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A GRAPH ASSOCIATED TO ESPECIAL
ESSENTIALITY OF SUBMODULES

M. EBRAHIMI DORCHEH AND S. BAGHERI∗

Abstract. Let R be an associative ring with identity. In this
paper we associate to every R-module M a simple graph Γe(M)
which we call it the essentiality graph of M . The vertices of Γe(M)
are nonzero submodules of M and two distinct vertices K and L
are considered to be adjacent if and only if K ∩ L is an essential
submodule of K+L. We investigate the relationship between some
module theoretic properties, such as minimality and closedness of
submodules of M with some graph theoretic properties of Γe(M).
In general, this graph is not connected. We study some special
cases in which Γe(M) is complete or a union of complete connected
components and give some examples illustrating each specific case.

1. Introduction

Let F be a family of nonempty sets. The intersection graph of F
is the simple graph whose vertex set is F and two distinct sets S and
T in F are considered to be adjacent, if S ∩ T 6= ϕ. Apparently, the
study of this graph goes back to 1945. In Marczewski [9] it has been
proven that every simple graph can be realized as an intersection graph
(see also [11, Theorem 1]). Two decades later, the intersection graph
has been defined for sets with algebraic structures, namely in [3] for
semigroups and in [5] for subgroups of a finite group.

The intersection graph of ideals of a ring R was first defined in [4] as a
simple graph whose vertex set was in a one to one correspondence with
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the set of all nonzero ideals of R and two distinct nonzero ideals of R
are considered to be adjacent if their intersection is nonzero. This kind
of intersection graph has been investigated by many authors(see for
example [7, 1, 12]). Similar definitions have been given for intersection
graphs of subspaces of a vector space and that of submodules of a
module (see for example [8], [7] and [2]).

Essentiality of submodules of a module is an important concept in
ring and module theory in which there are many interesting results and
questions. Therefore it makes sense to assign a graph whose vertex set
is all nonzero submodules of a module and adjacency is some how
related to the essentiality of submodules.

In this paper, we consider a simple graph which is defined in terms
of essentiality and it can be considered as a subgraph of some kinds
of the intersection graph of submodules of a module M . We call this
new graph the essentiality graph of M and is denoted by Γe(M). Its
vertex set is L∗(M) containing all nonzero submodules of M and two
distinct submodules K and L are considered as adjacent vertices in
Γe(M), if K ∩ L is an essential submodule in K + L. Our main
purpose in this paper is to study the relations between module theoretic
properties of M and graph theoretic properties of Γe(M). With the
given definition, we can see that the set of all nonzero submodules of
a module M (the vertex set of Γe(M)) can be partitioned into some
connected components and the diameter of each component of this
graph is at most 2. Moreover, if there is a cycle in the graph Γe(M),
then its girth is 3. Also, we show that the number of connected
components of Γe(M) is some how related to the number of
minimal submodules and the number of closed submodules of M .
Moreover, we investigate the clique number and the girth of this graph
and determine some properties of the essentiality graph associated to
the special Z-module Zm.

Section 2 is devoted to an investigation of some fundamental
properties of Γe(M) such as connectivity and the diameter of connected
components. We will show that the number of minimal submodules
and the number of closed submodules of an R-module M are upper
and lower bounds for the number of connected components of Γe(M)
respectively ( see Lemma 2.8). Furthermore, as a main result in this
section we give several equivalent conditions under which the graph
Γe(M) is complete (see Theorem 2.9). As a special case, we show that
for a module M with nonzero socle, this is precisely the case when M
is cocyclic.

In Section 3, we will study the clique number and the girth of Γe(M)
and specify the girth of the graph completely. Among other things, we
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characterize nonsemisimple modules M for which the girth of Γe(M)
is infinite.

In Section 4, we investigate the cases in which every connected
component of Γe(M) is complete. We also examine a special case of
these modules, namely the Z-modules Zm and characterize the graph
associated to these modules. Moreover, we find the number of
connected components of Γe(Zm) in terms of the number of prime
divisors of m. As another main result, we show that the graph Γe(M)
is a union of complete connected components if and only if M is a
UC-module. It is well known that every cocyclic module contains a
unique simple submodule, but the converse is not true. We give an
example of a module containing a unique simple submodule which is
not cocyclic and its essentiality graph is not connected and even it has
an incomplete connected component (see Example 4.7).

1.1. Some preliminaries from module theory. We recall that a
submodule K of an R-module M is called essential (large) in M , if for
every nonzero submodule L ⊆ M , we have K ∩ L 6= 0. In this case
M is called an essential extension of K and it is denoted by K ⩽e M .
The set of all essential submodules of M is denoted by ε(M). If M is
an essential submodule of an injective module E, then E is called an
injective hull of M and is usually denoted by E(M). A submodule K is
called a closed submodule in M if K has no proper essential extensions
in M , i.e. whenever L is a submodule of M such that K is essential in
L, then K = L and to show this, we write K ⩽c M . An R-module M
is said to be a uniform module if M 6= 0 and every nonzero submodule
of M is essential in M . A submodule K is said to be an irreducible
submodule of M if K 6= M , and there do not exist submodules K1

and K2 of M such that K ⫋ K1, K ⫋ K2 and K = K1 ∩ K2. An
R-module M is called self-injective if Mf ⊆ M for every endomorphism
f of E(M). M is called π-injective if Mf ⊆ M for every idempotent
endomorphism f of E(M). M is called direct injective, if for every
direct summand X of M , every monomorphism X → M splits. M
is said to be continuous if it is π-injective and direct injective. An
R-module M is nonsingular module if

Z(M) = {m ∈ M |ann(m) ⩽e R} = 0

and M is called a UC-module if every submodule of M has a unique
closure (maximal essential extention) in M .

