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SOME RESULTS ON ORDERED AND UNORDERED
FACTORIZATION OF A POSITIVE INTEGER

D. YAQUBI* AND M. MIRZAVAZIRI

ABSTRACT. A well-known enumerative problem is to count the
number of ways a positive integer n can be factorised as
n =mny XNg X -+ Xng, where ny > ng > --- =2 ng > 1. In
this paper, we give some recursive formulas for the number of
ordered/unordered factorizations of a positive integer n such that
each factor is at least ¢. In particular, by using elementary
techniques, we give an explicit formula in the cases where
k=23,4.

1. INTRODUCTION

Let F(n, k, ) be the number of unordered factorizations of a positive
integer n into exactly k parts such that each factor is at least /. We
denote the number of all unordered factorizations of a positive integer
n by F(n). So, F(n) is the number of ways a positive integer n
can be written as a product n = n; X ny X --- x ng. Clearly,
F(n)=S7r_, F(n; k,2). Let p{'p5? - - - p? be the prime decomposition
of a positive integer n. Then there is a bijection between F(n, k, ¢) and
the number of partitions of the multiset

{plv"‘ap17p27'"7p27"'ap7"7"'7p7“}
—— —— S——
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into k£ unlabelled blocks such that each block has at least ¢ elements.
For example, F(23 x 3% x 55 6,2) is the number of partitions of the
multiset

{2,2,2,3,3,3,3,5,5,5,5,5,5}

into 6 unlabelled blocks such that each block has at least two elements.
Using Mathematica software, one observes that F (23 x 3% x5%) = 11220.
See [1, 8] for further results on partitions of a multiset. The sequence
{F(n)} is listed as the sequence A001055 in the On-Line Encyclopedia
of Integer Sequences [7]. The Dirichlet generating function for the
sequence {F(n)} is

= 1 = Fn)
gl—k‘s_; ns

For the positive integers ¢,k > 1, let H(n; k,¢) denote the number of
ordered factorizations of a positive integer n into exactly k parts such
that each factor is at least . We use H(n) to represent the number
of all ordered factorizations of the positive integer n. The sequences
H(n) and F(n) are analogous to that of compositions and partitions
of a positive integer n. Clearly, H(n) =>_,_, H(n; k,2).

Let p(n) denote the number of partitions n = ny + ny + - -+ + ny, of
a positive integer n where we assume that ny > ny > -+ > n, > 0.
The integers nq,ng,...,n; are called the parts of the partitions. For
example p(4) corresponds to 1 +1+1+1,1+1+2, 143,242, and
4. It is important to note that if n = pflpSQ .- pPr where p1,pa, ..., Dy
are distinct prime numbers and §; € N for 1 < i < r, then F(n)
and #H(n) depend only on the positive integers (i, (2, ..., 3, Using
this fact, for special choices of n, the values of F(n) and H(n) can
be determined in closed form. For instance, if a positive integer n is
a prime power n = p”, then F(n) = p(r), and H(n) = 2""1. Also,
if n = py X p2 X -+ X p, is square-free, then F(n) = > ._, {"}, and
H(n) = >oi_ {5}, where {1} is the Stirling number of the second
kind.

Let F(n;{51,...,5-},¢) be the number of unordered factorizations
of a positive integer n as n = nfl X ---xnP such that By +---+ 3. =k
and £ < ny < -+ <mn,. Also, let H(n;{51,...,05,},¢) be the number of
ordered factorizations of a positive integer n as n = n" x - - - x nfr such
that n; > £, {n1,...nx} = {n3,...,n;} and B; = [{i : n; = n}}| for each
1 <i,7 < r. For example, F(n;{1,1,2},¢) is the number of unordered
factorizations of a positive integer n as zyz? with z >y > z > ¢, and
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H(n;{1,1,2},¢0) = 2!F(n; {1,1,2},¢). Tt is easy to see that

(Prt--+05)
Bil--- B!

See [2, 3, 4, 0] for further results on factorization partitions
including results on bounds and asymptotic behaviours of F(n) as well
as algorithms for calculating their values.

