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ADMISSIBLE (REES) EXACT SEQUENCES AND FLAT
ACTS

E. NAFARIEH TALKHOONCHEH, M. SALIMI∗, H. RASOULI, E. TAVASOLI
AND A. TEHRANIAN

Abstract. Let S be a commutative pointed monoid. In this
paper, some properties of admissible (Rees) short exact sequences
of S-acts are investigated. In particular, it is shown that every
admissible short exact sequence of S-acts is Rees short exact. In
addition, a characterization of flat acts via preserving admissible
short exact sequences is established. As a consequence, we show
that for a flat S-act F , the functor F ⊗S − preserves admissible
morphisms. Finally, it is proved that the class of flat S-acts is a
subclass of admissibly projective ones.

1. Introduction

Throughout this paper, the term monoid will always mean a
commutative, pointed monoid. For a monoid S, the notion of an S-
act is defined and well-studied in literature. An S-act is a pointed
set together with an action by S. We show the category of S-acts by
S-Act0. In S-Act0, epimorphisms are not cokernels, and the “First
Isomorphism Theorem” is not true in general. So, in [2] and [3], the
authors considered admissible morphisms. In this paper, we recall the
notion of admissible short exact sequence of S-acts and we investigate
some properties of these sequences. The notion of Rees short exact
sequence of S-acts is introduced in [1]. Also, the problem of when a
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Rees short exact sequence of S-acts is left and right split is devoted
in [1]. In this paper, we study some properties of Rees short exact
sequences, and we show that every admissible short exact sequence of
S-acts is Rees exact, and every Rees short exact sequence is
exact. Also, in Example 3.13, we present an exact sequence which is not
admissible (Rees) exact.

For an S-act X, the functor X ⊗S − does not preserve admissible
morphisms. In Section 4, we characterize flat acts via preserving
admissible short exact sequences. Also, we show that for a flat S-
act F , the functor F ⊗S − from S-Act0 to S-Act0, preserves admissible
morphisms. The notion of admissibly projective S-acts was defined
in [3] as a generalization of projective S-acts. Note that any torsion
free S-act is admissibly projective, by [3, Proposition 3.3.10]. Also,
every projective S-act is admissibly projective, but not vice versa, see
[3, Example 3.3.9]. Finally, we show that the class of flat S-acts is a
subclass of admissibly projective S-acts.

2. Preliminaries

In this section, we recall some necessary definitions and properties
which will be used in the next sections. We follow standard nota-
tion and terminology from [7, 3]. Let S be a commutative pointed
monoid and let X be a pointed set, i.e., X has a distinguished basepoint
denoted 0X . A left S-act is a pointed set together with a left S-action
· : S ×X → X satisfying:

(i) 1 · x = x, for every x ∈ X.
(ii) 0S · x = 0X and s · 0X = 0X , for every x ∈ X and s ∈ S.
(iii) (st) · x = s · (t · x), for every s, t ∈ S and x ∈ X.

One may define a right S-act in the obvious way. If T is another
commutative pointed monoid, a two-sided (S, T )-act is a pointed set
X that is both a left S-act and a right T -act with actions satisfying
(sx)t = s(xt), for all x ∈ X, s ∈ S and t ∈ T . When S = T , hence X
has both a left and right S-action, X is an (non-commutative) S-biact.
The action of an S-biact commutes when sx = xs, for all s ∈ S and
x ∈ X; then S-biacts with a commutative S-action are commutative.
Throughout this paper, an S-act is a commutative S-biact and these
objects are our primary concern.

For S-acts X and Y , a function f : X → Y is called S-act morphism,
or simply homomorphism, when f(0X) = 0Y and f(sx) = sf(x), for
every s ∈ S and x ∈ X. The category of S-acts together with their
S-act morphisms will be denoted by S-Act0. The image of an S-act
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morphism f : X → Y is the subset
Im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}

together with the induced S-action. Since 0 = f(0) and
sy = sf(x) = f(sx)

for y = f(x), this is indeed an S-subact of Y. Recall that a subset
U ̸= ∅ of an S-act X is said to be a set of generating elements or a
generating set of X if every element x ∈ X can be presented as x = us
for some u ∈ U , s ∈ S. A set U of generating elements of S-act X is
said to be a basis of X if for every element x ∈ X there exist a unique
u ∈ U and s ∈ S such that x = us, i.e., if x = u1s1 = u2s2, then
u1 = u2 and s1 = s2. An S-act X is called free, when X has a basis.
An S-act P is called projective, when it satisfies the following universal
lifting property, for any epimorphism f : X → Y :

P

X Y

∃φ g

f

Meaning that, given any epimorphism f : X → Y of S-acts and any
homomorphism g : P → Y of S-acts, there exists φ : P → X such that
g = f ◦ φ. Also, recall that an S-act F is flat if the functor F ⊗S −
from S-Act0 to S-Act0, preserves monomorphisms. Note that every
free S-act is projective by [7, Proposition 2.3.4] and every projective
S-act is flat by [7, Proposition 3.17.5] and [7, Lemma 3.9.2].
Proposition 2.1. Let I be an ideal of the monoid S, and let F be a
flat S-act. Then α : F ⊗S I → IF , defined by f ⊗ i 7→ if , for every
f ∈ F and i ∈ I, is an isomorphism.
Proof. Let γ : F ⊗S S → F such that γ(f ⊗ s) = fs, for every f ∈ F
and s ∈ S. By [7, Proposition 2.5.13], γ is isomorphism. For the
inclusion β : I → S, the S-homomorphism 1F ⊗ β : F ⊗S I → F ⊗S S
is monomorphism, by assumption. Hence γ(1F ⊗ β) : F ⊗S I → F
is a monomorphism and its image is IF . Therefore, α = γ(1F ⊗ β) :
F ⊗S I → IF is isomorphism.

