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SOME RESULTS ON ORDERED AND UNORDERED
FACTORIZATION OF A POSITIVE INTEGER

D. YAQUBI∗ AND M. MIRZAVAZIRI

Abstract. A well-known enumerative problem is to count the
number of ways a positive integer n can be factorised as
n = n1 × n2 × · · · × nk, where n1 ⩾ n2 ⩾ · · · ⩾ nk > 1. In
this paper, we give some recursive formulas for the number of
ordered/unordered factorizations of a positive integer n such that
each factor is at least ℓ. In particular, by using elementary
techniques, we give an explicit formula in the cases where
k = 2, 3, 4.

1. Introduction

Let F(n, k, ℓ) be the number of unordered factorizations of a positive
integer n into exactly k parts such that each factor is at least ℓ. We
denote the number of all unordered factorizations of a positive integer
n by F(n). So, F(n) is the number of ways a positive integer n
can be written as a product n = n1 × n2 × · · · × nk. Clearly,
F(n) =

∑n
k=1F(n; k, 2). Let pβ1

1 pβ2

2 · · · pβr
r be the prime decomposition

of a positive integer n. Then there is a bijection between F(n, k, ℓ) and
the number of partitions of the multiset

{p1, . . . , p1︸ ︷︷ ︸
β1−times

, p2, . . . , p2︸ ︷︷ ︸
β2−times

, . . . , pr, . . . , pr︸ ︷︷ ︸
βr−times

}
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into k unlabelled blocks such that each block has at least ℓ elements.
For example, F(23 × 34 × 56, 6, 2) is the number of partitions of the
multiset

{2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5}

into 6 unlabelled blocks such that each block has at least two elements.
Using Mathematica software, one observes that F(23×34×56) = 11220.
See [1, 8] for further results on partitions of a multiset. The sequence
{F(n)} is listed as the sequence A001055 in the On-Line Encyclopedia
of Integer Sequences [7]. The Dirichlet generating function for the
sequence {F(n)} is

∞∏
k=2

1

1− k−s
=

∞∑
n=1

F(n)

ns
.

For the positive integers ℓ, k ⩾ 1, let H(n; k, ℓ) denote the number of
ordered factorizations of a positive integer n into exactly k parts such
that each factor is at least ℓ. We use H(n) to represent the number
of all ordered factorizations of the positive integer n. The sequences
H(n) and F(n) are analogous to that of compositions and partitions
of a positive integer n. Clearly, H(n) =

∑n
k=1H(n; k, 2).

Let ρ(n) denote the number of partitions n = n1 + n2 + · · · + nk of
a positive integer n where we assume that n1 ⩾ n2 ⩾ · · · ⩾ nk > 0.
The integers n1, n2, . . . , nk are called the parts of the partitions. For
example ρ(4) corresponds to 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and
4. It is important to note that if n = pβ1

1 pβ2

2 · · · pβr
r , where p1, p2, . . . , pr

are distinct prime numbers and βi ∈ N for 1 ⩽ i ⩽ r, then F(n)
and H(n) depend only on the positive integers β1, β2, . . . , βr. Using
this fact, for special choices of n, the values of F(n) and H(n) can
be determined in closed form. For instance, if a positive integer n is
a prime power n = pr, then F(n) = ρ(r), and H(n) = 2r−1. Also,
if n = p1 × p2 × · · · × pr is square-free, then F(n) =

∑r
i=1

{
r
i

}
, and

H(n) =
∑r

i=1 i!
{
r
i

}
, where

{
r
i

}
is the Stirling number of the second

kind.
Let F(n; {β1, . . . , βr}, ℓ) be the number of unordered factorizations

of a positive integer n as n = nβ1

1 ×· · ·×nβr
r such that β1+ · · ·+βr = k

and ℓ ⩽ n1 < · · · < nr. Also, let H(n; {β1, . . . , βr}, ℓ) be the number of
ordered factorizations of a positive integer n as n = nβ1

