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REGULAR FILTERS OF DISTRIBUTIVE LATTICES

M. SAMBASIVA RAO∗ AND A. P. PHANEENDRA KUMAR

Abstract. The concepts of regular filters and π-filters are
introduced in distributive lattices. A set of equivalent conditions
is given for a D-filter to become a regular filter. For every D-filter,
it is proved that there exists a homomorphism whose dense kernel
is a regular filter. π-filters are characterized in terms of regular
filters and congruences. Some equivalent conditions are given for
the space of all prime π-filters to become a Hausdorff space.

Introduction

Many authors introduced the concept of annihilators in the
structures of rings as well as lattices and characterized several
algebraic structures in terms of annihilators. In their research,
T. P. Speed [11] and W. H. Cornish [4] made an extensive study of
annihilators in distributive lattices. In [5], some properties of minimal
prime filters are studied in distributive lattice and the properties of
dense elements and D-filters are studied in MS-algebras [9]. In [2],
the notion of D-filters was introduced in pseudo-complemented semi-
lattices. Later it was generalized by the author [9] in MS-algebras.

The main aim of this paper is to study some further properties of
dense elements and D-filters in the form of regular filters and π-filters
of distributive lattices. Some equivalent conditions are established for
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a D-filter to become a regular filter. For a D-filter of a distributive lat-
tice, it is proved that there exists a homomorphism whose dense kernel
is a regular filter. Finally, a sufficient condition is derived, in terms of
regular filters, for every distributive lattice to become relatively
complemented. A set of equivalent conditions are derived for a
distributive lattice to become a Boolean algebra. Some topological
properties of the space of all prime π-filters of distributive lattices are
also studied.

1. Preliminaries

The reader is referred to [1] and [3] for the elementary notions and
notations of distributive lattices. Some of the preliminary definitions
and results of [9] and [8] are presented for the ready reference.
Definition 1.1. [1] An algebra (L,∧,∨) of type (2, 2) is called a
distributive lattice if for all x, y, z ∈ L, it satisfies the following
properties (1), (2), (3) and (4) along with (5) or (5′)

(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
A non-empty subset A of a lattice L is called an ideal (filter) of L if

a ∨ b ∈ A (a ∧ b ∈ A) and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A
and x ∈ L. The set I(L) of all ideals of the lattice (L,∨,∧, 0) forms a
complete distributive lattice as well as the set F(L) of all filters of the
lattice (L,∨,∧, 1) forms a complete distributive lattice. A proper ideal
(filter) M of a lattice is called maximal if there exists no proper ideal
(filter) N such that M ⊂ N .
Definition 1.2. [3] Let (L,∧,∨) be a lattice. A partial ordering
relation ≤ is defined on L by x ≤ y if and only if x ∧ y = x and
x∨ y = y. In this case, the pair (L,≤) is called a partially ordered set.
If x ≤ y or y ≤ x for all x, y ∈ L, then (L,≤) is called a totally ordered
set.

The set (a] = {x ∈ L | x ≤ a} is called a principal ideal generated
by the element a and the set of all principal ideals is a sublattice of
I(L). Dually the set [a) = {x ∈ L | a ≤ x} is called a principal
filter generated by the element a and the set of all principal filters is
a sublattice of F(L). A proper ideal (proper filter) P of a lattice L is
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called prime if for all a, b ∈ L, a ∧ b ∈ P (a ∨ b ∈ P ) then a ∈ P or
b ∈ P . Every maximal filter is a prime filter.

Theorem 1.3. [1] Let F be a filter and I an ideal of a distributive
lattice L such that F ∩ I = ∅, then there exists a prime filter P of L
such that F ⊆ P and P ∩ I = ∅.

For any element a of a distributive lattice L, the annihilator of a is
defined as the set (a)∗ = { x ∈ L | x ∧ a = 0 }. An element a of a
lattice L is called a dense element if (a)∗ = {0}. The set D of all dense
elements of a lattice L forms a filter of L.

Definition 1.4. [9] A filter F of a lattice L is called a D-filter if D ⊆ F .

The set D of all dense elements of a distributive lattice is the smallest
D-filter of the lattice. For any subset A of a lattice L, define

A◦ = {x ∈ L | a ∨ x ∈ D for all a ∈ A}.

Clearly L◦ = D and D◦ = L. It can also be observed that D ⊆ A◦ for
any subset A of a lattice L. For any a ∈ L, we simply represent ({a})◦
by (a)◦. Then it is obvious that (1)◦ = L. For any subset A of L, A◦

is a D-filter of L.

Lemma 1.5. [8] For any subsets A,B of a distributive lattice L,
(1) A ⊆ B implies B◦ ⊆ A◦,
(2) A ⊆ A◦◦,
(3) A◦◦◦ = A◦,
(4) A◦ = L ⇔ A ⊆ D.

Proposition 1.6. [8] For any filters F,G,H of a distributive lattice L,
(1) F ◦ ∩ F ◦◦ = D,
(2) F ∩G ⊆ D implies F ⊆ G◦,
(3) (F ∨G)◦ = F ◦ ∩G◦,
(4) (F ∩G)◦◦ = F ◦◦ ∩G◦◦.

It is clear that ([x))◦ = (x)◦. Then clearly (0)◦ = D. The following
corollary is a direct consequence of the above results.