□
Let T be a multiplicatively closed subset of a monoid S. Define

T−1S to be a monoid with elements s/t, s ∈ S and t ∈ T , where
s/t = s′/t′ if there is an element u ∈ T such that u(st′) = u(s′t). The
multiplication in T−1S is induced by S, (s/t)(s′/t′) = ss′/tt′. Note
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that (1/t)(t/1) = 1, so that any element of T becomes a unit in T−1S.
The monoid T−1S is called the monoid of fractions of S with respect to
T or the localization of S at T . Let X be an S-act. Define T−1X, the
localization of X at T , to be the (T−1S)-act with elements x/t, x ∈ X
and t ∈ T , where x/t = x′/t′ when u(t′x) = u(tx′) for some u ∈ T .
The action of T−1S on T−1X is simply (s/t)(x/t′) = sx/tt′. We refer
the readers to [4] for more details about localization. Also, we recall
that an S-act X is faithful when sx = tx for all x ∈ X implies s = t.
In the following, we investigate faithfully flat property of T−1X.

Proposition 2.2. Let X be a flat S-act, and let T be a multiplicatively
closed subset of S such that T acts injectively on X. Then T−1X is
faithfully flat (T−1S)-act, provided that X is faithful.

Proof. By [5, Theorem 2.3], T−1X is a flat (T−1S)-act. Also, T−1X is
a faithful (T−1S)-act by [4, Lemma 1.3]. So, we get the result. □

3. Admissible and Rees exact sequences

The (co)kernel of an S-act morphism f : X → Y is defined as the
(co)equalizer of the diagram

X Y,∗
f

where the map ∗ is defined by ∗(x) = 0Y for all x ∈ X. One can
see that the kernel of f , denoted by Ker(f), is the subset f−1(0) of
X, and the cokernel of f , denoted by Coker(f), is the quotient of Y
by the equivalence relation defined as y ∼ y′ if and only if y = y′ or
y, y′ ∈ Im(f). We denote this quotient by Y/Im(f). This means that
the quotient Y/Z for any S-subact Z of Y exists as it is the cokernel
of the inclusion map i : Z → Y . All kernels and cokernels exist in
S-Act0 but we do not have f is injective when Ker(f) = 0 and the
First Isomorphism Theorem does not hold in general. So, we consider
admissible morphisms which are defined as follows:

Definition 3.1. [3] An S-homomorphism f : X → Y is called
admissible whenever the surjection f : X → f(X) is a cokernel. In
this case, Ker(f) = 0 implies that f is injective.

In the following, we collect some properties of admissible morphisms
from [2], and [3] which will be used in the next sections.

Proposition 3.2. The following statements hold.
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(i) Let X and Y be S-acts. Then all injections X ↪→ Y are clearly
admissible.

(ii) An S-homomorphism f : X → Y is admissible if and only if
f |X\Ker(f) is an injection.

(iii) An admissible morphism is an injection if and only if it has
trivial kernel.

(iv) Admissible morphisms have “First Isomorphism Theorem”, i.e.
if f : X → Y is an admissible S-homomorphism, then
X/Ker(f) ∼= Im(f).

(v) Let f : X → Y be an admissible S-homomorphism. Then,
there exists an admissible monomorphism g : X → P and an
admissible epimorphism h : P → Y such that f = h ◦ g.

(vi) Let f : X → Y be an admissible S-homomorphism. Then, there
exists an admissible epimorphism h : X → P and an admissible
monomorphism g : P → Y such that f = g ◦ h.

(vii) The composition of admissible S-homomorphisms is admissible.

A sequence

· · · −→ Xn+1
fn+1−→ Xn

fn−→ Xn+1 −→ · · ·

of S-homomorphisms is admissible when every morphisms in the
sequence is admissible. The sequence is exact when Im(fi+1) = Ker(fi),
for all i. An admissible short exact sequence is an admissible
exact sequence of the form

0 → X ′ → X → X ′′ → 0.

In this case, Proposition 3.2 implies that
(i) X ′ → X is an injection,
(ii) X → X ′′ is a surjection and X/X ′ ∼= X ′′.

Remark 3.3. Let X be an S-act. Since functors − ⊗S X and X ⊗S −
do not preserve monomorphisms, we should not expect any of these
functors preserve admissible morphisms.

Proposition 3.4. Consider the following commutative diagram with
admissible exact row of S-acts and S-homomorphisms:

X Y Z

W

j q

lki p
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Let k be an isomorphism with inverse l. Then X
i→ W

p→ Z is an
admissible exact sequence.