The goal of this paper is to give some recursive formulas for F(n)
and H(n). Also, we apply elementary techniques to obtain F(n) and
H(n) when n = 2,3,4. We give a new proof for the following formula
given by MacMahon in 1893 (see [5]):

Fni{Br,-.., B}, 0) = H(n; B, -, 61, 0. (1.1)

worea) = S (V70T

Finally, we present several propositions involving the partition function
p(n).

2. A RECURSIVE FORMULA

In this section, we give some recursive formula for F(n;k,¢) and
H(n; k,l). Let n = nfl x -+ x nP be a positive integer, where 3; € N.
By above notations, we can write

Bi+-+Br=k;
/81<"'</87‘)
and
Hnsk,0) = Y Hms{B,....5}0). (2.2)
Bit+Br=Fk

Proposition 2.1. Let n > 1 and k,{ be positive integers. Then

min{k,s}
Flsk, )= > Flnji, 0 +1),

i=max{k—s,1}
where s < k is the largest positive integer for which ¢° divides n.
Proof. Let
E={(ny,ng,....,ng) :n=mng Xng X - xng,l<ng < < ng}
and

Ei={(ni,ns,....,m) € E:ny=ny=---=n; =,ni 1 # L},
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for ¢=0,1,..., min{k—1,s}. Then F = U?;ig{k_l’s}EZ- and the union
is disjoint. Thus,

min{k—1,s} min{k—1,s}
Fskt) = > |El= > Flnik—il+1)
=0 1=0
min{k,s}

= > Fmil+1),

i=max{k—s,1}

as required. O

Corollary 2.2. Let n > 1 and k, ¢ be positive integers. Then
F(n;k,1) Z}_ (n;i,2).

Lemma 2.3. Let n,k and ¢ be positive integers. Then
(nik,0) = 3" ]—“( 1,d> .
£<d|n

Proof. For positive integer n we define F(1;k.¢) = 1 and F(n;0,¢) = 0.
Let n = nq X ny X - - - X ng be a unordered factorizations of n such that
ng =Mng = - =mn, =L > 0. Thennﬂl:nzxngx---xnkisthe
factorization partltlons of I in k — 1 factor such that each factor is at
least ¢, and the number of all such factorization partition is F ( Lk €>

Since n; was unspecified, therefore, we can write such factorization
partition for any divisor d < ¢ of n. Summation over all such divisor d
of n gives the proof. O

Lemma 2.4. Let n, k and ¢ be positive integers. Then
(nik,0) = 3 H(5:ik—1.d).
£<d|n

3. AN ExpriciT FORMULA FOR THE CASES k =1,2,3,4 AND
(=1,2

We now intend to give an explicit formula for the functions H(n; k, ¢)
and F(n;k,0) when k = 1,2,3,4 and ¢ = 1,2. In the following
proposition, we denote the number of natural divisors of n by 7(n).

Moreover,
1 ifyneN
si(n) = { 0 otherwise.

Proposition 3.1. Let n > 1 be a positive integer. Then
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i. F(n;1,1) = F(n,1,2) =1,

ii. F(n;2,1) = [T and F(n;2,2) = [T2] — 1.

Proof. The equalities in (i) are obvious. To prove (ii), we note that
H(n;2,1) is the number of ways to write n as xy, where x is a natural
divisor of n. Thus, H(n;2,1) = 7(n). Now if n is not a perfect square

then 7(n) is even and so F(n;2,1) = @ = [@} and if n is a perfect
square then F(n;2,1) = T(”T)_l +1= [%")1 Using Corollary 2.2, we
now have F(n;2,2) = F(n;2,1) — 1. O

Theorem 3.2. Let n > 1 be a positive integer and pfl PP be its
prime decomposition. Then

i. the number of factorizations of a positive integer n into three
factor such that each factor is at least 1 is given by

F:3.1) = 511 (BjJQ) I

j=1 j=1

ii. the number of factorizations of positive integer n into three
factors such that each factor > 2 is given by
7(n)

F(n;3,2) = F(n;3,1) — [T]

Proof. We have

H(n;3,1) =H(n;{1,1,1},1) + H(n; {1,2},1) + H(n; {3}, 1)
=6F(n; {1,1,1},1) + 3F(n; {1,2},1) + F(n; {3}, 1).