Corollary 1.7. [8] Let L be a distributive lattice. For any a, b, c ∈ L,
(1) a ≤ b implies (a)◦ ⊆ (b)◦,
(2) (a ∧ b)◦ = (a)◦ ∩ (b)◦,
(3) (a ∨ b)◦◦ = (a)◦◦ ∩ (b)◦◦,
(4) (a)◦ = L if and only if a is dense.
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Proposition 1.8. [8] For any D-filter F of a distributive lattice L,
(1) F ∩ F ◦ = D

(2) F ◦ =
∩
{P | P is a prime D-filter such that F ⊈ P}

(3) For any ideal I of L such that F ∩ I = ∅, there exists a prime
D-filter P of L such that F ⊆ P and P ∩ I = ∅.

Let F be a D-filter and x /∈ F . Then there exists a prime D-filter P
such that F ⊆ P and x /∈ P . A prime D-filter P of a lattice L is called
minimal if there exists no prime D-filter Q such that Q ⊂ P .

Theorem 1.9. [8] A prime D-filter P of a lattice L is minimal if and
only if to each x ∈ P , there exists y /∈ P such that x ∨ y ∈ D.

Throughout this article, all lattices are bounded distributive lattices
unless otherwise mentioned.

2. Regular filters of lattices

In this section, the concept of regular filters is introduced in lattices.
Some properties of D-filters are observed. A set of equivalent conditions
is derived for a D-filter of a lattice to become a regular filter.

Definition 2.1. A filter F of a lattice L is called regular if F = F ◦◦.

Obviously, A◦ is a regular filter for each subset A of a lattice L. It
is also clear that D and L are both regular filters. Since D ⊆ F ◦◦ = F
for any filter F , it is obvious that every regular filter is a D-filter.
Moreover, for any E ⊆ D, it is clear that L = D◦ ⊆ E◦. Hence
E◦◦ = L◦ = D. Therefore D is the smallest regular filter in the lattice
L. Let RF(L) be the set of all regular filters of L.

Theorem 2.2. For any lattice L, the class RF(L) of all regular filters
of L forms a complete Boolean algebra.

Proof. Clearly (RF(L),⊆) is a partially ordered set, where ⊆ is the
set-inclusion. Let F,G ∈ RF(L). Then clearly F ◦◦ ∩G◦◦ = (F ∩G)◦◦

is the infimum of both F and G in RF(L). Again, define the binary
operation ⊔ on RF(L) as follows:

F ⊔G = (F ◦ ∩G◦)◦

It can be easily observed that (F ◦ ∩ G◦)◦ is the supremum for F and
G in RF(L). Clearly D and L are the least and greatest elements in
RF(L). Hence (RF(L),∩,⊔, D, L) is a bounded distributive lattice.
Now, for any F ∈ RF(L), F ∩ F ◦ = F ◦◦ ∩ F ◦ = D and

F ⊔ F ◦ = (F ◦ ∩ F ◦◦)◦ = D◦ = L.
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Hence F ◦ is the unique complement of F in RF(L). Therefore
(RF(L),∩,⊔, D, L,◦ ) is a complete Boolean algebra. □

For any x ∈ L, (x)◦ is a regular filter and hence for any two (x)◦ and
(y)◦ their supremum in RF(L) is

(x)◦ ⊔ (y)◦ = ((x)◦◦ ∩ (y)◦◦)◦ = (x ∨ y)◦◦◦ = (x ∨ y)◦

Also their infimum in RF(L) is (x)◦ ∩ (y)◦ = (x ∧ y)◦. We are thus
lead to the following result, which is a direct consequence of the above
observation.

Theorem 2.3. Let L be a lattice. Then the class RF◦(L) of all
regular filters of the form (x)◦, x ∈ L is a lattice ⟨RF◦(L),∩,⊔⟩ and
sublattice of the distributive lattice ⟨RF(L),∩,⊔⟩ of all regular filters of
L. Moreover, RF◦(L) has the greatest element L = (d)◦ for arbitrary
d ∈ D while RF◦(L) has the smallest element (0)◦ = D.

Theorem 2.4. Let F be a D-filter of a lattice L. Then F ∨ F ◦ = L if
and only if F is regular and F ◦ ∨ F ◦◦ = L.

Proof. Assume that F ∨ F ◦ = L for any D-filter F of L. Then
F ◦◦ = F ◦◦ ∩ L

= F ◦◦ ∩ (F ∨ F ◦)

= (F ◦◦ ∩ F ) ∨ (F ◦◦ ∩ F ◦)

= F ∨D

= F.

Hence F is regular. Also F ◦ ∨ F ◦◦ = F ◦ ∨ F = L. The converse is
clear. □

In the following result, a set of equivalent conditions is derived for a
prime D-filter of a lattice to become a minimal prime D-filter.

Theorem 2.5. The following assertions are equivalent in a lattice L:
(1) every prime D-filter is minimal;
(2) for each x ∈ L, [x) ∨ (x)◦ = L;
(3) for each x ∈ L, [x) = (x)◦◦ and (x)◦ ∨ (x)◦◦ = L.

Proof. (1) ⇒ (2) : Assume condition (1). Let x ∈ L. Suppose
[x) ∨ (x)◦ ̸= L. Then there exists a prime filter P such that

[x) ∨ (x)◦ ⊆ P.

Since (x)◦ is a D-filter, we get that P is a D-filter. Hence by the
hypothesis, P is minimal. Since (x)◦ ⊆ P , by Theorem 1.8(2), we get
that x /∈ P , which is a contradiction. Therefore [x) ∨ (x)◦ = L.
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(2) ⇒ (3) : From Theorem 2.4, it is clear.
(3) ⇒ (1) : Assume the condition (3). Let P be a prime D-filter.