1 ×· · ·×nβr
r such

that ni ⩾ ℓ, {n1, . . . nk} = {n′
1, . . . , n

′
r} and βj = |{i : ni = n′

j}| for each
1 ⩽ i, j ⩽ r. For example, F(n; {1, 1, 2}, ℓ) is the number of unordered
factorizations of a positive integer n as xyz2 with x > y > z ⩾ ℓ, and

https://oeis.org/A001055 
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H(n; {1, 1, 2}, ℓ) = 2!F(n; {1, 1, 2}, ℓ). It is easy to see that

F(n; {β1, . . . , βr}, ℓ) =
(β1 + · · ·+ βr)!

β1! · · · βr!
H(n; {β1, . . . , βr}, ℓ). (1.1)

See [2, 3, 4, 6] for further results on factorization partitions
including results on bounds and asymptotic behaviours of F(n) as well
as algorithms for calculating their values.

The goal of this paper is to give some recursive formulas for F(n)
and H(n). Also, we apply elementary techniques to obtain F(n) and
H(n) when n = 2, 3, 4. We give a new proof for the following formula
given by MacMahon in 1893 (see [5]):

H(n; k, 2) =
k−1∑
i=0

(−1)i
(
k

i

) n∏
j=1

(
βj + k − i− 1

k − i− 1

)
.

Finally, we present several propositions involving the partition function
ρ(n).

2. A Recursive Formula

In this section, we give some recursive formula for F(n; k, ℓ) and
H(n; k, ℓ). Let n = nβ1

1 × · · · × nβr
r be a positive integer, where βi ∈ N.

By above notations, we can write

F(n; k, ℓ) =
∑

β1+···+βr=k;
β1<···<βr,

F(n; {β1, . . . , βr}, ℓ); (2.1)

and
H(n; k, ℓ) =

∑
β1+···+βr=k

H(n; {β1, . . . , βr}, ℓ). (2.2)

Proposition 2.1. Let n > 1 and k, ℓ be positive integers. Then

F(n; k, ℓ) =

min{k,s}∑
i=max{k−s,1}

F(n; i, ℓ+ 1),

where s ≤ k is the largest positive integer for which ℓs divides n.

Proof. Let
E = {(n1, n2, . . . , nk) : n = n1 × n2 × · · · × nk, ℓ ⩽ n1 ⩽ · · · ⩽ nk}

and
Ei = {(n1, n2, . . . , nk) ∈ E : n1 = n2 = · · · = ni = ℓ, ni+1 ̸= ℓ},
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for i = 0, 1, . . . ,min{k−1, s}. Then E = ∪min{k−1,s}
i=0 Ei and the union

is disjoint. Thus,

F(n; k, ℓ) =

min{k−1,s}∑
i=0

|Ei| =
min{k−1,s}∑

i=0

F(n; k − i, ℓ+ 1)

=

min{k,s}∑
i=max{k−s,1}

F(n; i, ℓ+ 1),

as required. □
Corollary 2.2. Let n > 1 and k, ℓ be positive integers. Then

F(n; k, 1) =
k∑

i=1

F(n; i, 2).

Lemma 2.3. Let n, k and ℓ be positive integers. Then

F (n; k, ℓ) =
∑
ℓ⩽d|n

F
(n
d
; k − 1, d

)
.

Proof. For positive integer n we define F(1; k.ℓ) = 1 and F(n; 0, ℓ) = 0.
Let n = n1×n2×· · ·×nk be a unordered factorizations of n such that
n1 ⩾ n2 ⩾ · · · ⩾ nk ⩾ ℓ > 0. Then n

n1
= n2 × n3 × · · · × nk is the

factorization partitions of n
n1

in k− 1 factor such that each factor is at
least ℓ, and the number of all such factorization partition is F

(
n
n1
, k, ℓ

)
.