Let K be a submodule of the R-module M . A submodule K ′ ⊆ M
is called an (intersection) complement of K in M if it is maximal in
the set of submodules L ⊆ M with K ∩ L = 0.
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A submodule K of M is called a complement (in M) if there exists
a submodule N of M such that K is a complement of N in M . It is
well known that K is a complement in M if and only if it is closed
in M . If K ′′ is a complement of K ′ in M with K ⊆ K ′′, then K ′′

is called a double complement of K in M and K ′ is a complement
of K ′′ in M . In this case, K ′′ is a maximal essential extension of
K in M and K ′′ is called a closure of K in M . In case M is
self-injective, we have M = K ′⊕K ′′ (see [17, 17.7]). An R-module M is
called cocyclic if there is an element m0 ∈ M with the property: every
R-homomorphism g : M → L with m0 /∈ Ke(g) is a monomorphism.
This is also equivalent to say: M is an essential extension of a simple
module (see [17, 14.8]).

1.2. Some definitions and terminologies from graph theory.
Let G be a graph with vertex set V (G) and edge set E(G). For two
arbitrary distinct vertices x, y ∈ V (G) the length of the shortest path
from x to y is denoted by d(x, y) and we write d(x, y) = ∞ if there is
no such paths. A graph G is called connected if d(x, y) is finite for all
pairs of vertices in V (G). The diameter of G is:

diam(G) = Sup{d(x, y)|x 6= y are vertices in G}.

A clique in G is a complete subgraph of G and the maximum cardinality
of cliques in G is called the clique number of G. The girth of G,
denoted by girth(G), is the least length of cycles in G (if there is one).
If there is no cycles in G, we write girth(G) = ∞.

The reader is refered to [17], [6] and [13] for undefined concepts in
rings and module theory and to [15] and [16] for unmentioned things
about graph theory.

2. Some properties of Γe(M)

We assign to every module M a simple graph Γe(M), called
essentiality graph of M , whose vertex set is L∗(M) and two distinct
submodules K,L ∈ L∗(M) are defined to be adjacent if K∩L ⩽e K+L.
In this section, we study the fundamental features of this graph in terms
of some module theoretic properties of the module M . At first, we give
three equivalent conditions for adjacency in Γe(M).

Lemma 2.1. If L and N are nonzero submodules of an R-module M ,
then the following statements are equivalent:

(1) L and N are adjacent in Γe(M);
(2) There are injective hulls such as E(N) and E(L) of N and L

such that E(N) = E(L);
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(3) L and N have a common essential extension.
Proof. (1) ⇒ (2) If L and N are adjacent in Γe(M), then L ∩ N is
an essential submodule of L + N . Therefore we have L ⩽e L + N ,
N ⩽e L + N and for an injective hull E(L + N) of L + N there are
injective hulls E(L) and E(N) of L and N (respectively) such that
E(L) = E(L+N) = E(N).
(2) ⇒ (3) If E(L) = E(N), then E(L) is a common essential

extension of L and N .
(3) ⇒ (1) If L and N are essential in M ′, then N ∩ L ⩽e M ′ and

N ∩ L ⩽ N + L ⩽ M ′. Therefore N ∩ L ⩽e N + L, and thus L and N
are adjacent in Γe(M). □
Theorem 2.2. In Γe(M) the diameter of a connected component is at
most 2.
Proof. Let N and L be two arbitrary nonadjacent vertices in a
connected component of Γe(M) and consider the path:

N − L1 − L2 − · · · − Ln − L

Then N ∩ L1 ⩽e L1 and taking intersection with L2, we obtain
N ∩ L1 ∩ L2 ⩽e L1 ∩ L2 ⩽e L2.

Now by induction we have N ∩ L1 ∩ . . . ∩ Ln ∩ L ⩽e L and using a
similar argument, we have L ∩ L1 ∩ . . . ∩ Ln ∩ N ⩽e N . Therefore
N ∩ L ⩽e N and N ∩ L ⩽e L which yields the path N − N ∩ L − L
and thus d(N,L) ⩽ 2. □

Using the proof of Theorem 2.2, we obtain the following:
Corollary 2.3. Let the submodules A and B be nonadjacent vertices
in a connected component of Γe(M). Then A∩B 6= 0 and we have the
path A− A ∩B −B in this graph.
Lemma 2.4. Let A and B be distinct vertices in a connected component
C of Γe(M). Then A and B are adjacent in C if and only if A+B ∈ C.
Proof. If A and B are adjacent in C, then A ∩ B ⩽e A,B ⩽e A + B
and so A+B ∈ C.

Conversely, if A + B ∈ C, then by Corollary 2.3, we have the path
A+B − (A+B)∩A−A. But (A+B)∩A = A and we can conclude
that A ⩽e A + B. Similarly, B ⩽e A + B and A + B is a common
essential extension of A and B. □

We sometimes use the following result of [19] which describes
the submodules of the direct sum of two modules. It is a simple
modification of a result for groups known as Goursat’s lemma.
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Lemma 2.5. [19, Lemma 4.1] Let U and W be R-modules. Then:
(1) There is a bijective map Ψ from the set of all R-submodules

of U ×W to the set of all quintuples (U1, U2, θ,W1,W2) where
U2 ⩽ U1 ⩽ U and W2 ⩽ W1 ⩽ W and θ : U1/U2 → W1/W2 is
an isomorphism of R-modules.

