any BL-algebra, every maximal weakly prime filter
is a prime filter.

Proof. Let P be a maximal weakly prime filter of A and let x∨ y ∈ P ,
for x, y ∈ A. If x ̸∈ P , then by Proposition 2.23(i), (P : x) is a weakly
prime filter of A that contains P . So by the maximality of P , we have
P = (P : x). On the other hand, x ∨ y ∈ P implies y ∈ (P : x) and so
y ∈ P . Therefore P is a prime filter. □
Remark 2.25. The converse of Theorem 2.24 is not true, in general.
For example, consider A of Example 2.3(ii). Clearly, {a, 1} is a prime
filter while is not maximal weakly prime, since {a, b, c, 1} is a weakly
prime filter.

Theorem 2.26. Let P be a proper filter of A. Then P is weakly prime
if and only if for all x, y ∈ A, x ∨ y ∈ P implies (P : x) = A or
(P : y−−) = A.

Proof. Let P be a weakly prime filter and let x ∨ y ∈ P , for x, y ∈ A.
Then x ∈ P , which implies (P : x) = A or y−− ∈ P , equivalently
(P : y−−) = A. Now assume that for all x, y ∈ A, x ∨ y ∈ P implies
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(P : x) = A or (P : y−−) = A and a ∨ b ∈ P , for a, b ∈ A. If
(P : a) = A, then a ∈ P and if (P : b−−) = A, then b−− ∈ P . So P is
a weakly prime filter. □

Proposition 2.27. A proper filter F of A is a weakly prime filter if
and only if (F : x) ⊆ F−−, for any x ∈ A− F .

Proof. Let F be a weakly prime filter and let y ∈ (F : x), when
x ∈ A − F . Then x ∨ y ∈ F , and so y−− ∈ F , as x ̸∈ F . Now
let (F : x) ⊆ F−−, for any x ∈ A − F and let a ∨ b ∈ F , for a, b ∈ A.
If a ̸∈ F , then as b ∈ (F : a) we have b ∈ F−−, that is, b−− ∈ F .
Therefore F is a weakly prime filter. □

Proposition 2.28. A proper filter F of A is a weakly prime filter if
and only if F−− = (F : x)−−, for any x ∈ A∖ F .

Proof. Let F be a weakly prime filter. Since F ⊆ (F : x), we have
F−− ⊆ (F : x)−−. On the other hand, by Proposition 2.27,

(F : x) ⊆ F−−

and so (F : x)−− ⊆ F−−. Now assume that F−− = (F : x)−−, for
any x ∈ A ∖ F and that a ∨ b ∈ F , for a, b ∈ A. If a ̸∈ F , then
F−− = (F : a)−−. As b ∈ (F : a) ⊆ (F : a)−−, we have b ∈ F−−, that
is, b−− ∈ F . Therefore, F is a weakly prime filter. □

Proposition 2.29. Let F be a weakly prime filter of A and let
(y → z) → y ∈ F,

for y, z ∈ A. Then y−− ∈ F .

Proof. Let (y → z) → y ∈ F , for y, z ∈ A. Then

(y−− → z−−) → y−− ∈ F .

As F is weakly prime, y → z ∈ F or y−− → z−− ∈ F . Hence y ∈ F or
y−− ∈ F . Therefore y−− ∈ F . □

Recall that a nonempty subset F of A is called a positive implicative
filter of A if 1 ∈ F and the conditions x → ((y → z) → y) ∈ F , for
x, y, z ∈ A, and x ∈ F imply y ∈ F ; see [9].

By the definition of a positive implicative filter and Proposition 2.29,
we get that the following corollary.

Corollary 2.30. Let A be an MV-algebra. Then any weakly prime
filter is a positive implicative filter.



222 MOGHADERI AND MOTAMED

Open Problem: What is the relationship between weakly prime
filters and positive implicative filters?
Proposition 2.31. Let F be a weakly prime filter of A. Then for any
x, y ∈ A, (x ∗ y)− ∈ F implies (x2)− ∈ F or ((y−−)2)− ∈ F .
Proof. Let for x, y ∈ A, (x∗y)− ∈ F . As F is weakly prime, x → y ∈ F
or y−− → x−− ∈ F . Hence (x2)− ∈ F , since

(x → y) ∗ (x ∗ y)− = (x → y) ∗ (y → x−) ≤ (x → x−) = (x2)−

or ((y−−)2)− ∈ F , by
(y−− → x−−) ∗ (x ∗ y)− = (y−− → x−−) ∗ (x → y−)

≤ (y−− → x−−) ∗ (x−− → y−)

≤ y−− → y−−−

= ((y−−)2)−.