Since n1 was unspecified, therefore, we can write such factorization
partition for any divisor d ⩽ ℓ of n. Summation over all such divisor d
of n gives the proof. □
Lemma 2.4. Let n, k and ℓ be positive integers. Then

H (n; k, ℓ) =
∑
ℓ⩽d|n

H
(n
d
; k − 1, d

)
.

3. An Explicit Formula For the Cases k = 1, 2, 3, 4 and
ℓ = 1, 2

We now intend to give an explicit formula for the functions H(n; k, ℓ)
and F(n; k, ℓ) when k = 1, 2, 3, 4 and ℓ = 1, 2. In the following
proposition, we denote the number of natural divisors of n by τ(n).
Moreover,

εi(n) =

{
1 if i

√
n ∈ N

0 otherwise.
Proposition 3.1. Let n > 1 be a positive integer. Then
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i. F(n; 1, 1) = F(n, 1, 2) = 1,
ii. F(n; 2, 1) = ⌈ τ(n)

2
⌉ and F(n; 2, 2) = ⌈ τ(n)

2
⌉ − 1.

Proof. The equalities in (i) are obvious. To prove (ii), we note that
H(n; 2, 1) is the number of ways to write n as xy, where x is a natural
divisor of n. Thus, H(n; 2, 1) = τ(n). Now if n is not a perfect square
then τ(n) is even and so F(n; 2, 1) = τ(n)

2
= ⌈ τ(n)

2
⌉ and if n is a perfect

square then F(n; 2, 1) = τ(n)−1
2

+ 1 = ⌈ τ(n)
2
⌉. Using Corollary 2.2, we

now have F(n; 2, 2) = F(n; 2, 1)− 1. □

Theorem 3.2. Let n > 1 be a positive integer and pβ1

1 · · · pβr
r be its

prime decomposition. Then
i. the number of factorizations of a positive integer n into three

factor such that each factor is at least 1 is given by

F(n; 3, 1) =
1

6

r∏
j=1

(
βj + 2

2

)
+

1

2

r∏
j=1

⌊βj + 2

2
⌋+ ε3(n)

3
.

ii. the number of factorizations of positive integer n into three
factors such that each factor ⩾ 2 is given by

F(n; 3, 2) = F(n; 3, 1)− ⌈τ(n)
2

⌉.

Proof. We have

H(n; 3, 1) = H(n; {1, 1, 1}, 1) +H(n; {1, 2}, 1) +H(n; {3}, 1)
= 6F(n; {1, 1, 1}, 1) + 3F(n; {1, 2}, 1) + F(n; {3}, 1).

We know that F(n; {1, 2}, 1) is the number of ways to write n as xy2,
where x ̸= y. This is equal to the number of y’s such that y2 | n
reduced by the number of ways such that n

y2
= y, in which the later

is equal to ε3(n). The number of y’s such that y2 | n is
∏r

j=1⌊
βj+2

2
⌋.

Moreover, F(n; {3}, 1) = ε3(n). Thus

F(n; {1, 1, 1}, 1) =
1

6

(
H(n; 3, 1)− 3

( r∏
j=1

⌊βj + 2

2
⌋ − ε3(n)

)
− ε3(n)

)
=

1

6
H(n; 3, 1)− 1

2

r∏
j=1

⌊βj + 2

2
⌋+ 1

3
ε3(n)

=
1

6

r∏
j=1

(
βj + 2

2

)
− 1

2

r∏
j=1

⌊βj + 2

2
⌋+ ε3(n)

3
.
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Therefore, we must have
F(n; 3, 1) = F(n; {1, 1, 1}, 1) + F(n; {1, 2}, 1) + F(n; {3}, 1)

=
1

6

r∏
j=1

(
βj + 2

2

)
+

1

2

r∏
j=1

⌊βj + 2

2
⌋+ ε3(n)

3
.

This proves item (i).
Using Corollary 2.2, we have

F(n; 3, 2) = F(n; 3, 1)−F(n; 2, 2)− 1 = F(n; 3, 1)− ⌈τ(m)

2
⌉

which proves item (ii). □
The following lemma is also easy to prove.