Proof. Let w ∈ Ker(p). Then qk(w) = p(w) = 0. Hence,

k(w) ∈ Ker(q) = Im(j).

So, there exists x ∈ X such that j(x) = k(w). Therefore,

i(x) = lj(x) = lk(w) = w.

Hence w ∈ Im(i) which implies that Ker(p) ⊆ Im(i). Now, suppose
that w ∈ Im(i). Then there exists x ∈ X such that i(x) = w, and
j(x) ∈ Im(j) = Ker(q). Therefore,

qk(w) = qk(i(x)) = q(ki)(x) = qj(x) = 0,

and so w ∈ Ker(p) which implies the exactness. Also, the admissible
property of i and p follows from Proposition 3.2. □

Proposition 3.5. Let X f→ Y
g→ Z

h→ W
k→ T be an admissible exact

sequence of S-acts and S-homomorphisms. Then

0 → Coker(f)
α→ Z

β→ Ker(k) → 0

is an admissible short exact sequence such that α([y]Im(f)) = g(y) and
β(z) = h(z), for every y ∈ Y and z ∈ Z.

Proof. Let [y1]Im(f) = [y2]Im(f) ∈ Coker(f). Then

y1 = y2 or y1, y2 ∈ Im(f).

If y1 = y2, then g(y1) = g(y2). Otherwise, y1, y2 ∈ Im(f) = Ker(g).
Hence, g(y1) = 0 = g(y2) and α is well-defined. Also, for every s ∈ S,
α([y]Im(f)s) = α([ys]Im(f)) = g(ys) = g(y)s = α([y]Im(f))s. So, α is an
S-homomorphism. Now, suppose that α([y1]Im(f)) = α([y2]Im(f)). Then
g(y1) = g(y2). If g(y1) = g(y2) = 0, then y1, y2 ∈ Ker(g) = Im(f),
and so [y1]Im(f) = [y2]Im(f). Otherwise, g(y1) = g(y2) ̸= 0. Since g is
admissible, we get that y1 = y2, and so [y1]Im(f) = [y2]Im(f). Therefore,
α is a monomorphism and so α is admissible by Proposition 3.2. It
is evident that β is an epimorphism. Also, it is easy to check that
Im(α) = Ker(β). For completing the proof, we must show that β is
admissible. Suppose that z1, z2 ∈ Z such that β(z1) = β(z2) ̸= 0. Then
h(z1) = h(z2) ̸= 0 which implies that z1 = z2, as desired. □
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Proposition 3.6. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

X
i //

α
��

Y
p //

β
��

Z

γ
��

0 // X ′ j // Y ′ q // Z ′

Then the sequence

Ker(α)
i→ Ker(β)

p→ Ker(γ)

is admissible exact, where i(x) = i(x) and p(y) = p(y) for every
x ∈ Ker(α) and y ∈ Ker(β).

Proof. Since
p(i(x)) = p(i(x)) = p(i(x)) = 0,

we get that Im(i) ⊆ Ker(p). Now, suppose that y ∈ Ker(p). Then
p(y) = p(y) = 0 and β(y) = 0. So, there exists x ∈ X such that
i(x) = y. Therefore, 0 = β(y) = β(i(x)), and so i(x) ∈ Ker(β). On the
other hand, j(α(x)) = β(i(x)) = 0 which implies that x ∈ Ker(α). So,
y ∈ Im(i). Therefore, Im(i) = Ker(p). Let

x1, x2 ∈ Ker(α) \Ker(i).

Then
α(x1) = α(x2) = 0, i(x1) ̸= 0

and i(x2) ̸= 0. Now, if i(x1) = i(x2), then i(x1) = i(x2) and since
i|X\Ker(i) is monomorphism, we have x1 = x2 and so, i is admissible.
Now, let y1, y2 ∈ Ker(β) \ Ker(p). Then β(y1) = β(y2) = 0, p(y1) ̸= 0
and p(y2) ̸= 0. Now, if p(y1) = p(y2), then p(y1) = p(y2) and since
i|Y \Ker(p) is a monomorphism, we have y1 = y2 and so, p is admissible.

□

Proposition 3.7. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

X
i //

α
��

Y
p //

β
��

Z // 0

X ′ j // Y ′ q // Z ′ // 0

Let β be an admissible S-homomorphism. Then there exists a unique
admissible S-homomorphism γ : Z −→ Z ′ which commutes the
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following diagram.

X
i //

α
��

Y
p //

β
��

Z //

γ
��

0

X ′ j // Y ′ q // Z ′ // 0

Proof. Let z ∈ Z. Then there exists y ∈ Y such that p(y) = z. Define
a map γ : Z → Z ′ by γ(z) = qβ(y). Let z1, z2 ∈ Z. Then there exists
y1, y2 ∈ Y such that p(y1) = z1 and p(y2) = z2. So, γ(z1) = qβ(y1) and
γ(z2) = qβ(y2). If p(y1) = p(y2) = 0, then

y1, y2 ∈ Ker(p) = Im(i).