□
Theorem 2.32. In any BL-algebra, every weakly prime filter is a
primary filter.
Proof. Assume that F is a weakly prime filter and that (x ∗ y)− ∈ F ,
for x, y ∈ A. By Proposition 2.31, (x2)− ∈ F or ((y−−)2)− ∈ F . So as
y ≤ y−−, we have (x2)− ∈ F or (y2)− ∈ F . Therefore, (xn)− ∈ F or
(yn)− ∈ F , for some n ∈ N, that is, F is a primary filter. □

According to Theorem 2.32 and [12, Theorem 3.6], we get the
following corollary.
Corollary 2.33. In any BL-algebra, radical of every weakly prime filter
is a prime filter.

3. Two New Classes of BL-algebras
Definition 3.1. A BL-algebra A is called a weakly linear BL-algebra
(or briefly, Wl − BL-algebra), if for any x, y ∈ A, x ∨ y = 1 implies
x = 1 or y− = 0.
Example 3.2. (i) Let A = {0, a, b, 1}, where 0 < a < b < 1.
Operations ∗ and → are defined as follows:

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1
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Then (A,∧,∨, ∗,→, 0, 1) is a Wl −BL-algebra.

(ii) Let B = {0, a, b, c, d, 1}, where 0 < c < a, b < 1 and
0 < d < a < 1. Operations ∗ and → are defined as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 d c 0 d a
b 0 c b c 0 b
c 0 0 c 0 0 c
d 0 d 0 0 d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b b a 1
b d a 1 a d 1
c a 1 1 1 a 1
d b 1 b b 1 1
1 0 a b c d 1

Its Hasse diagram is as follows:

0

d

c

a

b

1

Then (B,∧,∨, ∗,→, 0, 1) is a BL-algebra while is not a Wl − BL-
algebra. Since a ∨ b = 1, but a, b ̸= 1, b− = d ̸= 0, and a− = c ̸= 0.
(iii) Consider A defined in Example 2.3(ii). Clearly, A is a Wl−BL-

algebra.

Theorem 3.3. A proper filter F of A is a weakly prime if and only if
A/F is a Wl −BL-algebra.
Proof. Let F be a weakly prime filter and let x/F ∨ y/F = 1/F , for
x/F, y/F ∈ A/F . Then x ∨ y ∈ F , and so x ∈ F or y−− ∈ F . Hence
x/F = 1/F or y−/F = 0/F , that is, A/F is a Wl − BL-algebra.
Now assume that A/F is a Wl − BL-algebra and that x ∨ y ∈ F , for
x, y ∈ A. Thus x/F∨y/F = 1/F . Hence x/F = 1/F or (y/F )− = 0/F .
Therefore, x ∈ F or y−− ∈ F , that is, F is a weakly prime filter of
A. □

According to Theorems 3.3 and 2.6, we have the following result.

Theorem 3.4. The following conditions are equivalent:
(i) Every proper filter of A is weakly prime;
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(ii) {1} is a weakly prime filter of A;
(iii) A is a Wl −BL-algebra.

Recall from [11] that for a nonempty subset X of A, we denote
Xs = {a ∈ A : x → a = a and a → x = x, for all x ∈ X}

and Sx = {a ∈ A : x → a = a and a → x = x}. We know that Xs and
Sx are filters of A. Recall from [11, Theorem 3.3], for a subset X of A,

Xs = {a ∈ A : a ∨ x = 1, for all x ∈ X} = ∩x∈XSx.

Proposition 3.5. Let X be a nonempty subset of A. If Xs is a weakly
prime filter and a, b ∈ X, then X ⊆ Sa→b or X ⊆ Sb−−→a−−.

Proof. Let Xs be a weakly prime filter of A. Then
a → b ∈ Xs = ∩x∈XSx or b−− → a−− ∈ Xs.