(2) Ψ sends an R-submodule M of U ×W to the quintuple

(p1(M), k1(M), θM , p2(M), k2(M)),

where

p1(M) = {u ∈ U : ∃w ∈ W, (u,w) ∈ M},
k1(M) = {u ∈ U : (u, 0) ∈ M},
p2(M) = {w ∈ W : ∃u ∈ U, (u,w) ∈ M},
k2(M) = {w ∈ W : (0, w) ∈ M},

and, for any (u,w) ∈ p1(M) × p2(M), the isomorphism θM
sends u + k1(M) to w + k2(M) if and only if (u,w) ∈ M .
Furthermore, the three R-modules p1(M)/k1(M), p2(M)/k2(M)
and M/(k1(M)× k2(M)) are isomorphic.

(3) For any quintuple (U1, U2, θ,W1,W2) where U2 ⩽ U1 ⩽ U and
W2 ⩽ W1 ⩽ W and θ : U1/U2 → W1/W2 is an isomorphism
of R-modules, the inverse of Ψ sends (U1, U2, θ,W1,W2) to the
module {(u,w) ∈ U1 ×W1 : θ(u+ U2) = w +W2}.

Example 2.6. Applying Lemma 2.5, we can determine the submodules
of the Z-module M = Z2 × Z4. One can see that the graph associated
to this module can be presented as four components in which one of
the components is incomplete and its diameter is 2.

Figure 1. Γe(Z(Z2 × Z4))
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For a given graph G, the set of all connected components of G is
denoted by C(G). Also, for a vertex v in G, we denote by CG

v the
connected component of the graph G containing v.

Lemma 2.7. The connected component of Γe(M) containing M is
complete.

Proof. If M is a semisimple module, then |CΓe(M)
M | = 1 and the

assertion trivially holds. Let M be a nonsemisimple module and N

be a nontrivial submodule of M in CΓe(M)
M which is not adjacent to M .

Then using Theorem 2.2, we have a path N −L−M in the connected
component of Γe(M) containing M , where L is a nonzero (essential)
submodule of M . Therefore, N ∩ L ⩽e N ⩽e N + L ⩽e M implies the
adjacence of N and M which is a contradiction. Hence M is a common
essential extension of every pair of vertices in CΓe(M)

M and thus CΓe(M)
M

is complete. □
Lemma 2.8. Every connected component of Γe(M) contains at most
one minimal submodule and at least one closed submodule of M .

Proof. If N and L are two minimal submodules in the connected
component C of Γe(M) and N − N ∩ L − L is a path between them,
then by minimality of N and L, we have N = N ∩ L = L. For the
last part of the assertion, we note that if A ∈ C, then A′′ is a closed
submodule and A ⩽e A

′′, by [17, 17.7]. Therefore, A′′ ∈ C. □
Let M ′ be an essential extension of M . The following theorem

shows that the cardinal number of the set containing all connected
components in Γe(M) is equal to the cardinal number of the set of all
connected components in Γe(M

′).

Theorem 2.9. If M is a nonzero submodule of M ′, then M ⩽e M
′ if

and only if there exist a one to one correspondence
ϕ : C(Γe(M)) −→ C(Γe(M

′))

such that every C ∈ C(Γe(M)) is the induced subgraph of ϕ(C).

Proof. If M ⩽ M ′ and L,N ⩽ M , then L is adjacent to N in Γe(M)
if and only if L ∩ N ⩽e L + N ⩽ M ⩽ M ′. Therefore Γe(M) is an
induced subgraph of Γe(M

′).
If M ⩽e M ′ and 0 6= K ⩽ M ′, then K ∩ M ⩽e K and so K is

adjacent to K ∩M , i.e K ∈ CΓe(M ′)
K∩M . Let 0 6= L ⩽ M and L be adjacent

to K in Γe(M
′). Then L∩K ⩽e L+K and L∩K ⩽ M ∩K imply that

L ∩K ⩽e K, M ∩K ⩽e K and L ∩K ⩽ M ∩K. Therefore, we have
the path L − L ∩K −K ∩M in Γe(M) and thus L ∈ CΓe(M)

K∩M . Hence
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K is added at only one component of C(Γe(M)) and CΓe(M)
K∩M is induced

subgraph of CΓe(M ′)
K∩M . We define

ϕ : C(Γe(M)) −→ C(Γe(M
′))

with ϕ(CΓe(M)
N ) = CΓe(M ′)

N for every 0 6= N ⩽ M . If C ∈ C(Γe(M
′))

and K is a vertex in C, then C = ϕ(CΓe(M)
K∩M ) and ϕ is surjective. If

ϕ(CΓe(M)
N1

) = ϕ(CΓe(M)
N2

) for submodules N1 and N2 of M , then
N1 −N1 ∩N2 −N2

is a path in Γe(M
′) and thus in Γe(M). Therefore CΓe(M)

N1
= CΓe(M)

N2
and

ϕ is injective.
On the other hand, let K be a nonzero submodule of M ′ such that

K ∈ ϕ(C) ∈ C(Γe(M
′)), where C is a (nonempty) connected component

of Γe(M). If L ∈ C for L ⩽ M , then L ∈ ϕ(C) and thanks to Corollary
2.3, K ∩ L 6= 0 and thus K ∩M 6= 0. Therefore, M ⩽e M

′. □
Corollary 2.10. The cardinal number of the connected components of
Γe(M) is equal to the cardinal number of the connected components of
Γe(E(M)).

Corollary 2.11. If C is a connected component of diameter 2 in Γe(M)
and M ⩽e M

′, then the extension of C in Γe(M
′) is also of diameter 2.

