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JACOBSON MONOFORM MODULES

A. EL MOUSSAOUY

Abstract. In this paper, we introduce and study the concept
of Jacobson monoform modules which is a proper generalization
of that of monoform modules. We present a characterization of
semisimple rings in terms of Jacobson monoform modules by
proving that a ring R is semisimple if and only if every R-module
is Jacobson monoform. Moreover, we demonstrate that over a ring
R, the properties monoform, Jacobson monoform, compressible,
uniform and weakly co-Hopfian are all equivalent.

1. Introduction

Throughout this paper, all rings are commutative with identity and
all modules are unitary R-modules. Let L be an R-module, for
submodules A and B of L, A ≤ B denotes that A is a submodule
of B, A ≤⊕ L denotes that A is a direct summand of L, and E(L),
Rad(L), Soc(L), EndR(L) will denote the injective hull, the radical,
the socle and the ring of endomorphisms of a module L.

Recall that a submodule N of L is called a small submodule of L if
whenever N + K = L for some submodule K of L, we have L = K,
and in this case we write N ≪ L. A module L is called small if it
is a small submodule of some module. The socle of L is defined as
the sum of all its simple submodules and can be shown to coincide
with the intersection of all the essential submodules of L. It is a fully
invariant submodule of L. Note that L is semisimple precisely when

DOI: 10.22044/JAS.2023.12495.1668.
MSC(2010): Primary: 16D40; Secondary: 16D10, 16P40.
Keywords: Monoform modules; Small monoform modules; Jacobson monoform modules.
Received: 10 December 2022, Accepted: 5 April 2023.

379



380 EL MOUSSAOUY

L = Soc(L). The radical of an R-module L defined as a dual of the
socle of L, is the intersection of all maximal submodules of L, taking
Rad(L) = L when L has no maximal submodules. A submodule K of
L is said to be Jacobson-small in L (K ≪J L), in case L = K + P
with Rad(L/P ) = L/P , implies P = L (see [5]). It is clear that if A
is a small submodule of L, then A is a Jacobson-small submodule of
L, but the converse is not true in general. By [5], if Rad(L) = L and
K ≤ L, then K is small in L if and only if K is Jacobson-small in L.
A submodule K of an R-module L is said to be δ-small in L, written
K ≪δ L, if for every submodule N of L such that K + N = L with
L/N singular implies N = L (see [17]).

The study of modules by properties of their endomorphisms is a
classical research subject. In [16], Zelmanowitz introduced the concept
of monoform modules. We call a module monoform if any its nonzero
partial endomorphism is monomorphism. Recall that a submodule N
of L is called a dense or rational submodule if HomR(L/N ;E(L)) = 0.
An R-module L is monoform if and only if every nonzero submodule of
L is rational (see [16]). A monoform module is uniform (i.e., any two
nonzero submodules have nonzero intersection). In [4], Inaam Hadi and
Hassan Marhun introduced and studied the notion of small monoform
modules. An R-module L is called small monoform, if any nonzero
partial endomorphism of L has a small kernel. In [7], the concept
of δ-weakly Hopfian modules was introduced. A right R-module L is
called δ-weakly Hopfian if any δ-small surjective endomorphism of L is
an automorphism. In [2], Diop and Diallo introduced and studied the
notion of δ-small monoform modules. An R-module L is called δ-small
monoform, if any nonzero partial endomorphism of L has a δ-small
kernel. In [10], the authors investigated and introduced the concept of
Jacobson Hopfian modules. An R-module L is called Jacobson Hopfian
if every surjective endomorphism of L has a Jacobson-small kernel.

Motivated by the above-mentioned works, we are interested in
introducing a new generalization of monoform modules namely
Jacobson monoform modules (JM modules, for short). We call a
module L is JM if every nonzero partial endomorphism of L has a
Jacobson-small kernel. The concept of JM modules form a proper
generalization of monoform modules ( Example 2.3). It is obvious that
any small monoform module is JM. Example 2.21 demonstrates that
the converse is false, in general.

We discuss the following questions:
1) When does a module have the property that every of its nonzero

partial endomorphisms has a Jacobson-small kernel?
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2) How can Jacobson monoform modules be used to characterize the
base ring itself?

Our paper is structured as follows:
In Section 1, we give some known results which we will cite or use

throughout this paper.
In Section 2, we present some equivalent properties and

characterizations of JM modules. A nonzero R-module L is called
compressible provided for each nonzero submodule N of L there
exists a monomorphism f : L → N . We have the obvious implications:
compressible ⇒ monoform ⇒ JM. We will see later that under certain
conditions the properties monoform, uniform, compressible and JM are
coincide (Theorem 2.10). The dual of an R-module L is HomR(L,R),
this will be denoted by L∗. If the natural map L → (L∗)∗ is bijective, L
will be called reflexive. We prove that for a quasi-Frobenius principal
ring R, if L is a JM R-module such that for each K ≤ L, Rad(K) = K,
then L is reflexive and E(L∗) is finitely generated (Proposition 2.15).
In proposition 2.18, we obtain that if L is a fully retractable R-module
such that for every nonzero submodule N of L, the kernel of any
nonzero endomorphism of N is Jacobson-small, then L is JM.

