1. J. Abaffy, C. G. Broyden and E. Spedicato, A class of direct methods for linear systems, Numer. Math., 45 (1984), 361–376.
2. J. Abaffy and E. Spedicato, ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood, Chichester, 1989.
3. M. Ahmadi, N. Golestani and A. Moussavi, Generalized quasi-Baer ∗-rings and Banach ∗-algebras, Comm. Algebra, 8(5) (2020), 2207–2247.
4. M. Ahmadi and A. Moussavi, Generalized Baer ∗-rings, Sib. Math. J., 64 (2023), 767–786.
5. E. P. Armendariz, A note on extensions of Baer and p.p. rings, J. Aust. Math. Soc., 18 (1974), 470–473.
6. H. E. Bell, Near-Rings in which each element is a power of itself, Bull. Aust. Math. Soc., 2(3) (1970), 363–368.
7. S. K. Berberian, Baer ∗-rings, Grundlehren Math. Wiss., vol. 195, Springer, Berlin, 1972.
8. G. F. Birkenmeier, N. J. Groenewald and H. E. Heatherly, Minimal and maximal ideals in rings with involution, Beiträge Algebra Geom., 38(2) (1997), 217–225.
9. G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra, 230 (2000), 558–595.
10. G. F. Birkenmeier, Y. Kara and A. Tercan, π-Baer Rings, J. Algebra Appl., 16(11) (2018), 1–19.
11. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25–42.
12. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29(2) (2001), 639–660.
13. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Quasi-Baer ring extensions and biregular Rings, Bull. Aust. Math. Soc., 61 (2000), 39–52.
14. G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra, 30 (2002), 1395–1415.
15. G. F. Birkenmeier and J. K. Park, Self-adjoint ideals in Baer ∗-rings, Comm. Algebra, 28 (2000), 4259–4268.
16. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhäuser, New York, 2013.
17. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Hulls of semiprime rings with applications to C*-algebras, J. Algebra, 322 (2009), 327–352.
18. B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer, Berlin, 2006.
19. K. A. Brown, The singular ideals of group rings, Q. J. Math., 28 (1977), 41–60.
20. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1997), 417–424.
21. J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
22. G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
23. D. E. Handelman, Prüfer domains and Baer ∗-rings, Arch. Math., 29 (1977), 241–251.
24. I. Kaplanski, Rings of operators, Benjamin, New York, 1968.
25. T. Y. Lam, Lectures on modules and rings, Berlin: Springer-Verlag, 1999.
26. T. K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra, 32(6) (2004), 2287–2299.
27. A. Moussavi, H. H. S. Javadi and E. Hashemi, Generalized quasi-Baer rings, Comm. Algebra, 33 (2005), 2115–2129.
28. G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
29. W. Narkiewicz, Polynomial mappings, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1600, 1995.
30. A. Shahidikia, H. H. Seyyed Javadi and A. Moussavi, π-Baer ∗-rings, Int. Electron. J. Algebra, 30 (2021), 231–242.
31. A. Shahidikia, H. H. Seyyed Javadi and A. Moussavi, Generalized π-Baer rings, Turk J. Math., 44 (2020), 2021–2040.