Hence a → b ∈ Sx, for any x ∈ X and so x ∈ Sa→b, for any x ∈ X
or b−− → a−− ∈ ∩x∈XSx. Thus b−− → a−− ∈ Sx, for any x ∈ X.
Hence x ∈ Sb−−→a−− , for any x ∈ X. Therefore X ⊆ Sa→b or
X ⊆ Sb−−→a−− . □
Proposition 3.6. Let F be a filter of A such that Fs is a weakly prime
filter of A. Then for any a, b ∈ F , a ≤ b or b−− ≤ a−−.

Proof. Let a, b ∈ F . Then a−−, b−− ∈ F and so a → b, b−− → a−− ∈ F .
By Proposition 3.5, F ⊆ Sa→b or F ⊆ Sb−−→a−− . If F ⊆ Sa→b, then
a → b ∈ Sa→b, and so (a → b) ∨ (a → b) = 1. Hence a → b = 1,
and so a ≤ b. If F ⊆ Sb−−→a−− , then b−− → a−− ∈ Sb−−→a−− , and so
(b−− → a−−) ∨ (b−− → a−−) = 1. Hence b−− → a−− = 1. Therefore
b−− ≤ a−−. □
Proposition 3.7. Let F be a proper linear filter of A such that
F ̸= {1}. Then Fs is a weakly prime filter of A.

Proof. Let a∨b ∈ Fs, for a, b ∈ A such that a ̸∈ Fs and b−− ̸∈ Fs. Then
b ̸∈ Fs, and there exist x, y ∈ F such that a∨x ̸= 1 and b∨ y ̸= 1. Put
z = x ∧ y. Then z, a ∨ z, b ∨ z ∈ F , a ∨ z ̸= 1 and b ∨ z ̸= 1. As F is
linear, assume that b ∨ z ⩽ a ∨ z. Therefore as z ∈ F and a ∨ b ∈ Fs,
so 1 = (a ∨ b) ∨ z = a ∨ (b ∨ z) ⩽ a ∨ (a ∨ z) = a ∨ z, and we have
a ∨ z = 1, which is a contradiction. So Fs is a weakly prime filter of
A. □

For a subset X of A, we define
X−−

s = {a ∈ A : a−− ∨ x−− = 1, for all x ∈ X}.
It is clear that for a filter F of A, F−−

s is a filter of A. It is easy to see
that 0 ∈ F−−

s if and only if for any x ∈ F , x−− = 1.
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Proposition 3.8. Let F be a filter of A such that F−−
s is a proper

filter of A. Then F−−
s is a weakly prime filter of A if and only if for

any x, y ∈ F , x−− ≤ y−− or y−− ≤ x−−.

Proof. Let F−−
s be a weakly prime filter. For any x, y ∈ F ,

(x−− → y−−) ∨ (y−− → x−−) = 1 ∈ F−−
s .

Hence x−− → y−− ∈ F−−
s , which implies x−− → y−− = 1 (since y ∈ F

so y−− ∈ F , and as x−− → y−− ∈ F−−
s then

x−− → y−− = (x−− → y−−) ∨ y−− = 1),

or

y−− → x−− = (y−− → x−−)−− ∈ F−−
s ,

which implies y−− → x−− = 1, as x ∈ F . Therefore x−− ≤ y−−

or y−− ≤ x−−. Now assume that for any x, y ∈ F , x−− ≤ y−− or
y−− ≤ x−− and a ∨ b ∈ F−−

s , where a, b−− ̸∈ F−−
s . So there exist

x1, x2 ∈ F such that a−− ∨ x−−
1 ̸= 1 and b−− ∨ x−−

2 ̸= 1. Put
x = x1 ∧ x2. Then a−− ∨ x−− ̸= 1, b−− ∨ x−− ̸= 1, x−− ∈ F , and so
a−− ∨ x−− ∈ F and b−− ∨ x−− ∈ F . By the hypothesis, we can assume
that a−−∨x−− ≤ b−−∨x−−. As a∨b ∈ F−−

s , we get (a∨b)−−∨x−− = 1,
and so b−− ∨ x−− = 1, which is a contradiction. Therefore F−−

s is a
weakly prime filter. □

Now we will define weak top BL-algebras.