Suppose there exists a prime D-filter Q such that Q ⊂ P . Then, choose
x ∈ P − Q. Since x /∈ Q, we get that (x)◦ ⊆ Q. Since x ∈ P , by the
assumed condition we get

L = (x)◦◦ ∨ (x)◦ = [x) ∨ (x)◦ ⊆ P ∨Q = P

which is a contradiction. Thus P is a minimal prime D-filter of L. □

A filter F of a lattice L is called condensed if F ◦ = D. Then clearly
the set of all condensed filters of a lattice L forms a sublattice to the
lattice of all filters of L. It can be easily seen that a proper condensed
filter will never be a regular filter. It can also be observed that every
regular filter is a D-filter. The converse of this is not true in general.
i.e. not every D-filter of a lattice has to be a regular filter. However, in
the following theorem, some equivalent conditions are derived for every
D-filter of a lattice to become a regular filter.

Theorem 2.6. Let L be a lattice in which every proper filter is non-
condensed. Then the following assertions are equivalent:
(1) every D-filter is a regular filter;
(2) every prime D-filter is a regular filter;
(3) every prime D-filter is minimal;
(4) every prime D-filter is maximal.

Proof. (1) ⇒ (2): It is obvious.
(2) ⇒ (3): Assume that every prime D-filter is a regular filter. Let

P be a prime D-filter of L. Then P ◦◦ = P . Suppose P is not a
minimal prime D-filter. Then there exists a prime D-filter Q such that
Q ⊂ P . Choose x ∈ P − Q. Let a ∈ P ◦. Since x ∈ P , we get that
a ∨ x ∈ D ⊆ Q. Since Q is prime and x /∈ Q, it yield that a ∈ Q ⊂ P .
Hence P ◦ ⊆ P ⊆ P ◦◦. Thus P ◦ = P ◦ ∩ P ◦◦ = D. Hence P = P ◦◦ = L,
which is a contradiction. Therefore P is a minimal prime D-filter of L.
(3) ⇒ (4): Since every maximal D-filter is prime, this is clear.
(4) ⇒ (1): Assume that every prime D-filter is maximal. Let F

be a non-dense filter. Clearly F ⊆ F ◦◦. Let x ∈ F ◦◦. Then we get
F ◦ ⊆ (x)◦. Suppose x /∈ F . Then there exists a prime D-filter P such
that F ⊆ P and x /∈ P . By the condition (4), P is maximal. Since
x /∈ P , we get P ∨ [x) = L. Hence P ◦ ∩ (x)◦ = (P ∨ [x))◦ = L◦ = D.
Thus P ◦ = P ◦ ∩ F ◦ = D, which is a contradiction. Hence x ∈ F and
thus F ◦◦ ⊆ F . Therefore F is a regular filter of L. □
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For any filter F of a bounded lattice L, denote the set of all
homomorphisms defined on F by HomL(F ). It can be easily observed
that HomL(F ) is a distributive lattice with respect to the point-wise
operations. Then the following proposition can be routinely verified.
Proposition 2.7. Let F be a filter of a lattice L. For any r ∈ L,
consider ϕr : F −→ F by ϕr(x) = x ∨ r for all x ∈ F . Then we have
the following properties hold:
(1) ϕr is a homomorphism,
(2) ϕr∧s = ϕr ∧ ϕs for r, s ∈ L,
(3) ϕr∨s = ϕr ∨ ϕs for r, s ∈ L.
Let F be a D-filter of a bounded lattice L. A homomorphism

υ : F → F is called dense-valued if υ(x) is dense for all x ∈ F . Now,
consider the set of all υ ∈ HomL(F ) such that υ is a dense-valued
homomorphism denoted by D(F ). It is clear that the unit element of
HomL(F ) is in D(F ). In fact, the map 1 : F → F given by 1(x) = x
for all x ∈ F , is a dense-valued homomorphism. Hence 1 ∈ D(F ).
Moreover, it can be easily observed that D(F ) is a filter of HomL(F ).
Also, Φd ∈ D(F ) for all d ∈ D.
Definition 2.8. Let F be a D-filter of a lattice L and

f : L −→ HomL(F )

a homomorphism. Then define the dense-kernel KerD(f) of the
homomorphism f as KerD(f) = {x ∈ L | f(x) ∈ D(F )}. Also, define
a map ΦF : L → HomL(F ) given by ΦF (r) = Φr for all r ∈ L.
Lemma 2.9. Let F be a D-filter of a lattice L and f : L −→ HomL(F )
a homomorphism. Then KerD(f) is a filter in L.
Theorem 2.10. For any D-filter F of a bounded lattice L, we have

KerD(ΦF ) = F ◦

So, F ◦ can be considered as the dense-kernel of a homomorphism.
Proof. Assume that r ∈ KerD(ΦF ). Then Φr ∈ D(F ), hence
x ∨ r = Φr(x) is dense for all x ∈ F . Hence r ∈ F ◦. Conversely,
let r ∈ F ◦. Then x ∨ r ∈ D for all x ∈ F . Thus Φr is dense for all
x ∈ F . Thus ΦF (r) = Φr ∈ D(F ). Hence r ∈ KerD(ΦF ). □
Theorem 2.11. If every D-filter of a lattice L is a regular filter, then
any two prime D-filters are incomparable.
Proof. Assume that every D-filter is a regular filter. Suppose that
there exists two distinct prime D-filters P,Q such that P ⊂ Q. Choose
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q ∈ Q − P . For any x ∈ Q◦, we have x ∨ q ∈ D ⊆ P . Hence
x ∈ P because of P is prime and q /∈ P . Thus Q◦ ⊆ P ⊆ Q. Hence
Q◦ = Q ∩ Q◦ = D. Since every D-filter is regular, Q is regular. So
Q = Q◦◦ = D◦ = L, which is a contradiction. Hence any two prime
D-filters are incomparable. □

In the following theorem, a sufficient condition is derived, in terms
of regular filters, for a lattice to become relatively complemented.