Lemma 3.3. Let n, ℓ > 1 be a positive integer and pβ1

1 · · · pβr
r be the

prime decomposition of n. Then
i.
∑

d|n τ(d) =
∏r

j=1

(
βj+2
2

)
ii.

∑
d|n εℓ(d) =

∏r
j=1

⌊βj+ℓ

ℓ

⌋
.

Proof. Let F (n) =
∑

d|n τ(d) for all n ≥ 1. To prove (i), we note that
F is a multiplicative function as τ is multiplicative. Now the result
follows from the fact that

F (pβ) =
∑
d|pβ

τ(pβ) =

β∑
i=0

(i+ 1) =
1

2
(β + 1)(β + 2) =

(
β + 2

2

)
for all prime powers pβ. Part (ii) is proved analogously. □
Theorem 3.4. Let n > 1 be a positive integer and pβ1

1 · · · pβr
r be its

prime decomposition. Then
i. the number of factorizations of n into four factors such that

each factor ⩾ 1 is given by

F(n; 4, 1) =
1

24

r∏
i=1

(
βi + 3

3

)
+

1

3

r∏
i=1

⌊βi + 3

3
⌋

+
1

4
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋))

+
ε2(m)

4

r∏
i=1

⌊βi + 2

2
⌋ − ε2(m)

4
⌈τ(

√
m)

2
⌉+ 3ε4(m)

8
.

ii. the number of factorizations of n into four factors such that
each factor ⩾ 2 is given by

F(n; 4, 2) = F(n; 4, 1)−F(n; 3, 1).
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Proof. We have

H(n; 4, 1) = H(n; {1, 1, 1, 1}, 1) +H(n; {1, 1, 2}, 1)
+H(n; {1, 3}, 1) +H(n; {2, 2}, 1) +H(n; {4}, 1)

= 24F(n; {1, 1, 1, 1}, 1) + 12F(n; {1, 1, 2}, 1)
+4F(n; {1, 3}, 1) + 6F(n; {2, 2}, 1) + F(n; {4}, 1).

On the other hand, F(n; {1, 1, 2}, 1) is the number of ways to write n
as xyz2, where x, y and z are different positive integers. This is equal
to the number of z’s such that z2 | n minus the number of ways to
write n as xz3, x2z2 or z4, where x ̸= z. The number of z’s such that
z2 | n is equal to

∑
z2|n⌈

τ( n
z2

)

2
⌉. Thus,

F(n; {1, 1, 2}, 1) =
∑
z2|n

⌈
τ( n

z2
)

2
⌉ − F(n; {1, 3}, 1)

−F(n; {2, 2}, 1)− ε4(n).

If n is not a perfect square, then τ(n) is even. Let z = pα1
1 · · · pαr

r be
the prime decompositions of positive integer z, where 0 ⩽ αi ⩽ βi. So,
there must exist an integer i such that αi is odd. Hence,

∑
z2|n

⌈
τ( n

z2
)

2
⌉ =

∑
z2|n

1

2
τ(pβ1−2α1

1 · · · pβs−2αr
r )

=
1

2

r∏
i=1

∑
0⩽αi⩽βi

2

(βi − 2αi + 1)

=
1

2
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋)).

Moreover, F(n; {1, 3}, 1) is the number of ways to write n as xz3, where
x ̸= z. This is equal to the number of z’s such that z3 | n minus the
number of ways to write n as z4. The number of z’s such that z3 | n is∏r

j=1⌊
βj+3

3
⌋. Hence,

F(n; {1, 3}, 1) =
r∏

j=1

⌊βj + 3

3
⌋ − ε4(n).
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Since n is not a perfect square, F(n; {2, 2}, 1) = 0. Thus, by 1.1 implies

F(n; {1, 1, 1, 1}, 1) =
1

24

(
H(n; 4, 1)− 12F(n; {1, 1, 2}, 1)