The following theorem gives us the conditions which are equivalent
to the completeness of Γe(M).

Theorem 2.12. If M is an R-module, the following statements are
equivalent:

(1) Γe(M) is complete;
(2) Γe(M) is connected;
(3) M is a uniform module;
(4) E(M) is indecomposable;
(5) Γe(E(M)) is complete;
(6) (0) is an irreducible submodule of M ;
(7) There is an irreducible left ideal I of R such that

E(M) ' E(R/I).

If M is π-injective module, then (1)− (7) are equivalent to:
(8) M is indecomposable.

If M is continuous, then (1)− (8) are equivalent to:
(9) EndR(M) is a local ring.

Proof. (1) ⇒ (2) and (3) ⇔ (6) are obvious.
(2) ⇒ (1) is clear by lemma 2.7.
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(1) ⇔ (3) If Γe(M) is complete, then M is a common essential
extension of any pair of nonzero submodules.

(3) ⇒ (4) Let A and B are two nonzero submodules of E(M), then
A∩M 6= 0 6= B∩M and since A∩M and B∩M are nonzero submodules
of M , 0 6= (A ∩ M) ∩ (B ∩ M) ⊆ A ∩ B. Therefore, every nonzero
submodule of E(M) is essential and thus E(M) is indecomposable.

(4) ⇒ (3) For every nonzero submodule N of M , E(N) is an injective
submodule of E(M) and thus it is a direct summand of E(M). Since
E(M) is indecomposable, we have E(N) = E(M). Hence N ⩽e E(M)
and thus N ⩽e M .
(3) ⇒ (5) If K is a nonzero submodule of E(M), then K ∩M is a

nonzero submodule of M and therefore it is essential in M and since
M ⩽e E(M), we have K ∩M ⩽e E(M) and thus K ⩽e E(M).
(5) ⇒ (1) M is a submodule of E(M) and thus Γe(M) is an induced

subgraph of Γe(E(M)).
(4) ⇔ (7) see [13, Page 49].
(3) ⇔ (8) see [6, Page 14].
(3) ⇔ (9) see [6, Page 15]. □

Example 2.13. As it can be seen in [17, 14.8], an R-module N is
cocyclic if and only if it is an essential extension of a simple R-module.
Thus for every cocyclic R-module N , the essentiality graph Γe(N)
is complete. In particular, for every simple R-module S, the graph
Γe(E(S)) associated to the injective hull E(S) of S is complete.

Corollary 2.14. Let M be an R-module with Soc(M) 6= 0. Then
Γe(M) is complete if and only if M is cocyclic.

Proof. If M is cocyclic, then Γe(M) is complete by Example 2.13.
Conversely, let S be a simple submodule of M and Γe(M) be

complete. Then M is uniform by Theorem 2.12. Hence for every
nonzero submodule L of M , the fact S ∩ L 6= 0 implies that S ⩽e M .
This means that M is an essential extension of the simple submodule
S; i.e. M is cocyclic. □

The following easy example shows that Soc(M) 6= 0 is not a
necessary condition for Γe(M) to be complete.

Example 2.15. Γe(ZZ) is complete but ZZ does not have minimal
submodules.

Example 2.16. Let K be the field of fractions of a commutative
domain D. Then DK = E(DD) and thus Γe(DK) and Γe(DD) are
complete graphs because (0) is an irreducible submodule of DD.
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In [10] Matlis showed that if R is a commutative noetherian ring,
then there is a one-to-one correspondence between the prime ideals of
R and the indecomposable injective R-modules given by P 7→ E(R

P
),

where P is a prime ideal of R. Accordingly, the only Z-modules M with
complete Γe(M) are the modules whose injective hulls are isomorphic
to Q or Zp∞ .

3. The clique number and the girth of Γe(M)

In this section, we investigate the clique number and the girth of the
essentiality graph Γe(M), associated to an R-module M .

In the following lemma, for a submodule K of an R-module M , the
set ε(K) of all essential submodules of K has been determined using
that of M .
Lemma 3.1. For a submodule K of M , ε(K) = {K ∩N : N ∈ ε(M)}.
Proof. If N ⩽e M , then N ∩K ⩽e K and thus N ∩K ∈ ε(K).

Let B ⩽e K. We know that B⊕B′ ⩽e M , where B′ is a complement
of B in M . According to the modular law, we have

(B ⊕B′) ∩K = B ⊕ (B′ ∩K).

Since B ⩽e K, we have B′ ∩K = 0 and hence (B⊕B′)∩K = B. Now
just put N = B ⊕B′. □
Corollary 3.2. For every submodule K of M we have |ε(K)| ⩽ |ε(M)|.

Remark 3.3. Let A and B be submodules of M with A ⩽e B. If B′′

is a double complement of B in M and A
′′ be a double complement of

A in B
′′ , then A

′′ ⩽ B
′′ and A ⩽e B ⩽e B

′′ imply that A
′′ ⩽e B

′′ and
A

′′ is a closed submodule of M , by [6, Page 6]. Therefore, A′′
= B

′′ , by
closedness of B′′ in M . This means that in case A ⩽e B, every double
complement of B is equal to a double complement of A in M .
Lemma 3.4. Every maximal clique in Γe(M) is of the form ε(N),
where N is a closed submodule of M .
Proof. Let N be a closed submodule of M . Then N is a common
essential extension for every pair of submodules in ε(N) and thus it
forms a clique in Γe(M). Now if ε(N) ∪ {B} is also a clique, then
adjacence of B with N and closedness of N imply that B ⩽e N . This
means that ε(N) is a maximal clique.