Hence, there exists x1, x2 ∈ X such that i(x1) = y1 and i(x2) = y2.
Therefore, βi(x1) = β(y1). So, jα(x1) = β(y1). Thus

β(y1) ∈ Im(j) = Ker(q)

and then qβ(y1) = 0. So, γ(z1) = 0. By the same way, we have
γ(z2) = 0. Then γ(z1) = γ(z2). Otherwise, p(y1) = p(y2) ̸= 0. Since
p is admissible, p|

Y \Ker(p)
is a monomorphism. So, y1 = y2. Then

γ(z1) = qβ(y1) = qβ(y2) = γ(z2). This shows that γ is well-defined. It
is routine to check that γ is an S-homomorphism and γ◦p = q◦β. Now,
we prove that γ is admissible. For this, let z1, z2 ∈ Z \ Ker(γ) such
that γ(z1) = γ(z2). Hence, there exists y1, y2 ∈ Y such that p(y1) = z1
and p(y2) = z2. Also,

qβ(y1) = qβ(y2) ̸= 0,

and so β(y1), β(y2) ∈ Y ′ \Ker(q). Hence, β(y1) = β(y2) ̸= 0, since q is
admissible. Therefore, y1, y2 ∈ Y \ Ker(β). Since β is admissible, we
get that y1 = y2. Hence z1 = z2, as desired. For the uniqueness, let
γ′ : Z → Z ′ be an admissible S-homomorphism such that γ′ ◦p = q ◦β,
and let z ∈ Z. Then there exists y ∈ Y such that p(y) = z. Therefore,
γ′(z) = γ′(p(y)) = γ′ ◦ p(y) = q ◦ β(y) = γ(z), which implies that
γ = γ′. □

Proposition 3.8. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

0 // X
i // Y

p //

α
��

Z

β
��

0 // X ′ j // Y ′ q // Z ′
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Then there exists a unique admissible S-homomorphism γ : X −→ X ′

which commutes the following diagram.

0 // X
i //

γ
��

Y
p //

α
��

Z

β
��

0 // X ′ j // Y ′ q // Z ′

Proof. This is proved as the same line as Proposition 3.7. □

In the following, we recall the notion of Rees exact sequences of S-
acts as defined in [1].

Let f : X → Y be an S-homomorphism. Set
Kf = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}, and

LIm(f) = (Im(f)× Im(f)) ∪∆Y ,

where ∆Y is the identity congruence on Y . It is clear that both Kf and
LIm(f) are congruences on X and Y respectively, and f(X) ∼= X/Kf as
S-acts. The sequence

· · · −→ X
f−→ Y

g−→ Z −→ · · ·

of S-acts is called Rees exact at Y if Kg = LIm(f). If the sequence

0 −→ X
f−→ Y

g−→ Z −→ 0 (3.1)
of S-acts is Rees exact at X, Y and Z, then it is called a Rees short
exact sequence. Note that if the sequence 3.1 is Rees short exact, then
f is a monomorphism and g is an epimorphism. Moreover, let x ∈ X.
Then

(f(x), f(0)) ∈ Im(f)× Im(f) ⊆ LIm(f) = Kg.

So, g(f(x)) = g(f(0)) = g(0) = 0. Then g ◦ f = 0.
We also use the term “Rees exact sequence” for sequences of the

forms
0 −→ X

f−→ Y
g−→ Z

and
X

f−→ Y
g−→ Z −→ 0

being Rees exact at X,Y and Y, Z, respectively.

Remark 3.9. Let X be an S-act, and let L → M → N → 0 be a Rees
exact sequence of S-acts. Then X ⊗S L → X ⊗S M → X ⊗S N → 0 is
also a Rees exact sequence of S-acts, by [6, Theorem 3.1].
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Proposition 3.10. Let 0 → X
f→ Y

g→ Z → 0 be an admissible short
exact sequence of S-acts and S-homomorphisms. Then it is Rees short
exact.

Proof. Let (y1, y2) ∈ Kg. Then g(y1) = g(y2). If g(y1) = g(y2) = 0,
then y1, y2 ∈ Ker(g) = Im(f) and so (y1, y2) ∈ LIm(f). Otherwise,
g(y1) = g(y2) ̸= 0. Therefore, y1 = y2, since g is admissible. So,
(y1, y2) ∈ LIm(f). Now, let (y1, y2) ∈ LIm(f). If y1, y2 ∈ Im(f), then
g(y1) = g(y2) = 0, and so (y1, y2) ∈ Kg. Otherwise, y1 = y2 which
implies that (y1, y2) ∈ Kg. □

Corollary 3.11. Let X be an S-act, and let L → M → N → 0 be
an admissible exact sequence of S-acts and S-homomorphisms. Then
X ⊗S L → X ⊗S M → X ⊗S N → 0 is a Rees exact sequence.

Proof. This follows from Proposition 3.10 and Remark 3.9. □

Proposition 3.12. Let 0 → X
f→ Y

g→ Z → 0 be a Rees short exact
sequence of S-acts and S-homomorphisms. Then it is short exact.