−4F(n; {1, 3}, 1)− 6F(n; {2, 2}, 1)− ε4(n)
)

=
1

24

r∏
i=1

(
βi + 3

3

)
− 1

4
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋))

+
1

3
F(n; {1, 3}, 1) + 1

4
F(n; {2, 2}, 1) + 11

24
ε4(n)

)
=

1

24

r∏
i=1

(
βi + 3

3

)
− 1

4
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋))

+
1

3
F(n; {1, 3}, 1).

Therefore, we have

F(n; 4, 1) = F(n; {1, 1, 1, 1}, 1) + F(n; {1, 1, 2}, 1)
+F(n; {1, 3}, 1) + F(n; {2, 2}, 1) + F(n; {4})

=
1

24

r∏
i=1

(
βi + 3

3

)
+

1

3

r∏
i=1

⌊βi + 3

3
⌋

+
1

4
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋)). (3.1)

Now let n be a perfect square. Then τ(n) is odd and we have

∑
z2|n

⌈
τ( n

d2
)

2
⌉ =

∑
z2|n

(
τ( n

d2
) + 1

2
)

=
∑
z2|n

1

2
τ(pβ1−2α1

1 · · · pβr−2αr
r ) +

1

2

∑
z2|n

1

=
1

2

∑
0⩽αi⩽βi

2

r∏
i=1

(βi − 2βi + 1) +
1

2

∑
0⩽αi⩽βi

2

1

=
1

2

r∏
i=1

∑
0⩽αi⩽βi

2

(βi − 2βi + 1) +
1

2

r∏
i=1

(⌊βi + 2

2
⌋)

=
1

2
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋)) + 1

2

r∏
i=1

(⌊βi + 2

2
⌋)
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Using above equtation, we can write

F(n; {1, 1, 1, 1}, 1) =
1

24

r∏
i=1

(
βi + 3

3

)
− 1

4
(

r∏
i=1

⌊βi + 2

2
⌋(βi − ⌊βi − 2

2
⌋))

+
1

2

r∏
i=1

(⌊βi + 2

2
⌋) + 1

3
F(n; {1, 3}, 1)

−1

4
F(n; {2, 2}, 1)− 1

24
ε4(n).

Furthermore, F(n; {2, 2}, 1) is the number of ways to write n as
x2y2 = (xy)2, where x ̸= y. If n is not a perfect square then this
number is 0 and if n is a perfect square, then

√
n ∈ N. It is easy to see

that
F(n; {2, 2}, 1) = ε2(n)F(

√
m; {1, 1}, 1)

= ε2(n)
(
F(

√
n, {2}, 1)− ε2(

√
n)
)

= ε2(n)
(
⌈τ(

√
n)

2
⌉ − ε4(n)

)
= ε2(n)⌈

τ(
√
n)

2
⌉ − ε4(n).

This proves item (i). According Corollary 2.2, the item (ii) can be
driven from the first assertion. □

We can add some conditions to the problem. For instance, we can
think about the number of solutions of the equation n = n1 + . . .+ nk

with the conditions ℓi ⩽ ni ⩽ ℓ′i for i = 1, . . . , k. A straightforward
application of the Inclusion-Exclusion principle solves this problem.
Using these facts, we proved Lemma 3.5 below.

Lemma 3.5. Let n > 1, k be positive integers and pβ1

1 · · · pβr
r be the

prime decomposition of n. Then

H(n, k, 1) =
r∏

j=1

(
βj + k − 1

k − 1

)
and

H(n, k, 2) =
k−1∑
i=0

(−1)i
(
k

i

) r∏
j=1

(
βj + k − i− 1

k − i− 1

)
.

Proof. Let
A = {p1, . . . , p1︸ ︷︷ ︸

β1−time’s

, p2, . . . , p2︸ ︷︷ ︸
β2−time’s

, . . . , pr, . . . , pr︸ ︷︷ ︸
βr−time’s

}
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be a multiset with βi balls labelled pi. Clearly, H(n, k, 1) is the number
of partitions of the multiset A into k nonempty blocks. The number
of partitions of βj unlabelled balls with labelled pj into k nonempty
labelled blocks is

(
βj+k−1
k−1

)
. Thus, the first part is obvious.