Conversely, let
∑

be a maximal clique in a connected component C
of Γe(M) with X ∈

∑
. Then every vertex Y ∈

∑
is adjacent to X.

This implies that X ⩽e X + Y and Y ⩽e X + Y . As a consequence of
Remark 3.3, for every double complement (X + Y )

′′ of X + Y , there
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exists a double complement X
′′ of X and also a double complement

Y
′′ of Y such that X

′′
= (X + Y )

′′
= Y

′′ . This means that for these
double complements X

′′ and Y
′′ , we have

∑
= ε(X

′′
) = ε(Y

′′
).

□
Lemma 3.5. Suppose that C is a connected component of Γe(M). Then
C is complete if and only if C = ε(N), where N is a closed submodule
of M . In this case N is the unique closed submodule of M in C.

Proof. If C is a complete connected component of Γe(M), then C is a
maximal clique and and C = ε(N) for some closed submodule N of M ,
by Lemma 3.4.

Conversely, if C = ε(N), for a submodule N of M , then N is a
common essential extension of any two vertices in C and thus C is
complete.
If N ⩽e B, then B ∈ C = ε(N) and hence B ⩽e N . Therefore
B = N and thus N is closed. Now let L be a closed submodule of M
in C = ε(N). Then L ⩽e N and thus L = N by closedness of L. This
means that N is the unique closed submodule of M in C. □
Corollary 3.6. If Γe(M) is a union of complete connected components,
then every connected component C of Γe(M) contains precisely one
closed submodule N of M and C = ε(N).

Corollary 3.7. The clique number of Γe(M) is |ε(M)|.

Proof. By Lemma 2.7, ε(M) is a complete connected component of
Γe(M). Since M is closed, ε(M) is also a maximal clique in Γe(M). If∑

is a maximal clique in Γe(M), then C = ε(N) for a closed submodule
N of M , by Lemma 3.4. Now we have |

∑
| = |ε(N)| ⩽ |ε(M)|, by

Corollary 3.2. □
Remark 3.8. A submodule Nof M is an isolated vertex in Γe(M) if
and only if N is semisimple and closed in M .

If C is a stellar connected component of Γe(M), then the girth of C
is infinite. In the following lemma, we show that the girth of C is 3 or
infinite.

Lemma 3.9. If C is a non-stellar connected component of Γe(M) with
at least three vertices, then its girth is 3.

Proof. If |C| = 3, then C is complete and its girth is 3.
Let |C| ⩾ 4 and N−L−P−Q be a path in C of distinct submodules.

Then N and L have a common essential extension M ′. Also, L and P
have a common essential extension M ′′ and M ′′′ can be considered as
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a common essential extension of P and Q. If N 6= M ′ and L 6= M ′,
then we have a triangle with vertices N , L and M ′. Otherwise

(1) If N = M ′ and L = M ′′, then P ⩽e L ⩽e N and we have a
triangle.

(2) If L = M ′ and P = M ′′, then N ⩽e L ⩽e P and we have a
triangle.

(3) If L = M ′ = M ′′, then N ⩽e L and P ⩽e L and we have a
triangle.

(4) If L = M ′ and P = M ′′, then if Q = M ′′′ similar to (1) and if
P = M ′′′ similar to (3), we have a triangle.

So girth(Γe(M)) = 3. □
Remark 3.10. An R-module M is a semisimple module if and only if
Γe(M) is a null graph.
Proof. If M is a semisimple module, then every submodule of M is
semisimple and so there is no essential inclusion between submodules.

Conversely, if Γe(M) is a null graph, then M does not have any
proper essential submodule which implies that M is semisimple. □
Theorem 3.11. If M is a nonsemisimple module, then

girth(Γe(M)) = ∞
if and only if |ε(M)| = 2 (module with one proper essential submodule).
Proof. Let M be a nonsemisimple module and girth(Γe(M)) = ∞.
Then |ε(M)| ⩾ 2. If |ε(M)| ⩾ 3, then CΓe(M)

M has a circle of length 3
which is a contradiction.

Conversely, if |ε(M)| = 2 and N is a common essential extention of
the submodules A and B in M with N 6= A and N 6= B, then

|ε(M)| ⩾ |ε(N)| ⩾ 3,

and this is a contradiction by Corollary 3.2. Therefore, there is no
triangle in Γe(M) and therefore girth(Γe(M)) = ∞. □

4. The essentiality graph associated to a UC-module
In [14], P. F. Smith called a module M a UC-module if every

submodule of M has a unique closure (maximal essential extension)
in M . He also gave necessary and sufficient conditions for M to
be a UC-module. In this section, we specify the essentiality graph
associated to a UC-module. As an special case, we examine the
Z-module Z/mZ, which is isomorphic to Zm.

The following lemma determines when all connected components of
Γe(M) are complete.
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Lemma 4.1. Let M be an R-module. The graph Γe(M) is a union of
complete connected components if and only if the intersection of any
two distinct members of the set {ε(N) : 0 6= N ⩽c M} is empty.

Proof. If M is a uniform module, then Γe(M) contains only one
component, namely ε(M). Then M is the only nonzero closed
submodule of M and the assertion is obvious in this case.

Now let Γe(M) be a union of complete connected components and
K ∈ ε(N) ∩ ε(L) where L and N be two distinct closed submodules
of M . Then K ⩽e N , K ⩽e L imply that N,L ∈ CΓe(M)

K and CΓe(M)
K

is a complete connected component of Γe(M). Therefore, N + L will
be a common essential extension of N and L which contradicts the
closedness of N and L.