Let F be a filter of a BL-algebra A. We define
Weak − Spec(A) = WS(A) = {P : P is a weakly prime filter of A}

and WV (F ) = {P ∈ WS(A) : F ⊆ P}.

Lemma 3.9. Let F , G, and Fi (i ∈ I) be filters of a BL-algebra A.
Then the following properties hold:
(i) WV (A) = ∅ and WV ({1}) = WS(A).
(ii) If F ⊆ G, then WV (G) ⊆ WV (F ).
(iii) ∩i∈IWV (Fi) = WV (∨i∈IFi).

Proof. The proofs of (i) and (ii) are clear.
(iii) By (ii), the proof is clear. □
The following example shows that it is not necessary, in general,

WV (F ) ∪WV (G) = WV (F ∩G), for filters F and G of a BL-algebra
A, and so {WV (F ) : F is a filter of A} is not closed under finite
union.
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Example 3.10. All (weakly prime) filters of A defined in Example
2.3(ii) are Z = {1}, F = {b, 1}, G = {a, 1}, and H = {a, b, c, 1}. Then

WV (F ) ∪WV (G) = {F,G,H} ⫋ WV (F ∩G) = {Z, F,G,H}.

We set τ(A) = {WV (F ) : F is a filter of A}.
Definition 3.11. A BL-algebra A is called a weak top BL-algebra, if
τ(A) is closed under finite union. Then A satisfies in topology under
closed sets.
Example 3.12. (i) The BL-algebra A defined in Example 3.2(i) is a
weak top BL-algebra.

(ii) The BL-algebra A defined in Example 3.10 is not a weak top
BL-algebra, since

WV (F ) ∪WV (G) = {F,G,H} ⫋ WV (F ∩G) = {Z, F,G,H}.

Lemma 3.13. Let A be a weak top BL-algebra and let F be a proper
filter of A. Then A/F is a weak top BL-algebra.
Proof. Let G/F and H/F be two filters of a BL-algebra A/F . Then
G and H are filters of A. As A is a weak top BL-algebra, then
WV (G) ∪ WV (H) = WV (Z), for some filter Z of A. We show that
WV (G/F ) ∪WV (H/F ) = WV (< Z ∪ F > /F ). Now, assume that

P/F ∈ WV (G/F ) ∪WV (H/F ).

So P/F ∈ WV (G/F ), that is, P ∈ WS(G) and G/F ⊆ P/F . Hence
G ⊆ P , and so P ∈ WV (G) ⊆ WV (G) ∪ WV (H) = WV (Z). Thus
Z ⊆ P , so < Z ∪ F >⊆ P . Then P/F ∈ WV (< Z ∪ F > /F ), that is,

WV (G/F ) ∪WV (H/F ) ⊆ WV (< Z ∪ F > /F ).
Now, let P/F ∈ WV (< Z ∪ F > /F ). Hence P ∈ WS(G) and
< Z ∪ F >⊆ P . So we get Z ⊆ P and F ⊆ P . Thus

P ∈ WV (Z) = WV (G) ∪WV (H).
Then P ∈ WV (G), and so G ⊆ P , that is, G/F ⊆ P/F and

P/F ∈ WV (G/F ) ⊆ WV (G/F ) ∪WV (H/F ).

Therefore, WV (< Z ∪ F > /F ) ⊆ WV (G/F ) ∪ WV (H/F ), that is,
A/F is a weak top BL-algebra. □
Proposition 3.14. Every BL-homomorphic image of a weak top
BL-algebra, is a weak top BL-algebra.
Proof. Let f : A −→ B, be a BL-epimorphism and let A be a weak
top BL-algebra. So A/ ker(f) ∼= B. Hence according to the hypothesis
and Lemma 3.13, B is a weak top BL-algebra. □
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Definition 3.15. A filter F of a BL-algebra A is called semi-weakly
prime, if F = ∩P , for some P ∈ WS(A).

According to Definition 3.15 and Proposition 2.21, we have the
following result.

Lemma 3.16. Let F and G be proper filters of a BL-algebra A such
that F ⊆ G and WS(A/F ) ̸= ∅. Then G/F is a semi-weakly prime
filter of A/F if and only if G is a semi-weakly prime filter of A.