Proof. It is enough to show that Ker(g) = Im(f). Let y ∈ Ker(g).
Then g(y) = 0 = g(0). Hence, (y, 0) ∈ Kg = LIm(f). Therefore, y = 0
or (y, 0) ∈ Im(f) × Im(f). Since 0 ∈ Im(f), we get that y ∈ Im(f).
Hence Ker(g) ⊆ Im(f). Now, suppose that y ∈ Im(f). Then

(y, 0) ∈ Im(f)× Im(f) ⊆ LIm(f) = Kg.

Hence g(y) = g(0) = 0. So, y ∈ Ker(g) as desired. □

Let R be a commutative unital ring, and let U(R) denote the monoid
(R, .). This construction induces a functor U : R-Mod → U(R)-Act0,
where R-Mod is the category of R-modules. To every R-module M , the
U(R)-act U(M) has no addition and retains its R-action. The functor
U which is called the forgetful functor was introduced in [3].

Example 3.13. Let C3 and C4 be the pointed cyclic group of order 3
and 4, respectively, and let ⟨1, 0⟩ : C3 → C3×C4 and π2 : C3×C4 → C4

be the canonical inclusion and projection. The sequence

0 → U(C3)
U(⟨1,0⟩)−→ U(C3 × C4)

U(π2)−→ U(C4) → 0 (3.2)
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is short exact, because

Ker(U(π2))

= Ker(π2)

= {(x, y) ∈ C3 × C4 | π2((x, y)) = y = 0C4}
= Im(U(⟨1, 0⟩))
= Im(⟨1, 0⟩)
= {(x, y) ∈ C3 × C4 | ∃x ∈ C3, ⟨1, 0⟩(x) = (x, 0C4) = (x, y)},

and U(⟨1, 0⟩) = ⟨1, 0⟩ is a monomorphism and U(π2) = π2 is an
epimorphism. Note that π2 is not admissible, because its restriction
to (C3 × C4) \ Ker(π2) is not an injection. So, the sequence 3.2 is not
admissible. Notice that the element

(z, t) = ((1C3 , 1C4), (0C3 , 1C4)) ∈ Kπ2

and (z, t) /∈ LIm⟨1,0⟩ . Hence, the sequence 3.2 is not Rees short exact.

Proposition 3.14. Consider the following commutative diagram with
Rees short exact sequence in row of S-acts and S-homomorphisms:

0 0X Y Z

W

j q

lki p

Let k be an isomorphism with inverse l. Then 0 → X
i→ W

p→ Z → 0
is a Rees short exact sequence.

Proof. Let (w,w′) ∈ Kp. Then p(w) = p(w′) and so, qk(w) = qk(w′).
Hence, (k(w), k(w′)) ∈ Kq = LIm(j). Therefore, k(w) = k(w′) or
(k(w), k(w′)) ∈ Im(j)× Im(j). If k(w) = k(w′), then w = w′. Now, let
(k(w), k(w′)) ∈ Im(j)× Im(j). Then there exists (x, x′) ∈ X ×X such
that (j(x), j(x′)) = (k(w), k(w′)). So,

(i(x), i(x′)) = (lj(x), lj(x′)) = (lk(w), lk(w′)) = (w,w′).

Hence (w,w′) ∈ LIm(i) which implies that Kp ⊆ LIm(i). Now, suppose
that (w,w′) ∈ LIm(i). Then w = w′ or (w,w′) ∈ Im(i) × Im(i). If
w = w′, then p(w) = p(w′). Now, suppose that

(w,w′) ∈ Im(i)× Im(i).
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Then there exists (x, x′) ∈ X ×X such that (i(x), i(x′)) = (w,w′), and
(j(x), j(x′)) ∈ Im(j)× Im(j) ⊆ Kq. Hence qj(x) = qj(x′). Note that

(p(w), p(w′)) = (qk(w), qk(w′))

= (qk(i(x)), qk(i(x′)))

= (q(ki)(x), q(ki)(x′))

= (qj(x), qj(x′)),

and then p(w) = qj(x) = qj(x′) = p(w′). Therefore, (w,w′) ∈ Kp.
Since p is an epimorphism and i is a monomorphism, we get the result.

□

Proposition 3.15. Consider the following commutative diagram with
Rees exact sequences in rows of S-acts and S-homomorphisms:

X
i //

α
��

Y
p //

β
��

Z // 0

X ′ j // Y ′ q // Z ′ // 0

Then there exists a unique S-homomorphism γ : Z −→ Z ′ which com-
mutes the following diagram:

X
i //

α
��

Y
p //

β
��

Z //

γ
��

0

X ′ j // Y ′ q // Z ′ // 0

Proof. Let z ∈ Z. Then there exists y ∈ Y such that p(y) = z. Define
a map γ : Z → Z ′ by γ(z) = qβ(y). If there exists y ̸= y′ ∈ Y with
p(y′) = z, then p(y) = p(y′) and so (y, y′) ∈ Kp = LIm(i). This gives
that (y, y′) ∈ Im(i)× Im(i), then there exists (x, x′) ∈ X×X such that
(i(x), i(x′)) = (y, y′). So,

(β(y), β(y′)) = (β(i(x)), β(i(x′))) = (j(α(x)), j(α(x′))).