For the second part, using this fact, H(n, k, 2) is the number of
partitions of the multiset A into k blocks such that each block has at
least 2 elements. let Er be the set of all situations in which the blocks
r is empty, where 1 ⩽ r ⩽ k. Then we have

|Er1 ∩ · · · ∩ Eri | =
r∏

j=1

(
βj + k − i− 1

k − i− 1

)
, 1 ⩽ i ⩽ k − 1.

Thus, the Inclusion-Exclusion principle implies the result. □

Example 3.6. We evaluate H(pα, k, 2). Using Lemma 3.5, H(pα, k, 1)
is the number of partitions of the multiset A into k nonempty labelled
blocks, means

(
α+k−1
k−1

)
.

Now, suppose that Ar be the set of all situations in which the the
blocks r is empty. Using Lemma 3.5,

|Ar1 ∩ · · · ∩ Ari | =
(
α + k − i− 1

k − i− 1

)
, 1 ⩽ i ⩽ k − 1.

By the Inclusion-Exclusion principle we therefore have

H(n, k, 2) =
α∑

k=1

k−1∑
i=0

(−1)i
(
k

i

) n∏
j=1

(
αj + k − i− 1

k − i− 1

)

=
α−1∑
k=1

(
k − 1

α− 1

)
= 2α−1.

Now, note that if a positive integer n is a prime power, say n = pk,
then F(n, k, 2) = ρ(n, k), where, ρ(n, k) is the number of partitions of
positive integer n to exactly k parts.

Corollary 3.7. Let n be a positive integer. Then, the number of all
positive solutions of the equation

x1 + x2 + x3 = n,

under the condition x1 ≤ x2 ≤ x3, is

F(p3, 3, 2) =
1

6

(
n+ 2

2

)
+

1

2
⌊n+ 2

2
⌋+ ε3(p

n)

3
.
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Corollary 3.8. Let n be a positive integer. Then, the number of all
positive solutions of the equation

x1 + x2 + x3 + x4 = n,

under the condition x1 ≤ x2 ≤ x3 ≤ x4, is

F(p4, 4, 2) =
1

24

(
n+ 3

3

)
+

1

3
⌊n+ 3

3
⌋+ 1

4
(⌊n+ 2

2
⌋(n− ⌊n− 2

2
⌋))

+
ε2(p

n)

4
⌊n+ 2

2
⌋ − ε2(p

n)

4
⌈τ(

√
pn)

2
⌉+ 3ε4(p

n)

8
.
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مثبت صحیح عدد یک نامرتب و مرتب تجزیه درباره نتایج برخی

میرزاوزیری٢ مجید و یعقوبی١ دانیال

ایران جام، تربت جام، تربت دانشگاه کامپیوتر، ١گروه

ایران مشهد، مشهد، فردوسی دانشگاه محض، ریاضی ٢گروه

صورت به n مثبت صحیح عدد تجزیه راه های تعداد محاسبه شمارشی، مهم مسائل از یکی

n = n١ × · · · × nk,

حالات تعداد بازگشتی روش های با مقاله، این در می باشد. n١ ≥ n٢ ≥ · · · ≥ nk > ١ بطوریکه
را باشد ℓ با برابر حداقل تجزیه بخش هر که حالتی برای را n مثبت صحیح عدد مرتب/نامرتب تجزیه
k = ٢, ٣, ۴ حالت های برای صریحی فرمول مقدماتی، روش های از استفاده با به ویژه، آورده ایم. بدست

کرده ایم. محاسبه

تاو. تابع اویلر، فی تابع کامل، مربع افراز، تابع مجموعه، افرازهای ضربی، افراز تابع کلیدی: کلمات
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