Conversely, let C be a connected component of Γe(M). If |C| ⩽ 2,
then C is complete. If |C| ⩾ 3 and K and N are two arbitrary
distinct vertices in C, then we have the path N −N ∩K −K. Hence,
N ∩K ⩽e N ⩽e N

′′ and N ∩K ⩽e K ⩽e K
′′. Therefore,

N ∩K ∈ ε(N ′′) ∩ ε(K ′′)

and by hypothesis N ′′ = K ′′ is a common essential extension of N and
K. This means that N is adjacent to K and thus C is complete. □

We show in the following that the essentiality graph associated to
the Z-module Zm, is a union of complete connected components.
Furthermore, the closed submodules of Zm and the vertices in each
component of Γe(Zm) are identified.

In the rest of this section, let m = pα1
1 · · · , pαn

n , where n ∈ N,
p1, · · · , pn are distinct prime numbers and for every i ∈ {1, · · · , n},
αi ∈ N.

Lemma 4.2. The set of all closed submodules of the Z-module Zm is
X = {< pt11 · · · ptnn >: 1 ⩽ i ⩽ n, ti ∈ {0, αi}}.

Proof. Without loss of generality, we can consider A ∈ X of the form
A =< pα1

1 · · · pαk
k >, where 1 ⩽ k ⩽ n. If k = n, then A = 0 which

is a closed submodule. Let 1 ⩽ k ⩽ n − 1. If B is an extension of
A, then B =< pt11 · · · ptkk > where ti ⩽ αi. Now for the submodule
C =< pt11 · · · ptkk p

αk+1

k+1 · · · pαn
n > of B, we have A∩C = {0}. This means

that A is not essential in B and thus A is a closed submodule of Zm.
If A /∈ X, without loss of generality, we can take

A =< pu1
1 · · · pul

l p
αl+1

l+1 · · · pαk
k >

with 1 ⩽ l ⩽ k ⩽ n and αi 6= ui 6= 0 for 1 ⩽ i ⩽ l. Now, if we
take B =< p

αl+1

l+1 · · · pαk
k >, then we have A ≨ B and every nonzero
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submodule T of B is of the form

T =< pv11 · pvll p
αl+1

l+1 · · · pαk
k p

vk+1

k+1 ...p
vn
n >,

where at least one vi is nonequal to αi. Therefore,

A ∩ T =< p
max{u1,v1}
1 · · · pmax{ul,vl}

l p
αl+1

l+1 · · · pαk
k p

vk+1

k+1 · · · pvnn >6= {0}.

Thus B is a proper essential extension of A and this means that A
is not a closed submodule of Zm. □

Lemma 4.3. If A is a closed Z-submodule of Zm of the form
A =< pα1

1 · · · pαk
k >, then the set of all essential submodules of A is

ε(A) = {< pα1
1 · · · pαk

k p
tk+1

k+1 · · · p
tn
n >: k + 1 ⩽ i ⩽ n, 0 ⩽ ti ⩽ αi − 1}.

Proof. Let

YA = {< pα1
1 · · · pαk

k p
tk+1

k+1 · · · p
tn
n >: k + 1 ⩽ i ⩽ n, 0 ⩽ ti ⩽ αi − 1}.

Then A is the maximum element of YA and

B =< pα1
1 · · · pαk

k p
αk+1−1
k+1 · · · pαn−1

n >

is the minimum element of YA with respect to inclusion. We show
B ⩽e A. For this purpose, suppose that C is a nonzero submodule
of A. If C ∈ YA, then B ⩽ C and B ∩ C 6= {0}. If C /∈ YA

without loss of generality we consider

C =< pα1
1 · · · pαk

k p
αk+1

k+1 p
βk+2

k+2 · · · pβn
n >

wherein βi 6= αi for at least one k + 2 ⩽ i ⩽ n and

C ∩B =< pα1
1 · · · pαk

k p
αk+1

k+1 p
rk+2

k+2 · · · prnn >

wherein ri 6= αi for at least one k+2 ⩽ i ⩽ n and so C ∩B 6= {0} and
B ⩽e A.

The set of submodules of A is

L(A) = {< pα1
1 · · · pαk

k p
tk+1

k+1 · · · p
tn
n >: ti ∈ {0, 1, . . . , αi}}

and the set of nonzero submodules of A is L∗(A). If T1 ∈ L∗(A) − YA

is of the form T1 =< pα1
1 · · · pαk

k p
tk+1

k+1 · · · ptnn >, where some ti is equal
to αi. We can consider ti 6= αi for k + 1 ⩽ i ⩽ u < n and put
T2 =< pα1

1 · · · pαk
k p

αk+1

k+1 · · · pαu
u p

vu+1

u+1 · · · pvnn > such that 0 ⩽ vi ⩽ αi and
therefore T2 ⩽ A and T1 ∩ T2 = {0} so T1 is not essential in A. □

Theorem 4.4. Γe(Zm) is a union of complete connected components.
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Proof. Let N = 〈Pαi1
i1

· · ·Pαik
ik

〉 and L = 〈Pαj1
j1

· · ·Pαjr
jr

〉 be two
arbitrary distinct nonzero closed submodules of Zm, where
1 ⩽ k ⩽ n − 1, 1 ⩽ r ⩽ n − 1, {i1, · · · , ik} and {j1, · · · , jr} are
distinct subsets of {1, · · · , n}. For an arbitrary element

s ∈ {i1, · · · , ik} \ {j1, · · · , jr},
the generator element of no essential submodule of L can contain a
multiple of pαs

s , by Lemma 4.3. However, the generator element of
every essential submodule of N contains some multiples of pαs

s . This
means that ε(N) ∩ ε(L) = ∅. Thus we can conclude that Γe(Zm) is a
union of complete connected components, by Lemma 4.1. □

Now, using Theorem 4.4, we have:

Corollary 4.5. If m = pα1
1 · · · pαn

n , then the number of connected
components of Γe(Zm) is equal to 2n − 1.