Theorem 2.12. Let L be a lattice in which every principal filter is
a D-filter. If every D-filter is a regular filter, then L is relatively
complemented.
Proof. Let L be a lattice in which every principal filter is a D-filter.
Assume that every D-filter of L is a regular filter. Suppose L is not
relatively complemented. Then there exists three elements a, b, c ∈ L
such that b < c < a and c has no complement in the interval [b, a].
Consider the set I = {x ∈ L | c ∧ x ≤ b}. It is easy to check that I
is an ideal in L. Now consider the ideal E = I ∨ (c]. Suppose a ∈ E.
Then, we can write a = c ∨ i for some i ∈ I. Now

a = a ∨ b

= (c ∨ i) ∨ b

= c ∨ (i ∨ b) −→ (1)

Again we get the following:
(i ∨ b) ∧ c = (i ∧ c) ∨ (b ∧ c)

= (c ∧ i) ∨ b

= b since i ∈ I −→ (2)

From(1) and (2), we get that i∨b is a relative complement of c in [b, a],
which is a contradiction. Hence a /∈ E. Therefore [a) ∩ E = ∅. Since
[a) is a D-filter, by Proposition 1.8(3), there exists a prime D-filter P
of L such that [a) ⊆ P and P ∩ E = ∅. Hence P ∩ I = ∅. Now

P ∩ E = ∅ ⇒ P ∩ {I ∨ (c]} = ∅
⇒ P ∩ I = ∅ and P ∩ (c] = ∅.

Now consider F = [c)∨P . Clearly F is a D-filter in L. Suppose b ∈ F .
Then

b ∈ [c) ∨ P ⇒ b = c ∧ p for some p ∈ P

⇒ p ∈ I.

Hence p ∈ P ∩ I, which is a contradiction. Hence b /∈ F . Therefore
F ∩ (b] = ∅. Thus, by Proposition 1.8(3), there exists a prime D-filter
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Q such that F ⊆ Q and (b] ∩ Q = ∅. Thus P ⊂ F ⊆ Q. Hence P
and Q are distinct prime D-filters such that P ⊂ Q. Therefore there
exists two prime D-filters which are comparable. Hence by the above
theorem, we conclude that L is relatively complemented. □

3. π-filters of lattices

In this section, the concept of π-filters is introduced in a lattices and
then these class of filters is characterized by using the regular filters
and congruences. Some equivalent conditions are derived for a lattice
to become a Boolean algebra.
Definition 3.1. A filter F of a lattice L is called a π-filter if x ∈ F
implies (x)◦◦ ⊆ F for all x ∈ L.

For any x ∈ D, it is clear that (x)◦ = L and hence (x)◦◦ = D.
Therefore D is a π-filter and also it is the smallest π-filter in the lattice
L. Every regular filter is a π-filter. For, consider a regular filter F . Let
x ∈ F . Then (x)◦◦ ⊆ F ◦◦ = F . Therefore F is a π-filter. However,
the converse is not true. A π-filter F satisfying the property F ◦ = D
is not a regular filter because of F ◦◦ = D◦ = L ̸= F .
Proposition 3.2. Every minimal prime D-filter is a π-filter.
Proof. Let P be a minimal prime D-filter of a lattice L. Let x ∈ P .
Since P is minimal, we get that x∨y ∈ D for some y /∈ P . Let t ∈ (x)◦◦.
Then (x)◦ ⊆ (t)◦. Hence y ∈ (t)◦. Thus t ∈ (t)◦◦ ⊆ (y)◦ ⊆ P because
of y /∈ P . Hence (x)◦◦ ⊆ P . Therefore P is a π-filter of L. □
Definition 3.3. For any filter F of a lattice L, define an extension to
F as given by F e = {x ∈ L | (a)◦ ⊆ (x)◦ for some a ∈ F}.

It can be easily observed that D ⊆ F e and De = D. Moreover, the
following result is a direct consequence from the above definition.
Lemma 3.4. For any two filters F,G of a lattice L, the following
properties hold:
(1) F ⊆ G implies F e ⊆ Ge,
(2) (F ∩G)e = F e ∩Ge,
(3) (F e)e = F e.

Proposition 3.5. For any filter F of lattice L, F e is the smallest
π-filter containing F .
Proof. Obviously D ⊆ F e. Let x, y ∈ F e. Then there exist a, b ∈ F
such that (a)◦ ⊆ (x)◦ and (b)◦ ⊆ (y)◦. Thus

(a ∧ b)◦ = (a)◦ ∩ (b)◦ ⊆ (x)◦ ∩ (y)◦ = (x ∧ y)◦.
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Hence x ∧ y ∈ F e. Now, let x ∈ F e and x ≤ y. Then
(a)◦ ⊆ (x)◦ ⊆ (y)◦

for some a ∈ F . Therefore F e is a filter of L. Clearly F ⊆ F e.
Let x ∈ F e and t ∈ (x)◦◦. Then there exists a ∈ F such that
(a)◦ ⊆ (x)◦ ⊆ (t)◦. Hence (x)◦◦ ⊆ F e and so F e is a π-filter of L.
Let G be a π-filter of L such that F ⊆ G. Let x ∈ F e. Then we get
(a)◦ ⊆ (x)◦ for some a ∈ F ⊆ G. Since G is a π-filter of L, we get that
x ∈ (x)◦◦ ⊆ (a)◦◦ ⊆ G. Hence F e ⊆ G. Therefore F e is the smallest
π-filter of L such that F ⊆ F e. □