Definition 3.17. A weakly prime filter P of a BL-algebra A is called
weakly extraordinary, if for semi-weakly prime filters F and G of A,
F ∩G ⊆ P implies F ⊆ P or G ⊆ P .

Example 3.18. In Example 3.10, Z is not a weakly extraordinary
filter; but H is a weakly extraordinary filter.

According to the property of the prime filters and Definition 3.17,
we have the following proposition.

Proposition 3.19. Every prime filter of a BL-algebra A, is a weakly
extraordinary filter of A.

Theorem 3.20. Let A be a BL-algebra. Then the following conditions
are equivalent:
(i) A is a weak top BL-algebra;
(ii) Every weakly prime filter of A is weakly extraordinary;
(iii) For semi-weakly prime filters F and G of A,

WV (F ) ∪WV (G) = WV (F ∩G).

Proof. If WS(A) = ∅, then there is nothing to prove. Assume that
WS(A) ̸= ∅.

(i) ⇒ (ii) Let P ∈ WS(A) and let F and G be semi-weakly prime
filters such that F ∩G ⊆ P . Then P ∈ WV (F ∩G). By part (i), there
exists a filter H of A such that WV (F ) ∪WV (G) = WV (H). On the
other hand, there exist Pi ∈ WS(A) (i ∈ I) such that F = ∩i∈IPi. So
for all i ∈ I, Pi ∈ WV (F ). Thus for all i ∈ I, Pi ∈ WV (H). Therefore
H ⊆ ∩i∈IPi = F . Similarly H ⊆ G. Hence H ⊆ F ∩ G. Then
WV (F ) ∪ WV (G) ⊆ WV (F ∩ G) ⊆ WV (H) = WV (F ) ∪ WV (G).
So WV (F ) ∪ WV (G) = WV (F ∩ G). Therefore P ∈ WV (F ) or
P ∈ WV (G), which implies F ⊆ P or G ⊆ P .
(ii) ⇒ (iii) Let F and G be semi-weakly prime filters. We have

WV (F ) ∪ WV (G) ⊆ WV (F ∩ G). Let P ∈ WV (F ∩ G). Then
F ∩ G ⊆ P and by part (ii), we have F ⊆ P or G ⊆ P . Therefore
P ∈ WV (F ) ∪WV (G).
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(iii) ⇒ (i) Let F and G be filters of A. If WV (F ) = ∅ or
WV (G) = ∅, then

WV (F ) ∪WV (G) = WV (G) or WV (F ) ∪WV (G) = WV (F ),
respectively. So assume that WV (F ) ̸= ∅ and WV (G) ̸= ∅. According
to Corollary 2.14 and part (iii), WV (F ) ∪ WV (G) = WV (F ∩ G).
Hence A is a weak top BL-algebra. □
Definition 3.21. Let Y ⊆ WS(A). Define the closure of Y by

Cl(Y ) = ∩H, where H is a closed subset containing Y.

Also define O(Y ) = ∩P∈Y P.

Proposition 3.22. Let Y ⊆ WS(A). Then Cl(Y ) = WV (O(Y )).
Proof. Let P ∈ Y . Then O(Y ) ⊆ P , and hence P ∈ WV (O(Y )). Thus
Y ⊆ WV (O(Y )). Therefore Cl(Y ) ⊆ Cl(WV (O(Y ))) = WV (O(Y )).
Let P ∈ WV (O(Y )). Then O(Y ) ⊆ P . Now assume that H is a closed
subset of WS(A) containing Y . Then there exists a filter F such that
Y ⊆ H = WV (F ). Hence F ⊆ ∩Q∈HQ ⊆ ∩Q∈YQ = O(Y ) ⊆ P and so
F ⊆ P . Then P ∈ WV (F ) = H. Therefore WV (O(Y )) ⊆ H and so
WV (O(Y )) ⊆ Cl(Y ). □

Using Proposition 3.22, we obtain the next corollary.
Corollary 3.23. Let Y be a subset of WS(A). Then Y is closed if and
only if Y = WV (O(Y )).