We know that F(n;{1,2},1) is the number of ways to write n as zy?,
where © # y. This is equal to the number of y’s such that y* | n
reduced by the number of ways such that y% = y, in which the later

Bj+2
J2 J

is equal to £3(n). The number of y’s such that y? | n is | J
Moreover, F(n;{3},1) = e3(n). Thus

Flo (1 1,111) = g (103, 1) = 3([T1252 )~ esto)) — ()
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Therefore, we must have

F(n;3,1) = F(n; {1,1,1},1) + F(n; {1,2},1) + F(n; {3}, 1)

Lyp (Bi+2\ |, 1y7,6+2, , esn)
:6H< 2 )+§HL BT

Jj=1 J=1

This proves item (i).
Using Corollary 2.2, we have

F(n;3,2) = F(n;3,1) — F(n;2,2) — 1 = F(n;3,1) — [7(51)1

which proves item (ii). O]
The following lemma is also easy to prove.

Lemma 3.3. Let n,¢ > 1 be a positive integer and p'fl PP be the
prime decomposition of n. Then

L. de 7(d) = H;=1 (Bj2+g>

ii. de e(d) = H§:1 Lﬁjﬂj'
Proof. Let F(n) = 3_,,7(d) for all n > 1. To prove (i), we note that
F' is a multiplicative function as 7 is multiplicative. Now the result

follows from the fact that
B

+2
F(p°) = B B
)=S0 =S+ 0 =568+ 06+ 2) = (777)
d|p? =0
for all prime powers p®. Part (ii) is proved analogously. O

Theorem 3.4. Let n > 1 be a positive integer and pfl PP be its
prime decomposition. Then

i. the number of factorizations of n into four factors such that
each factor > 1 is given by

Flnid 1) = 24H(51+3> HLBMLS

Bi + 2 B — 2
AN 6 - 1222

cam) T B4 2, ealm) i)y Sea(m)
+4HL2J_4(21+ s

i=1
ii. the number of factorizations of n into four factors such that
each factor > 2 is given by

F(n;4,2) = F(n;4,1) — F(n; 3,1).
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Proof. We have

H(n;4,1) = H(n; {1,1,1,1},1) + H(n; {1,1,2},1)
H(n; {1,3},1) + H(n; {2,2},1) + H(n; {4}, 1)
=24F(n;{1,1,1,1},1) + 12F(n; {1, 1,2}, 1)
+4F (n; {1,3},1) + 6F(n; {2,2},1) + F(n; {4}, 1).

On the other hand, F(n;{1,1,2},1) is the number of ways to write n
as zyz?, where z,y and z are different positive integers. This is equal
to the number of z’s such that z? | n minus the number of ways to

write n as x23, 2222 or z*, where x # z. The number of z’s such that

2% [ nis equal to 3° 2, [%)W Thus,

Flo (11,201 = T2 - s 1,8).1)

22|n

—F(n;{2,2},1) — e4(n).

If n is not a perfect square, then 7(n) is even. Let z = pi"* ---p be
the prime decompositions of positive integer z, where 0 < «o; < ;. So,
there must exist an integer ¢ such that «; is odd. Hence,

ST 23 L)

22|n 22|n
:—H Z — 205 + 1)
5i+2 Bi —2
=§(EL 26— 1222,

Moreover, F(n;{1,3},1) is the number of ways to write n as rz3, where
x # z. This is equal to the number of 2’s such that 2% | n minus the
number of ways to write n as z%. The number of z’s such that 23 | n is

IT_, | 22|, Hence,

J=1L 3

Fon 1,8, = [[122 ) — utm).

j=1
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Since n is not a perfect square, F(n;{2,2},1) = 0. Thus, by 1.1 implies

F(n;{1,1,1,1},1) = 21—4(7-[(n, 4,1) — 12F(n; {1,1,2},1)

—4F (n; {1,3},1) — 6F(n;{2,2},1) — e4(n))
501 (I (ESERE)

i=1 =1

—l—%]—“(n; {1,3},1) + i]—“(n; {2,2},1) + %&;(n))