From Lemma 3.4, it can be easily seen that a filter F is a π-filter if
and only if F = F e. Hence D is the smallest π-filter in L. In view of
the above two results, it can be easily observed that the class Fπ(L)
of all π-filters of a lattice L forms a complete distributive lattice with
respect the operations given by

F ∧G = F ∩G and F ⊔G = (F ∨G)e

for any F,G ∈ Fπ(L) in which the smallest element is D.

Theorem 3.6. Let F be any filter of a lattice L. For any x, y ∈ L,
define a binary relation Θ(F ) on L as follows:

(x, y) ∈ Θ(F ) if and only if {D ∨ [x)} ∩ (a)◦ = {D ∨ [y)} ∩ (a)◦

for some a ∈ F . Then Θ(F ) is a congruence on L.

Proof. Clearly Θ(F ) is an equivalence relation on L. Let (x, y) ∈ Θ(F ).
Then {D ∨ [x)} ∩ (a)◦ = {D ∨ [y)} ∩ (a)◦ for some a ∈ F . For any
c ∈ L, we have

{D ∨ [x ∨ c)} ∩ (a)◦ = {D ∨ [x)} ∩ {D ∨ [c)} ∩ (a)◦

= {D ∨ [y)} ∩ {D ∨ [c)} ∩ (a)◦

= {D ∨ [y ∨ c)} ∩ (a)◦

Therefore (x ∨ c, y ∨ c) ∈ Θ(F ). Again,
{D ∨ [x ∧ c)} ∩ (a)◦ = {D ∨ [x) ∨ [c)} ∩ (a)◦

= {{D ∨ [x)} ∩ (a)◦} ∨ {[c) ∩ (a)◦}
= {{D ∨ [y)} ∩ (a)◦} ∨ {[c) ∩ (a)◦}
= {D ∨ [y ∧ c)} ∩ (a)◦

Hence (x∧ c, y∧ c) ∈ Θ(F ). Therefore Θ(F ) is a congruence on L. □
Lemma 3.7. For any element x of a lattice L, the following hold:
(1) {D ∨ [x)}◦◦ = (x)◦◦,
(2) {D ∨ [x)} ∩ (x)◦ = D.
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Proof. (1) {D ∨ [x)}◦◦ = {D◦ ∩ (x)◦}◦ = {L ∩ (x)◦}◦ = (x)◦◦.
(2)

{D ∨ [x)} ∩ (x)◦ = {D ∨ [x)} ∩ {L ∩ (x)◦}
= {D ∨ [x)} ∩ {D◦ ∩ (x)◦}
= {D ∨ [x)} ∩ (D ∨ [x))◦

= D

as D ∨ [x) is a D-filter (by Proposition 2.9). □

Proposition 3.8. For any filter F of a lattice L, define the dense-
kernel KerDΘ(F ) of the congruence Θ(F ) as follows:

KerDΘ(F ) = {x ∈ L | {D ∨ [x)} ∩ (a)◦ = D for some a ∈ F}
Then KerDΘ(F ) is a filter in L such that F ⊆ KerDΘ(F ).

Proof. Clearly D ⊆ KerDΘ(F ). Let x, y ∈ KerDΘ(F ). Then
{D ∨ [x)} ∩ (a)◦ = {D ∨ [y)} ∩ (b)◦ = D

for some a, b ∈ F . Now
{D ∨ [x ∧ y)} ∩ (a ∧ b)◦ = {D ∨ [x) ∨D ∨ [y)} ∩ (a)◦ ∩ (b)◦

= {(D ∨ [x)) ∩ (a)◦ ∩ (b)◦}
∨{(D ∨ [y)) ∩ (a)◦ ∩ (b)◦}

= {D ∩ (b)◦} ∨ {D ∩ (a)◦}
= D

Hence x∧y ∈ KerDΘ(F ). Again, let x ∈ KerDΘ(F ) and x ≤ y. Then
there exists a ∈ F such that {D ∨ [y)} ∩ (a)◦ ⊆ {D ∨ [x)} ∩ (a)◦ = D.
Hence y ∈ KerDΘ(F ). Therefore KerDΘ(F ) is a filter of L. Now,
let x ∈ F . From Lemma 3.7, we get that x ∈ KerDΘ(F ). Therefore
F ⊆ KerDΘ(F ). □

In the following, the π-filters are characterized.

Theorem 3.9. For any filter F of a lattice L, the following are
equivalent:
(1) F is a π-filter,
(2) F = KerDΘ(F ),
(3) for x, y ∈ L, (x)◦ = (y)◦ and x ∈ F imply that y ∈ F ,
(4) x ∈ F if and only if x ∈ (a)◦◦ for some a ∈ F .

Proof. (1) ⇒ (2): Assume that F is a π-filter. Clearly F ⊆ KerDΘ(F ).
Let x ∈ KerDΘ(F ). Then {D ∨ [x)} ∩ (a)◦ = D for some a ∈ F .
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Hence, x ∈ D ∨ [x) ⊆ (a)◦◦ ⊆ F ( because of F is a π-filter ). Hence
KerDΘ(F ) ⊆ F . Therefore F = KerDΘ(F ).