In the following theorem, we answer to the question that is {P}
closed as a subset of WS(A)?
Theorem 3.24. Let P be a weakly prime filter of a BL-algebra A.
Then {P} is a closed subset of WS(A) if and only if P is a maximal
filter.
Proof. Assume that {P} is a closed subset of WS(A). Then according
to Corollary 3.23, WV (P ) = {P}. Let Q be a maximal filter containing
P . Then {Q} = WV (Q) ⊆ WV (P ) = {P} and so Q = P . Now assume
that P is a maximal filter and that Q is a weakly prime filter such that
Q ∈ WV (P ). Then P = Q, and so WV (P ) = {P}. Therefore based
on Corollary 3.23, {P} is a closed set. □

From [10], a subset Y of a topology space (X, τ) is called irreducible,
if for any two closed subsets Y1 and Y2, Y = Y1 ∪ Y2 implies Y = Y1 or
Y = Y2.
Theorem 3.25. Let P be a weakly prime filter of a BL-algebra A.
Then WV (P ) is an irreducible subset in (WS(A), τ(A)).
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Proof. Let Y1 and Y2 be closed subsets in WS(A) such that
WV (P ) = Y1 ∪ Y2. Then P ∈ Y1 ∪ Y2 and so {P} ⊆ Y1 or {P} ⊆ Y2.
Hence Cl({P}) ⊆ Y1 or Cl({P}) ⊆ Y2. So by Proposition 3.22,
WV (P ) ⊆ Y1 or WV (P ) ⊆ Y2. Therefore WV (P ) = Y1 or
WV (P ) = Y2. □

Theorem 3.26. Let Y be a subset of WS(A) such that Cl(Y ) is an
irreducible subset of WS(A). Then Y is an irreducible subset of
WS(A).

Proof. Let Y1 and Y2 be closed subsets in WS(A) such that Y = Y1∪Y2.
Then Cl(Y ) = Cl(Y1∪Y2) = Cl(Y1)∪Cl(Y2) = Y1∪Y2. So Cl(Y ) = Y1

or Cl(Y ) = Y2. Thus Y ⊆ Y1 or Y ⊆ Y2. Therefore Y = Y1 or
Y = Y2. □

Proposition 3.27. Let Y be a subset of WS(A) such that O(Y ) is a
weakly prime filter. Then Y is irreducible.

Proof. Using Theorem 3.25, WV (O(Y )) is irreducible. So according
to Proposition 3.22, Cl(Y ) is irreducible, and thus based on Theorem
3.26, Y is an irreducible subset. □

According to Propositions 2.12 and 3.27, we obtain the following
result.

Corollary 3.28. Let Y = {Pi : i ∈ I} be a nonempty totally ordered
subset of WS(A). Then Y is irreducible.

4. Super-Max Filters in BL-algebras
In this section, a new filter is introduced and also characterized.

Definition 4.1. A proper filter F of A is called super-max filter, if for
any x, y ∈ A∖ {0, 1}, x ∨ y ∈ F implies x ∗ y ∈ F .

Example 4.2. (i) Let A = {0, a, b, c, 1}, where 0 < c < a, b < 1.
Operations ∗ and → as follows:

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

Its Hasse diagram is as follows:
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0

c

b

1

a

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra and F = {a, b, c, 1} is a
super-max filter.
(ii) Let B = {0, a, b, c, d, 1}, where 0 < a < c < 1 and 0 < b < c, d < 1.
Operations ∗ and → as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Its Hasse diagram is as follows:

0

a

b

c

d

1

Then (B,∧,∨, ∗,→, 0, 1) is a BL-algebra and G = {a, c, 1} is not a
super-max filter.

By the definition of a super-max filter, we have the following
theorem.
Theorem 4.3. Let F be a proper filter of A. Then F is a super-max
filter if and only if for any x, y ∈ A∖{0, 1}, x∨y ∈ F implies x, y ∈ F .

Based on Theorem 4.3, we have the next result.
Theorem 4.4. In any BL-algebra, every super-max filter is a prime
filter.
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According to Proposition 2.2 and Theorem 4.4, we obtain the
following proposition.

Proposition 4.5. In any BL-algebras, every super-max filter is a
weakly prime filter.

Note. (i) Consider the filter G defined in Example 4.2(ii). Then in
BL-algebras, every prime or even maximal filter is not super-max, in
general.

(ii) In Example 4.2(ii), G is a weakly prime filter and is not a
super-max filter.