Since the set of all closed submodules of Zm is the set
X = {< pt11 ...p

tn
n >: ti ∈ {0, αi}}

and for A ∈ X of the form A =< pα1
1 ...pαk

k > the set of essential
submodules of A is
ε(A) = {< pα1

1 · · · pαk
k p

tk+1

k+1 · · · p
tn
n >: 0 ⩽ ti ⩽ αi−1, for k+1 ⩽ i ⩽ n},

and thus |ε(A)| = αk+1 . . . αn. We can define the bijection map:
f : X → U = {(β1, β2, . . . , βn) : βi ∈ {0, 1}}

f(< pt11 p
t2
2 . . . ptnn >) = (β1, β2, . . . , βn)

wherein if ti = 0, then βi = 1 and if ti = αi, then βi = 0. Also, the
number of submodules of Zm is obtained by the following relation:

n∏
i=1

(αi + 1) =
∑

(β1,...,βn)∈U

αβ1

1 . . . αβn
n .

In the above summation, each summand (except the last 1) is equal to
the number of vertices in a (complete) connected component of Γe(Zm)
and the frequency of each summand shows the frequency of components
of the same cardinality. We illustrate this in the following example.

Example 4.6. In this example, we want to draw the essentiality graph
associated to the Z-module Z360. The nonzero closed submodules of
Z360 are 〈1〉, 〈5〉, 〈8〉, 〈9〉,〈40〉,〈45〉 and 〈72〉, by Lemma 4.2. Now, using
Lemma 4.3, we can obtain the connected components of Γe(ZZ360).
Note that the vertex set of each connected component is the set of
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essential submodules of a nonzero closed submodule, by Corollary 3.6.
In fact, since 360 = 23 × 32 × 5, the equalities

|L(Z360)| = (3 + 1)(2 + 1)(1 + 1)

= (3× 2× 1) + (3× 2× 1) + (3× 1× 1) + (3× 1× 1)

+ (1× 2× 1) + (1× 2× 1) + (1× 1× 1) + 1× 1× 1.

show that in Γe(ZZ360) there are two components with 6 vertices, two
components with 3 vertices, two components with 2 vertices and a
component with 1 vertex. This graph has been drawn in the following
figure.

Figure 2. Γe(ZZ360)

Note that the number of prime divisors of 360 is 3. Thus Γe(ZZ360)
has 7 connected components, by Corollary 4.5.

As we saw in Theorem 4.4 and in Example 4.6, all connected
components of the graph Γe(Zm) are complete. The following example
shows that this need not be true even for every Z-module.

Example 4.7. Consider the Z-module M = Z2 × Z. According to
Lemma 2.5, the set of all nonzero submodules of M is:

L∗(M) = {〈(0, n)〉 = {0} × nZ|n ∈ N}
∪ {〈(1, 0), (0, n)〉 = Z2 × nZ|n ∈ Z}
∪ {〈(1, n)〉 = Z1,n|n ∈ N}.
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Also, it is easy to see that the set of all essential submodules of M is
ε(M) = {Z2×nZ|n ∈ N}. By Lemma 3.1, for every positive integer n,
the set of all essential submodules of Z1,n is:

ε(Z1,n) = {(Z2 ×mZ) ∩ Z1,n|m ∈ N}.
With a few calculations and considering several cases for m and n, it
can be seen that

ε(Z1,n) = {{0} × 2knZ)|k ∈ N} ∪ {Z1,(2k−1)n|k ∈ N}.
This means that if t is an odd multiple of n, then the Z-module
〈(1, t)〉 = Z1,t has an essential extension Z1,n. But for every
nonnegative integer i, the Z-module 〈(1, 2i)〉 = Z1,2i has no proper
essential extension of the form Z1,m. Moreover, it is not contained in
any submodule of the form {0} × kZ and it can not be essential in a
Z-module of the form Z2 × nZ. Therefore, 〈(1, 2i)〉 = Z1,2i is a closed
submodule in M for every nonnegative integer i. Actually, the set of
closed submodules of M = Z2 × Z is:

{Z2 × {0},M = Z2 × Z, {0} × Z} ∪ {Z1,2i |i ⩾ 0}.
Now, using Lemma 3.4, the maximal cliques in Γe(M) are:
ε(Z2×{0}), C2 = ε(M), ε({0}×Z), and the cliques of the form ε(Z1,2i).
For nonnegative integers i and j, if we set t = Max{i+ 1, j + 1}, then

{0} × 2tZ ∈ ε(Z1,2i) ∩ ε(Z1,2j).

Moreover, For every nonnegative integer i, we have:
{0} × 2i+1Z ∈ ε(Z1,2i) ∩ ε({0} × Z).

Thus the set ε({0} × Z) ∪
∪∞

i=1 ε(Z1,2i) is a connected component of
Γe(M). This connected component is not complete, because it has more
than one closed submodules. In fact, Γe(M) contains the following
three connected components:

▶ the isolated vertex C1 = ε(Z2 × {0}) = {Z2 × {0}},
▶ the complete connected component C2 = ε(M),
▶ incomplete connected component C3 = ε({0}×Z)∪

∪∞
i=0 ε(Z1,2i).