(2) ⇒ (3): Assume condition (2). Let a, b ∈ L such that (a)◦ = (b)◦.
Suppose a ∈ F . Then {D ∨ [a)} ∩ (t)◦ = D for some t ∈ F . Then

{D ∨ [a)} ∩ (t)◦ = D ⇒ {D ∨ [a)}◦◦ ∩ (t)◦ = D◦◦ = D

⇒ (a)◦◦ ∩ (t)◦ = D

⇒ (b)◦◦ ∩ (t)◦ = D

⇒ {D ∨ [b)} ∩ (t)◦ ⊆ {D ∨ [b)}◦◦ ∩ (t)◦ = D

⇒ b ∈ KerDΘ(F ) = F

(3) ⇒ (4): Assume condition (3). Let x ∈ F . Then clearly x ∈ (x)◦◦.
Again, let x ∈ (a)◦◦ for some a ∈ F . Hence (x)◦◦ ⊆ (a)◦◦, which yields
(x)◦◦ = (x)◦◦ ∩ (a)◦◦ = (x ∨ a)◦◦. Thus (x)◦ = (x ∨ a)◦ and x ∨ a ∈ F .
By the condition (3), we get that x ∈ F .
(4) ⇒ (1): Assume condition (4). Let x ∈ F . Hence x ∈ (a)◦◦

for some a ∈ F . Let t ∈ (x)◦◦. Then for this a ∈ F , we get that
t ∈ (x)◦◦ ⊆ (a)◦◦. Hence by condition (4), we get t ∈ F . Thus
(x)◦◦ ⊆ F . Therefore F is a π-filter of L. □

It was already observed that every minimal prime D-filter is a prime
π-filter. The converse is not true. However, a sufficient condition is
derived for a prime π-filter to become a minimal prime D-filter.

Proposition 3.10. Let L be a lattice. If each (x)◦, x ∈ L is a principal
filter, then every prime π-filter is a minimal prime D-filter.

Proof. Let P be a prime π-filter of L. Let x ∈ P . By the hypothesis
(x)◦ = [y) for some y ∈ L. Hence x ∨ y ∈ D. Now

(x ∧ y)◦ = (x)◦ ∩ (y)◦ = (x)◦ ∩ (x)◦◦ = D.

Hence x ∧ y /∈ P , which implies that y /∈ P . Therefore P is a minimal
prime D-filter, by Theorem 2.12. □

Theorem 3.11. The following conditions are equivalent in a lattice L.
(1) every π-filter is a principal filter;
(2) each (x)◦ is a principal filter and every minimal prime D-filter is

non-condensed;
(3) every prime π-filter is a principal filter.

Proof. (1) ⇒ (2): Since each (x)◦ is a π-filter, it is enough to prove that
every minimal prime D-filter is non-condensed. Let P be a minimal
prime D-filter. By Proposition 3.2, P is a π-filter and hence (1) implies
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that P = [a) for some a ∈ L. Suppose P ◦ = D. Then (a)◦ = D and
hence L = (a)◦◦ ⊆ P , which is a contradiction. Therefore P ◦ ̸= D.
(2) ⇒ (3): Assume condition (2). Let P be a prime π-filter of L.

Since each (x)◦ is a principal filter, by the above proposition, we get
that P is a minimal prime D-filter such that P ◦ ̸= D. Then there
exists x ̸= D such that x ∈ P ◦. Hence P ⊆ P ◦◦ ⊆ (x)◦. Conversely, let
t ∈ (x)◦. Then t ∨ x ∈ D ⊆ P . Since P is prime and x /∈ (x)◦ = P , we
get t ∈ P . Hence P = (x)◦. Thus by (2), P = (x)◦ is a principal filter.

(3) ⇒ (1): Assume condition (3). Let F be a π-filter of L. Suppose
that F is not principal. Consider the collection

Σ = {G | G is a π-filter which is not a principal filter }.

Clearly F ∈ Σ. Then a ∈ Gi for some i ∈ ∆. Hence [a) ⊆ Gi for
some i ∈ ∆. On the other hand Gi ⊆

∪
Gi = [a). Hence Gi = [a) for

some i ∈ ∆, which is a contradiction. Thus
∪

Gi is an upper bound for
{Gi}i∈∆ in Σ. Let M be a maximal element of Σ containing F because
of Zorn’s Lemma. Choose x /∈ M and y /∈ M . Then M ⊂ {M ∨ [x)}e
and M ⊂ {M ∨ [y)}e. Hence {M ∨ [x)}e = [b) and {M ∨ [y)}e = [c) for
some b, c ∈ L. Hence we get

{M ∨ [x ∨ y)}e = {M ∨ [x)}e ∩ {M ∨ [y)}e = [b) ∩ [c) = [b ∨ c).

If x ∨ y ∈ M , then M = M e = [b ∨ c), which is a contradiction to (3).
Therefore F is a principal filter. □

4. The space of prime π-filters

In this section, certain topological properties of the collection of all
prime π-filters of a lattice are discussed. Some equivalent conditions
are established for the space of all prime π-filters of a lattice to become
a Hausdorff space.

Theorem 4.1. Let I be an ideal and F be a π-filter of a lattice L such
that F ∩ I = ∅. Then there exists a prime π-filter P such that F ⊆ P
and P ∩ I = ∅.