Theorem 4.6. In any BL-algebra, every super-max filter is {1} or a
maximal filter.

Proof. Let F ̸= {1} be a super-max filter of a BL-algebra A. If there
exists a proper filter G of A such that F ⫋ G, then there exists
x ∈ G∖F such that x ̸= 0, 1. As F ̸= {1}, there exists y ∈ F ∖ {0, 1}.
So x ∨ y ∈ F . Hence x, y ∈ F , which is a contradiction. Therefore, F
is a maximal filter. □
Theorem 4.7. {1} is a super-max filter of A if and only if there exists
a ∈ A∖ {1} such that for any b ∈ A∖ {1}, b ≤ a.

Proof. Let {1} be a super-max filter. If there exist a, b ∈ A∖ {1} such
that a ̸= b and a ∨ b = 1, then a, b ̸= 0. Hence {1} is a super-max
filter. According to Theorem 4.3, a = b = 1, which is a contradiction.
So there exists a ∈ A∖ {1} such that for any b ∈ A∖ {1}, b ≤ a. The
converse is clear. □

Using Definition 4.1, we obtain the next proposition.

Proposition 4.8. If A∖{0} is a filter of A, then A∖{0} is a super-max
filter.

Corollary 4.9. A∖ {0} is a super-max filter, if for any a ∈ A∖ {0},
a− = 0.

Proof. By Proposition 4.8, it is enough to show that A∖{0} is a filter.
Let a, b ∈ A ∖ {0}. If a ∗ b = 0, then a−− ∗ b−− = (a ∗ b)−− = 0,
which is a contradiction. Since a, b ∈ A∖ {0}, then by the hypothesis,
a−− = 1 = b−−, so a−− ∗ b−− = (a ∗ b)−− = 1 ̸= 0. Thus a ∗ b ̸= 0, that
is, a ∗ b ∈ A∖ {0}. Therefore as A∖ {0} is an upper set, we get that
A∖ {0} is a filter. □
Proposition 4.10. If A∖{0} is a super-max filter of A, then A∖{0}
is the only maximal filter of A.
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Proof. By Theorem 4.6, A∖ {0} is a maximal filter. Then A∖ {0} is
the only maximal filter of A. □
Proposition 4.11. If F ̸= {1} is a super-max filter of A, then
F = A∖ {0}.
Proof. If there exists x ∈ A ∖ (F ∪ {0}), then x ̸= 0, 1. On the other
hand, there exists y ∈ F ∖ {1} and so y ̸= 0, 1. Thus x ∨ y ∈ F , and
therefore x ∈ F , which is a contradiction. Therefore, F = A∖{0}. □

According to Proposition 4.11 and Theorem 4.6, we obtain the
following result.
Corollary 4.12. Let F be a super-max filter of A. Then F = {1} or
F = A∖ {0}.

Based on Theorem 4.7 and Propositions 4.8 and 4.11, we have the
next theorem.
Theorem 4.13. Let F be a proper filter of A. The following statements
are equivalent:

(i) F is a super-max filter.
(ii) F = A∖ {0} or F = {1}, and there exists a ∈ A∖ {1} such that

for any b ∈ A∖ {1}, b ≤ a.
Note. Using Theorem 4.7 and Corollary 4.9, we can find that a

BL-algebra A has a super-max filter, if for some a ∈ A∖ {1}, the table
of binary operation → is as follow:

→ 0 . . . . . . 1
0 1
. 0
. 0
. 0
. 0
. 0
1 0

or

→ 0 . . . a . . . 1
0 1
. 1
. 1
a 1
. 1
. 1
1 a

Corollary 4.14. (i) In any BL-algebra, the intersection of super-max
filters is a super-max filter.