By determining the associated graph to this Z-module, the double
complement of each submodule can be determined. In fact, if K is the
submodule Z2 × {0} of M , then K

′′
= K = Z2 × {0}. The double

complement of submodules of the form Z2 × nZ is M = Z2 × Z. In
case K is of the form Z1,n, the double complement K

′′ is Z1,1, if n is
odd and K

′′
= Z1,2i if n = t× 2i, where i ∈ N and t is an odd positive

integer. For the case K = {0}× nZ, we have K
′′
= {0}×Z if n is odd

and K
′′ ∈ {{0} × Z,Z1,1, · · · ,Z1,2i−1} if n = t× 2i, where t is odd.
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In fact, the Z-module Z2×Z in Example 4.7, contains a unique simple
submodule (namely Z2 × 0), but it is not cocyclic. This example illus-
trates a big difference between cocyclic modules and the modules with
unique simple submodules. Namely, the essentiality graph associated
to every cocyclic module has a unique complete connected component.
But that of the module Z2 × Z is not connected and it consists of an
incomplete component.

The following theorem characterizes all modules whose essentiality
graphs are a union of complete connected components.

Theorem 4.8. An R-module M is a UC-module if and only if every
connected component of Γe(M) is complete.

Proof. If C is a connected component of Γe(M) and N1, N2 are two
distinct closed submodules in C, then we have the path N1−N1∩N2−N2

and thus N1∩N2 has two distinct closures N1 and N2 which contradicts
the assumption. Therefore C contains only one closed submodule N and
so C = ε(N). Hence C is complete.

Conversely, If C is a complete connected component of Γe(M), then
by Lemma 3.5, C = ε(N), where N ⩽c M . Therefore, N is the unique
closure of the members of C and so M is a UC-module. □

According to Theorem 4.8, uniform modules, semisimple modules
and every Z-module of the form Zm are UC-modules and by
Theorem 2.9, whenever N ⩽ M , then Γe(N) is an induced subgraph
of Γe(M) and we conclude that the submodules of a UC-module are
themselves UC-modules. If M is a nonsingular module and N ⩽ M
then,

N ′′ = {m ∈ M |(N : m) ⩽e R}
is the unique closure of N (see [18]). Therefore, every nonsingular
module is a UC-module. The Z-module Z6 is a UC-module but not
nonsingular module (ann(2) = 3Z ⩽e Z).

Let RM be a nonsingular module and N ⩽e M . In [18], Wong
specified the relationship between the closed submodules of N and the
closed submodules of M . In the next theorem, we prove this relation
for every UC-module with the help of its essentiality graph. First, we
have the following two lemmas.

Lemma 4.9. Let M be a UC-module and L ⩽ N are submodules of M
with unique closures L′′ and N ′′ in M , respectively. Then, L′′ ⩽ N ′′.

Proof. If L1 is the closure of L in N ′′ then, by [6, page 6], L1 is closed in
M and by uniqueness of closure, we have L1 = L and thus L′′ ⩽ N ′′. □
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Lemma 4.10. If M is a UC-module and N ⩽ M and K ⩽c M then,
N ∩K ⩽c N .

Proof. We consider L as closure of N ∩ K in N and L′′ as closure of
L in M . In this case, L′′ is the unique closure of N ∩K in M and by
Lemma 4.9. Therefore, L′′ = (N ∩K)′′ ⩽ K ′′ = K and thus L ⩽ K.
But L is the closure of N ∩K. Hence L = N ∩K is closed in N . □
Theorem 4.11. If N is an essential submodule in a UC-module M ,
then there is a one to one correspondence between the closed submodules
of M and the closed submodules of N (closed in N) given by:

K 7→ K ∩N , where K is closed in M,
K 7→ K ′′, where K is closed in N and K ′′ is the closure of K in M .

Proof. Γe(M) is a union of complete connected components and by
Theorem 2.9, there is a one to one correspondence between connected
components of Γe(M) and Γe(N) and by Lemma 3.5, each connected
component of these two graphs has only one closed submodule. Hence,
M and N have equally closed submodules.

If K ⩽c M , then K ∩N ⩽c N by Lemma 4.10. □
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زیرمدول ها بودن اساسی به منسوب گرافی

باقری٢ سعید و درچه١ ابراهیمی مهدی

ایران ملایر، ملایر، دانشگاه ریاضی، ١,٢گروه

ساده گراف یک ،M R-مدول هر به مقاله این در باشد. یکدار و شرکت پذیر حلقه ای R کنید فرض
همه شامل گراف این رأس های مجموعه می نامیم. M بودن اساسی گراف را آن و داده نسبت Γe(M)

،K ∩L آن ها، اشتراک هرگاه می گیریم نظر در مجاور را L و K رأس دو و بوده M ناصفر زیرمدول ها ی
مینیمال جمله از M مدولی) (زیر جبری ساختار بین رابطه سپس باشد. اساسی ،K+L مجموعشان، در
گراف این می کنیم. بررسی Γe(M) گرافی نظریه ویژگی های با را M در زیرمدول ها بودن بسته و بودن
باشد کامل اگر تنها و اگر است همبند گراف این که می دهیم نشان واقع در نیست. همبند کلی درحالت
اجتماعی گراف این که می کنیم بررسی را خاصی حالت هچنین باشد. یکنواخت M مدول اگر تنها و اگر

می دهیم. نشان مثال هایی ارائه با را خاص حالات این بین تمایز علاوه، به باشد. کامل مولفه های از

کمر. خوشه ای، عدد UC-مدول، بسته، زیرمدول اساسی، زیرمدول کلیدی: کلمات
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