Proof. Let I be an ideal and P be a π-filter of L such that F ∩ I = ∅.
Consider ∑

= {G | G is a π-filter, F ⊆ G and G ∩ I = ∅}.

Clearly F ∈
∑

. Clearly
∑

satisfies the hypothesis of Zorn’s Lemma.
Let M be a maximal element of

∑
. Then M is a π-filter of L such that

F ⊆ M and M ∩ I = ∅. Let x, y ∈ L be such that x /∈ M and y /∈ M .
Then M ⊂ M ∨ [x) ⊆ {M ∨ [x)}e and M ⊂ M ∨ [y) ⊆ {M ∨ [y)}e. By
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the maximality of M , we get {M ∨ [x)}e∩I ̸= ∅ and {M ∨ [y)}e∩I ̸= ∅.
Choose a ∈ {M ∨ [x)}e ∩ I and b ∈ {M ∨ [y)}e ∩ I. Then a∨ b ∈ I and

a ∨ b ∈ {M ∨ [x)}e ∩ {M ∨ [y)}e

= {(M ∨ [x)) ∩ (M ∨ [y))}e

= {M ∨ [x ∨ y)}e

Suppose x ∨ y ∈ M . Then a ∨ b ∈ M e = M . Since a ∨ b ∈ I, we get
a∨ b ∈ M ∩ I, which is a contradiction. Thus M is the required prime
π-filter of L. □
Corollary 4.2. Let F be a π-filter of a lattice L and x ∈ L. If x /∈ F ,
then there exists a prime π-filter P of L such that x /∈ P and F ⊆ P .
Corollary 4.3. For any π-filter F of a lattice L, we have

F =
∩
{P | P is a prime π-filter of L, F ⊆ P}

Corollary 4.4. The intersection of all prime π-filters of a lattice is
equal to D.

For any lattice L, denote the class of all prime π-filters of L by
SpecπF (L). For any subset A of L, take

K ′(A) = {P ∈ SpecπF (L) | A ⊈ P}
and for any x ∈ L,K ′(x) = K ′({x}). Then we have the following
observations which can be verified directly.
Lemma 4.5. Let L be a lattice and x, y ∈ L. Then we have
(1)

∪
x∈L

K ′(x) = SpecπF (L),

(2) K ′(x) ∩K ′(y) = K ′(x ∨ y),
(3) K ′(x) ∪K ′(y) = K ′(x ∧ y),
(4) K ′(x) = ∅ if and only if x ∈ D

(5) K ′(0) = SpecπF (L).
From the above set of properties, it can be obviously seen that the

collection {K ′(x)|x ∈ L} forms a base for a topology on SpecπF (L). This
topology is called a hull-kernel topology and it produces the following
topological property:
Theorem 4.6. The set of all compact open sets of SpecπF (L) is the
base {K ′(x)|x ∈ L}.
Proof. Let x ∈ L. Let A be a subset of L such that

K ′(x) ⊆
∪
y∈A

K ′(y)
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which is an open cover of K ′(x). Let F be the filter generated by A.
Suppose x /∈ F e. From Corollary 4.2, there exist a prime π-filter P such
that F e ⊆ P and x /∈ P . Hence P ∈ K ′(x) ⊆

∪
y∈A

K ′(y). Therefore

y /∈ P for some y ∈ A, which is a contradiction to that F ⊆ F e ⊆ P .
Therefore x ∈ F e. Then there exists a ∈ F such that x ∈ (a)◦◦. Since
F is the filter generated by A, there exist a1, a2, . . . , an ∈ A such that
a = a1 ∧ a2 ∧ . . . ∧ an. Hence x ∈ (a)◦◦ = (a1 ∧ a2 ∧ . . . ∧ an)

◦◦.
Clearly K ′(x) ⊆

n∪
i=1

K ′(ai), which is a finite subcover of K ′(x). Thus

K ′(x) is compact in SpecπF (L). It enough to prove that every compact
open subset of SpecπF (L) is of the form K ′(x) for some x ∈ L. Let
C be a compact open subset of SpecπF (L). Since C is open, we get
C =

∪
a∈A

K ′(a) for some A ⊆ L. Since C is compact, there exists

a1, a2, . . . , an ∈ A such that

C =
n∪

i=1

K ′(ai) = K ′(
n∧

i=1

ai)

Therefore C = K ′(x) for some x ∈ L. □
By a maximal π-filter, we mean a maximal element in the class of

all proper π-filters of a lattice. As the class of all π-filters forms a
distributive lattice, it can be easily deduced that every maximal π-filter
is a prime π-filter. Now, in the following, a set of equivalent conditions
is derived for every prime π-filter to become a minimal prime D-filter.

Theorem 4.7. The following assertions are equivalent in a lattice L:
(1) every prime π-filter is a minimal prime D-filter;
(2) SpecπF (L) is a T1-space;
(3) every prime π-filter is maximal;
(4) every prime π-filter is minimal;
(5) for each x ∈ L, (x)◦ ⊔ (x)◦◦ = L;
(6) SpecπF (L) is a Hausdorff space;
(7) for any x, y ∈ L, there exists z ∈ L such that x ∨ z ∈ D and

K ′(y) ∩ {SpecπF (L)−K ′(x)} = K ′(y ∨ z).