(ii) In any BL-algebra, the union of a family of totally ordered
super-max filters is a super-max filter.
Proof. By the definition of a super-max filter, the proofs are easy. □
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According to Theorem 4.13, we have the following result.
Corollary 4.15. Let F ̸= {1} be a super-max filter of A. Then any
proper filter containing F is a super-max filter.
Proposition 4.16. If {1} is an obstinate filter of A. Then A = {0, 1}.
Proof. Assume that x, y ∈ A∖ {1}. Then as {1} is an obstinate filter,
we have x → y = 1 and y → x = 1. So x = y, for any x, y ∈ A∖ {1},
which implies A = {0, 1}. □

By Proposition 4.16 and the definition of super-max filters, we have
the next corollary.
Corollary 4.17. If {1} is an obstinate filter of A, then {1} is a
super-max filter.
Proposition 4.18. Let F ̸= {1} be a super-max filter of A. Then F
is an obstinate filter.
Proof. By Theorem 4.13, F = A ∖ {0}. So for any x, y ∈ A ∖ F ,
x = y = 0. Thus for any x, y ∈ A∖ F , x → y, y → x ∈ F . Thus F is
an obstinate filter. □
Corollary 4.19. In any BL-algebra, every super-max filter is {1} or
obstinate.
Proof. By Corollary 4.12 and Proposition 4.18, the proof is clear. □

Using [3, Example 3.3], F = {c, d, 1} is an obstinate filter, which is
not a super-max filter, according to Theorem 4.13.

From [12], recall that for a filter F of a BL-algebra A and x ∈ A,
(F : x) = {a ∈ A : a ∨ x ∈ F}.
Proposition 4.20. Let F be a super-max filter of A. Then for any
x ∈ A, (F : x) is A or a super-max filter.
Proof. Let x ∈ A. According to Theorem 4.13, F = {1} or
F = A ∖ {0}. If F = {1}, then for x = 1, (F : x) = A and otherwise
for x ̸= 1, according to Theorem 4.13, for any b ̸= 1, x ∨ b ̸∈ F . Hence
(F : x) = {1} = F . If F = A ∖ {0}, then for x ∈ F , (F : x) = A and
otherwise (F : x) = A∖ {0} = F . Thus for any x ∈ A, (F : x) is A or
a super-max filter. □

Using Theorem 4.4 and [12, Proposition 4.2(8)], we get the following
corollary.
Corollary 4.21. Let F be a super-max filter of A and let G be a filter
of A containing F . Then for any x ∈ A∖ F , (F : x) ⊆ G.

In Figure 1, we show the relationship of the filters with a diagram.
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Figure 1. Relations of filters

5. Conclusion
BL-algebras have the most important algebraic structure among

all the various logical algebras proposed as the semantic systems of
nonclassical logical systems. Moreover, they include some important
classes of algebras, like MV. In this paper, we introduced the notions of
weakly prime filters and super-max filters in BL-algebras and studied
some of their properties and also gave some of their characterizations.
We showed that every super-max filter is prime, every prime filter
is weakly prime, and every weakly prime is primary. Also, the
concept of weakly linear BL-algebras (Wl − BL-algebras) and weak
top BL-algebras were defined and investigated. Since BL-algebras,
MV-algebras, and lattice implication algebras are closely related, all
results in this paper will contribute much to studying MV-algebras
and lattice implication algebras. Also, in our future research, we will
compare this new filter with other filters in BL-algebras.
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جبرها -BL در ماکزیمم فوق فیلترهای و ضعیف اول فیلترهای

معتمد٢ سمیه و مقدری١ جواد

ایران بندرعباس، هرمزگان، دانشگاه پایه، علوم دانشکده ریاضی، ١گروه

ایران بندرعباس، اسلامی، آزاد دانشگاه بندرعباس، واحد ریاضی، ٢گروه

روابط و شده معرفی -جبرها BL در ماکزیمم فوق فیلترهای و ضعیف اول فیلترهای مفاهیم مقاله، این در
انواع و فیلترها این بین روابط و خصوصیات از برخی همچنین است. گرفته قرار مطالعه مورد آنها بین
متفاوت فیلترها این که شود می داده نشان مثال چند با است. شده بیان -جبرها BL در فیلترها دیگر
تعریف توپولوژی ضعیف خطی -جبرهای BL و ضعیف خطی -جبرهای BL مفاهیم آن از پس هستند.
BL روی بر جدید توپولوژی یک ضعیف، اول فیلتر مفهوم از استفاده با نهایت، در می شوند. بررسی و

می شود. مطالعه و تعریف -جبرها

توپولوژی. ضعیف -جبر BL ضعیف، اول فیلتر ماکزیمم، فوق فیلتر اول، فیلتر کلیدی: کلمات
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