Then (β(y), β(y′)) ∈ LIm(j) = Kq and therefore, q(β(y)) = q(β(y′))
which implies that γ is well-defined. It is routine to check that γ is
an S-homomorphism and γ ◦ p = q ◦ β. Now, let γ′ : Z → Z ′ be an
S-homomorphism such that γ′ ◦ p = q ◦ β. Since γ′ ◦ p = γ ◦ p and p is
an epimorphism, γ = γ′. □

Proposition 3.16. Consider the following commutative diagram
with Rees exact horizontal and diagonal rows of S-acts and S-
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homomorphisms:
0

X ′

0 X Y Z 0

Z ′

0

β

α
f g
h

r

If α is an epimorphism, then β is a monomorphism.

Proof. Let z1, z2 ∈ Z such that β(z1) = β(z2). Then there exists
y1, y2 ∈ Y such that g(y1) = z1 and g(y2) = z2. Hence

r(y1) = β(g(y1)) = β(z1) = β(z2) = β(g(y2)) = r(y2).

Therefore, (y1, y2) ∈ Kr = LIm(h). If y1 = y2, then z1 = z2, as desired.
Otherwise, there exist x′

1, x
′
2 ∈ X ′ such that h(x′

1) = y1 and h(x′
2) = y2.

Also, there exist x1, x2 ∈ X such that α(x1) = x′
1 and α(x2) = x′

2.
Therefore, f(x1) = h(α(x1)) = h(x′

1) = y1 and
f(x2) = h(α(x2)) = h(x′

2) = y2.

But (y1, y2) ∈ LIm(f) = Kg, and so z1 = g(y1) = g(y2) = z2, which
shows that β is a monomorphism. □
Proposition 3.17. Consider the following commutative diagram with
Rees exact rows of S-acts and S-homomorphisms:

X
i //

α
��

Y
p //

β
��

Z //

γ
��

0

0 // X
′ j // Y

′ q // Z
′

Then the sequence

Ker(α)
i→ Ker(β)

p→ Ker(γ) (3.3)
is Rees exact at Ker(β), where i = i|

Ker(α)
and p = p|

Ker(β)
.

Proof. Let x1, x2 ∈ Ker(α). Then pi(x1) = pi(x1) = 0 and
pi(x2) = pi(x2) = 0.
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Therefore, (i(x1), i(x2)) ∈ Kp so that LIm(i) ⊆ Kp. Now suppose that
(y1, y2) ∈ Kp. Then β(y1) = β(y2) = 0, and p(y1) = p(y2). So,
(y1, y2) ∈ Kp = LIm(i). Hence, y1 = y2 or there exists (x1, x2) ∈ X ×X
such that (i(x1), i(x2)) = (y1, y2). Therefore,

(βi(x1), βi(x2)) = (jα(x1), jα(x2)) = (β(y1), β(y2)).

So,
jα(x1) = jα(x2) = 0

and then α(x1) = α(x2) = 0. Hence, (y1, y2) ∈ LIm(i) which implies
that Kp ⊆ LIm(i). Therefore, 3.3 is Rees exact at Ker(β). □

4. Characterization of flat acts

Let X be an S-act. As we mentioned in Remark 3.3, the functor
X ⊗S − does not preserve admissible morphisms. In this section, we
characterize flat acts via preserving admissible short exact sequences.
As a consequence, we prove that the functor F ⊗S − preserves admis-
sible morphisms, provided that F is a flat S-act.

Theorem 4.1. The following statements are equivalent for an S-act
F :

(i) If 0 −→ X
f−→ Y

g−→ Z −→ 0 is a Rees short exact sequence
of S-acts and S-homomorphisms, then

0 −→ F ⊗S X
1F⊗f−→ F ⊗S Y

1F⊗g−→ F ⊗S Z −→ 0

is also a Rees short exact sequence of S-acts and S-
homomorphisms.

(ii) F is flat.
(iii) If 0 −→ X

f−→ Y
g−→ Z −→ 0 is an admissible short exact

sequence of S-acts and S-homomorphisms, then the sequence
0 −→ F ⊗S X

1F⊗f−→ F ⊗S Y
1F⊗g−→ F ⊗S Z −→ 0 is also an ad-

missible short exact sequence of S-acts and S-homomorphisms.

Proof. (i) ⇒ (ii) Let f : X → Y be a monomorphism of S-acts. Then
the sequence 0 −→ X −→ Y −→ Y/X −→ 0 is Rees exact (see [1]).
Hence, the sequence 0 −→ F ⊗S X −→ F ⊗S Y −→ F ⊗S Y/X −→ 0
is Rees exact, by assumption. Therefore, F ⊗S X −→ F ⊗S Y is a
monomorphism, as desired.