Proof. (1) ⇒ (2): Assume that every prime π-filter is a minimal prime
D-filter. Let P and Q be two distinct prime π-filters of L. Since P and
Q are minimal, we get P ⊈ Q and Q ⊈ P . Let us choose x ∈ P − Q
and y ∈ Q − P . Then Q ∈ K ′(x) − K ′(y) and P ∈ K ′(y) − K ′(x).
Hence SpecπF (L) is a T1-space.
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(2) ⇒ (3): Suppose that SpecπF (L) is a T1-space. Let P be a prime
π-filter of L. Suppose Q is a maximal π-filter of L such that P ⊂ Q.
Since SpecπF (L) is a T1-space, there exists two basic open sets K ′(x)
and K ′(y) such that Q ∈ K ′(x)−K ′(y) and P ∈ K ′(y)−K ′(x). Since
x ∈ P ⊂ Q, we get Q /∈ K ′(x), which is a contradiction. Therefore P
is a maximal π-filter.

(3) ⇒ (4): It is clear.
(4) ⇒ (5): Assume that every prime π-filter is minimal. Then every

prime π-filter is a minimal prime D-filter. Suppose

(x)◦ ⊔ (x)◦◦ ̸= L

for some x ∈ L. Then there exists a prime π-filter P such that
(x)◦ ⊔ (x)◦◦ ⊆ P . Thus x ∈ (x)◦◦ ⊆ P . Since P is minimal prime
D-filter and (x)◦ ⊆ P , we get x /∈ P , which is a contradiction.
Therefore (x)◦ ⊔ (x)◦◦ = L.
(5) ⇒ (6): Assume condition (5). Let P and Q be two distinct

elements of SpecπF (L). Choose x ∈ P be such that x /∈ Q. Then by
hypothesis, (x)◦ ⊔ (x)◦◦ = L. Hence 0 ∈ (x)◦ ⊔ (x)◦◦ = {(x)◦ ∨ (x)◦◦}e.
Hence (a)◦ ⊆ (0)◦ = D for some a ∈ (x)◦∨(x)◦◦. Thus a = r∧s for some
r ∈ (x)◦ and s ∈ (x)◦◦. Hence r ∨ x ∈ D. Suppose r ∈ P . Since P is a
π-filter, we get (r)◦◦ ⊆ P . Now (r)◦∩(s)◦ = (r∧s)◦ = (a)◦ = D implies
that (s)◦ ⊆ (r)◦◦ ⊆ P . Again, s ∈ (x)◦◦ implies that (x)◦ ⊆ (s)◦ ⊆ P .
Since x ∈ P , we get L = (x)◦ ⊔ (x)◦◦ ⊆ P which is a contradiction.
Hence r /∈ P . Thus P ∈ K ′(r). Hence P ∈ K ′(r) and Q ∈ K ′(x).
Since x ∨ r ∈ D, we get K ′(x) ∩ K ′(r) = K ′(x ∨ r) = ∅. Therefore
SpecπF (L) is Hausdorff.
(6) ⇒ (7): Assume that SpecπF (L) is a Hausdorff space. Hence

K ′(a) is a compact subset of SpecπF (L), for each a ∈ L. Then K ′(a) is
a clopen subset of SpecπF (L). Let x, y ∈ L be such that x ̸= y. Then
K ′(y)∩ {SpecπF (L)−K ′(x)} is a compact subset of the compact space
K ′(y). Since K ′(y) is open in SpecπF (L), K ′(y) ∩ {SpecπF (L) −K ′(x)}
is a compact open subset of SpecπF (L). By Theorem 4.6, there exists
z ∈ L such that

K ′(z) = K ′(y) ∩ {SpecπF (L)−K ′(x)}

Therefore K ′(y) ∩ {SpecπF (L) −K ′(x)} = K ′(y) ∩K ′(z) = K ′(y ∨ z).
Also K ′(x ∨ z) = K ′(x) ∩K ′(z) = ∅. Therefore x ∨ z ∈ D.
(7) ⇒ (1): Let P be a prime π-filter of L. Choose x, y ∈ L such that

x ∈ P and y /∈ P . Then by the condition (7), there exists z ∈ L such
that x ∨ z ∈ D and

K ′(y) ∩ {SpecπF (L)−K ′(x)} = K ′(y ∨ z)
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Then clearly P ∈ K ′(y) ∩ {SpecπF (L)−K ′(x)} = K ′(y ∨ z). If z ∈ P ,
then y ∨ z ∈ P , which is a contradiction to P ∈ K ′(y ∨ z). Hence
z /∈ P . Thus for each x ∈ P , there exists z /∈ P such that x ∨ z ∈ D.
Therefore P is a minimal prime D-filter of L. □
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توزیع پذیر مشبکه های منظم فیلترهای

کومار٢ فنندرا پی. ای. و سامباسیوارائو١ موکامالا

هند آندراپرادش، ویزیاناگارام، ،MVGR کالجمهندسی ریاضی، ١,٢گروه

شرایط از مجموعه ای می شوند. معرفی توزیع پذیر مشبکه های در π-فیلترها و منظم فیلترهای مفاهیم
داده ایم نشان می شود. تبدیل منظم فیلتر یک به آن  ها، تحت که است شده ارائه D-فیلتر یک برای معادل
π-فیلترها است. منظم فیلتر یک آن، چگال هسته ی که دارد وجود همریختی ای D-فیلتر، هر برای که
اول فیلترهای همه ی فضای یرای معادلی شرایط می شوند. رده بندی تجانس ها و منظم فیلترهای برحسب

می   شود. تبدیل هاسدورف فضای یک به آن ها، تحت که است شده ارائه

شده، کامل نسبتاً مشبکه چگال، عنصر π-فیلتر، مینیمال، اول D-فیلتر منظم، فیلتر کلیدی: کلمات
هاسدورف. فضای
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