Y U TR

=1

1
Therefore, we have

F(n;4,1) = F(n; {1,1,1,1},1) + F(n; {1,1,2},1
+F(n; {1,3},1) + F(n; {2,2},1) + F(n; {4})

T

1 {4 (Bi+3 1 Bi + 3
(750 It
-2

T

S IIE26 - 122, (3.1)

=1

Now let n be a perfect square. Then 7(n) is odd and we have

0<a< G =1 0<a <G

1+ Lyr, Bi+2
I NCEE REEEy | ((Esd)

’Zlogaig% i=1
1 B +2 Bi—2 1y, Bi+2
S (R CRECS DR ) (R
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Using above equtation, we can write

Fostn =5 T4 ) =502 2e- 1252

Bi + 2 1 _
+§ 21_[1<L 9 J) + g]:(n’ {173}7 1)

T 2,20,1) — ().

Furthermore, F(n;{2,2},1) is the number of ways to write n as
2?y? = (wy)?, where z # y. If n is not a perfect square then this
number is 0 and if n is a perfect square, then \/n € N. It is easy to see
that

F(n;{2,2},1) —eg(n)FW—'{l 1}, 1)
(n (]-"\/_ {2} 1) — e2(v/n))
( T

ea(n))
= ea(n)[ 2L — ea(n),

This proves item (i). According Corollary 2.2, the item (ii) can be
driven from the first assertion. O

= n

(\/_)
2

We can add some conditions to the problem. For instance, we can
think about the number of solutions of the equation n = ny + ...+ ny
with the conditions ¢; < n; < ¢ for i = 1,... k. A straightforward
application of the Inclusion-Exclusion principle solves this problem.
Using these facts, we proved Lemma 3.5 below.

Lemma 3.5. Let n > 1,k be positive integers and pfl - pPr be the
prime decomposition of n. Then

H(n,k,l):ﬁ(ﬁj;_kl_1>

J=1

k—1 r .
Bi+k—i—1
O (!

z:O j=1

and

Proof. Let
A= {?17 cee 7p£7p27' <. 7p27i- 5 Pry e 7p1;}

vV vV vV
[1—time’s Ba—time’s Br—time’s
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be a multiset with 3; balls labelled p;. Clearly, H(n, k, 1) is the number
of partitions of the multiset A into k£ nonempty blocks. The number
of partitions of 3; unlabelled balls with labelled p; into & nonempty
labelled blocks is (ﬁfljfl_ 1). Thus, the first part is obvious.

For the second part, using this fact, H(n,k,2) is the number of
partitions of the multiset A into k blocks such that each block has at
least 2 elements. let E, be the set of all situations in which the blocks

r is empty, where 1 < r < k. Then we have

S (Bt k—i—1 .
E.N---NE,.|= , L 1<i<k—1.
’ 1 7 H ( k_ — = 1 ?
7j=1
Thus, the Inclusion-Exclusion principle implies the result. O]

Example 3.6. We evaluate H(p“, k,2). Using Lemma 3.5, H(p*, k, 1)
is the number of partitions of the multiset A into k£ nonempty labelled
blocks, means (azljfl)

Now, suppose that A, be the set of all situations in which the the
blocks r is empty. Using Lemma 3.5,

k—i—1
|AT1m...mAn_:(a+ !

1<i<k—1.
k—i—1 ) '

By the Inclusion-Exclusion principle we therefore have

o - SR (T4 T)

k=1 =0 =1

Now, note that if a positive integer n is a prime power, say n = p*,
then F(n,k,2) = p(n, k), where, p(n, k) is the number of partitions of
positive integer n to exactly k parts.

Corollary 3.7. Let n be a positive integer. Then, the number of all
positive solutions of the equation

1+ Xo + X3 = n,
under the condition r1 < x9 < 3, 1S

1<n+2> 1 n+2,  e3(p)
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Corollary 3.8. Let n be a positive integer. Then, the number of all
positive solutions of the equation

1+ X9+ T3+ x4 =n,
under the condition r; < 19 < 13 < x4, 1S
n+3 1. n —|— 3 1, n+2 n—2
=5 ("3 7) 3 g

F(p',4,2) - 1550)

L er”) fikas 2J 3 62(29”) (T(\/ﬁ)
1 2 4 2
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