(ii) ⇒ (i) Follows from [6, Corollary 3.1.1].
(i) ⇒ (iii) Let

0 −→ X
f−→ Y

g−→ Z −→ 0 (4.1)
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be an admissible exact sequence of S-acts and S-homomorphisms. Then
the sequence 4.1 is a Rees exact sequence by Proposition 3.10. Hence,

0 −→ F ⊗S X
1F⊗f−→ F ⊗S Y

1F⊗g−→ F ⊗S Z −→ 0

is a Rees exact sequence by assumption. Therefore, the sequence 4.1 is
exact by Proposition 3.12. Hence, F⊗SX

1F⊗f−→ F⊗SY is an admissible
homomorphism by Proposition 3.2. Then it is sufficient to show that
1F ⊗ g is an admissible S-homomorphism. Note that the epimorphism
g : Y −→ g(Y ) = Z is a cokernel, since g is an admissible. Therefore,
the epimorphism 1F ⊗g : F⊗S Y −→ F⊗S g(Y ) = F⊗SZ is a cokernel
by [3, Proposition 2.3.3]. So, it is an admissible S-homomorphism by
[3, Remark 3.2.3]. Hence, the sequence

0 −→ F ⊗S X
1F⊗f−→ F ⊗S Y

1F⊗g−→ F ⊗S Z −→ 0

is admissible exact. So, we get the assertion.
(iii) ⇒ (ii) This is proved as the same line as (i) ⇒ (ii), since for

S-monomorphism X → Y , the sequence 0 → X → Y → Y/X → 0 is
admissible exact by Proposition 3.2. □
Corollary 4.2. Let F be a flat S-act, and let f : X → Y be a monomor-
phism of S-acts. Then F ⊗S Y

F ⊗S X
∼= F ⊗S (Y/X).

Proof. Consider admissible exact sequence 0 → X → Y → Y/X → 0
of S-acts and S-homomorphisms. By Theorem 4.1, the sequence

0 → F ⊗S X → F ⊗S Y → F ⊗S (Y/X) → 0

is admissible exact. Hence, F ⊗S Y

F ⊗S X
∼= F ⊗S (Y/X). □

Corollary 4.3. Let F be a flat S-act. Then the functor F ⊗S −
preserves admissible morphism.
Proof. Let F be a flat S-act, and let f : X → Y be an admissible
S-homomorphism. By Proposition 3.2, the sequences

0 → Ker(f) → X → Im(f) → 0,

and
0 → Im(f) → Y → Y/Im(f) → 0

are admissible exact. Therefore, the sequences
0 → F ⊗S Ker(f) → F ⊗S X → F ⊗S Im(f) → 0,

and
0 → F ⊗S Im(f) → F ⊗S Y → F ⊗S (Y/Im(f)) → 0
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are also admissible exact, by Theorem 4.1. Hence, the morphism F ⊗S

X → F ⊗S Y is admissible, by Proposition 3.2. □
Let {Xi | i ∈ I} be a family of S-acts. The coproduct of this family

is
∨
i∈I

Xi = (
∪̇
(Xi \ {0Xi

}))
∪̇
{0} with xis = 0, if xis = 0Xi

in Xi and

0s = 0 for all s ∈ S.

Proposition 4.4. Let {Fi | i ∈ I} be a family of flat S-acts. Then∨
i∈I

Fi is flat.

Proof. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be an admissible short exact
sequence of S-acts and S-homomorphisms. Then

0 −→ Fi ⊗S X
1Fi

⊗f
−→ Fi ⊗S Y

1Fi
⊗g

−→ Fi ⊗S Z −→ 0

is an admissible exact sequence for every i ∈ I. We show that

0 −→
∨
i∈I

(Fi ⊗S X)
f−→

∨
i∈I

(Fi ⊗S Y )
g−→

∨
i∈I

(Fi ⊗S Z) −→ 0

is an admissible exact sequence, where
f((fi ⊗ x)i∈I) = ((1Fi

⊗ f)(fi ⊗ x))i∈I

and
g((fi ⊗ y)i∈I) = ((1Fi

⊗ g)(fi ⊗ y))i∈I

for fi ⊗ x ∈ Fi ⊗S X and fi ⊗ y ∈ Fi ⊗S Y . It is clear that f and
g are admissible S-homomorphisms. It is evident to see that g is an
epimorphism and f is a monomorphism. Note that

(1Fi
⊗ g) ◦ (1Fi

⊗ f) = 0.

So, g◦f = ((1Fi
⊗g)◦(1Fi

⊗f))i∈I = (0)i∈I = 0. Hence, Im(f) ⊆ Ker(g).
Let (fi⊗y)i∈I ∈ Ker(g). Then g((fi⊗y)i∈I) = ((1Fi

⊗g)(fi⊗y))i∈I = 0.
Therefore, fi ⊗ y ∈ Ker(1Fi

⊗ g) = Im(1Fi
⊗ f) for all i ∈ I. So, there

exists fi⊗x ∈ Fi⊗S X such that (1Fi
⊗f)(fi⊗x) = fi⊗y and we have

Ker(g) ⊆ Im(f). Now, [7, Proposition 2.5.14] implies the result. □
Proposition 4.5. If F and F ′ are flat S-acts, then so is F ⊗S F ′.

Proof. Let 0 → X → Y → Z → 0 be an admissible short exact
sequence of S-acts. By assumption,

0 → F ′ ⊗S X → F ′ ⊗S Y → F ′ ⊗S Z → 0,

and so
0 → F ⊗S (F ′ ⊗S X) → F ⊗S (F ′ ⊗S Y ) → F ⊗S (F ′ ⊗S Z) → 0,
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are admissible exact sequences. Hence

0 → (F ⊗S F ′)⊗S X → (F ⊗S F ′)⊗S Y → (F ⊗S F ′)⊗S Z → 0,

is an admissible short exact sequence, by [3, Proposition 2.3.3]. Now,
in view of Theorem 4.1 the result follows. □

Corollary 4.6. Let T be a multiplicatively closed subset of S, and let
F be a flat S-act. Then T−1F is a flat S-act.

Proof. By [3, Proposition 2.4.4(ii)], T−1F ∼= F ⊗S T
−1S. Also, T−1S is

flat by [5, Theorem 2.2]. Now, the assertion follows from Proposition
4.5. □

Corollary 4.7. Let I be an ideal of the monoid S such that S/I is a
flat S-act. Then F/IF is flat, provided that F is a flat S-act.

Proof. By [6, Theorem 3.2], S/I ⊗S F ∼= F/IF . Hence, we get the
assertion by Proposition 4.5. □

The notion of admissibly projective S-act was defined in [3] as
follows:

Definition 4.8. An S-act Q is called admissibly projective if it satisfies
the lifting property:

Q

X Y

∃φ g

f

whenever f : X → Y is an admissible surjection, that is, for any S-
homomorphism g : Q → Y there exists an S-homomorphism
φ : Q → X such that g = f ◦ φ.

Recall that a non-zero element s ∈ S is called zero-divisor, if there
exists a non-zero element t ∈ S such that st = 0. An element s ∈ S is
called cancelable, if rs = ts implies that r = t where r, t ∈ S. An S-act
X is called torsion free, if for any x, x′ ∈ X and for any cancelable
element s ∈ S the equality xs = x′s implies that x = x′. Note that any
torsion free S-act is admissibly projective, by [3, Proposition 3.3.10].
Also, every projective S-act is admissibly projective, but not vice versa,
see [3, Example 3.3.9].

In the following, we show that the coproduct of a family of admissibly
projective S-acts are also admissibly projective.
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Proposition 4.9. Let {Qi | i ∈ I} be a family of admissibly projective
S-acts. Then

∨
i∈I

Qi is admissibly projective.

Proof. Let Q =
∨
i∈I

Qi. Since Qi is admissibly projective for each

i ∈ I, we have the following commutative diagram of S-acts and S-
homomorphisms:

Qi

Q

X Y 0

∃φi

hi

g

f

where f is an admissible epimorphism and hi is the canonical injection
map. Define φ : Q → X by

φ(q) =

{
φi(q) if 0Q ̸= q ∈ Qi for some i ∈ I,
0X if q = 0Q.

It is easily seen that f ◦ φ = g, which means that Q is admissibly
projective. □

In the following, we show that the class of flat S-acts is a subclass
of admissibly projective S-acts.

Proposition 4.10. Every flat S-act is admissibly projective.

Proof. Let X be a flat S-act. By [7, Lemma 3.9.2 and Proposition
3.10.3], X is torsion free. Now, the assertion follows from [3, Proposi-
tion 3.3.10]. □

It is natural to ask whether the tensor products of admissibly pro-
jective S-acts is admissibly projective and whether the localization of
admissibly projective S-act is admissibly projective. In the following,
we answer to these questions in the special cases.

Corollary 4.11. Let T be a multiplicatively closed subset of S. Then
the following statements hold.

(i) T−1S is admissibly projective S-act.
(ii) Let F be a flat S-act. Then T−1F is an admissibly projective

S-act.
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(iii) Let F and F ′ be flat S-acts. Then F ⊗S F ′ is an admissibly
projective S-act.

(iv) Let {Fi | i ∈ I} be a family of flat S-acts. Then
∨
i∈I

Fi is

admissibly projective.
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یکدست اکت های و (ریس) قابل قبول دقیق رشته های

تهرانیان۵ ابوالفضل و توسلی۴ الهام رسولی٣، حمید سلیمی٢، مریم طالخونچه١، نفریه الهه

ایران تهران، اسلامی، آزاد دانشگاه تحقیقات، و علوم واحد ریاضی، ۵,٣,١گروه

ایران تهران، اسلامی، آزاد دانشگاه شرق، تهران واحد ریاضی، ۴,٢گروه

کوتاه دقیق رشته های خواص برخی مقاله، این در باشد. صفردار و جابجایی مونوئید یک S کنیم فرض
هر که است شده داده نشان ویژه، به طور گرفته است. قرار بررسی مورد S-اکت ها از (ریس) قابل قبول
از توصیفی همچنین، است. ریس کوتاه دقیق رشته ی یک S-اکت ها، از قابل قبول کوتاه دقیق رشته ی
یکدست S-اکت برای نتیجه، عنوان به است. شده بیان کوتاه دقیق رشته های حفظ با یکدست اکت های
است شده ثابت درآخر، می کند. حفظ را قابل قبول همریختی های F ⊗S− تابعگون که می دهیم نشان F

است. قابل قبول پروژکتیو S-اکت های کلاس از کلاس زیر یک یکدست S-اکت های کلاس که

قابل قبول. پروژکتیو اکت های قابل قبول، دقیق رشته ی ریس، دقیق رشته ی S-اکت، کلیدی: کلمات
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