Moreover, we present a characterization of semisimple rings in terms
of Jacobson monoform modules by proving that a ring R is semisimple
if and only if every R-module is Jacobson monoform (Theorem 2.26)

Let R be a ring and let L be an R-module. We now state a few well
known preliminary results:

Remark 1.1. (1) Let R be a ring and L be a right R-module. Then
L is nonsingular monoform if and only if L is uniform [12].

(2) Let R be a commutative ring and L be an R-module. Then L
is monoform if and only if L is uniform prime [12].

(3) It is clear that every monoform R-module is small monoform.
However the converse in general is not true. Z4 is a small
monoform Z-module but it is not monoform [4].

(4) The epimorphic image of small monoform module is not
necessarily small monoform [4].

(5) Every nonzero submodule of small monoform module is small
monoform module [4].

(6) Let L be a semisimple R-module. Then the following are
equivalent [4].
(a) L is small monoform.
(b) L is monoform.
(c) L is simple.
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We list some properties of Jacobson-small submodules that will be
used in the paper.

Lemma 1.2. [5]. Let L be an R-module.
(1) Let A ≤ B ≤ M . Then B ≪J M if and only if A ≪J M and

B/A ≪J M/A.
(2) Let A1, A2, ...,An are submodules of M. Then Ai ≪J M , ∀

i = 1, ..., n if and only if
∑n

i=1 Ai ≪J M .
(3) Let A, B be submodules of M with A ≤ B, if A ≪J B, then

A ≪J M .
(4) Let f : M → N be a homomorphism such that A ≪J M , then

f(A) ≪J N .
(5) Let M = M1 ⊕ M2 be an R-module and let A1 ≤ M1 and

A2 ≤ M2. Then A1⊕A2 ≪J M1⊕M2 if and only if A1 ≪J M1

and A2 ≪J M2.
(6) Let L be a module and let X ≤ Y ≤ L. If Y ≤⊕ L and X ≪J L,

then X ≪J Y .

Lemma 1.3. [10] Let K be a submodule of a module L. Then the
following statements are equivalent.

(1) K ≪J L.
(2) If X +K = L, then X ≤⊕ L and L/X is semisimple.

2. Modules in which every partial endomorphism has a
Jacobson-small kernel

Definition 2.1. An R-module L is called Jacobson monoform modules
(JM modules, for short) if every its nonzero partial endomorphism has
a Jacobson-small kernel.

Remark 2.2. By the definitions, every hollow module is JM, but the
converse is not hold in general. Note that L = Z6 is a semisimple
Z-module. Since for any semisimple module L, Rad(L) = 0, so every
proper submodule is Jacobson-small in L, thus L is JM while it has no
nonzero small submodule then it is not hollow.

Example 2.3. Let H = Zq∞ . Since H is a hollow group, H is a JM
group. But H is not monoform because the multiplication by q induces
an endomorphism of H which is not a monomorphism.

Theorem 2.4. The following are equivalent for an R-module L:
(1) L is JM.
(2) For every nonzero partial endomorphism f ∈ Hom(N,L) where

0 ̸= N ≤ L, if there exists P ≤ N such that f(P ) = f(N), then
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there exists a semisimple direct summand H of N such that
N = H ⊕ P .

Proof. (1) ⇒ (2) Assume that f ∈ Hom(N,L) where 0 ̸= N ≤ L
be a nonzero partial endomorphism, if there exists P ≤ N such that
f(P ) = f(N), then Kerf + P = N . Since L is JM, Kerf ≪J N . By
Lemma 1.3 N = H ⊕ P for some semisimple H ≤ N .

(2) ⇒ (1) Let f ∈ Hom(N,L) where 0 ̸= N ≤ L be a nonzero
partial endomorphism and Ker(f) + P = N for some P ≤ N , where
Rad(N/P ) = N/P . Then f(P ) = f(N) . By (2), there exists a
semisimple direct summand H of N such that N = H ⊕ P , then
Rad(N/P ) = 0. Thus N/P = 0. Therefore N = P and Ker(f) ≪J N .

□

Proposition 2.5. Let L be a JM R-module such that for each K ≤ L,
Rad(K) = K. Then L is uniform.

Proof. Let L be a JM R-module and N be any nonzero proper
submodule of L. If N is not essential. So, there exists a relative
complement K of N in L such that N ⊕K is essential in L. Let

f : N ⊕K → L

define by f(n+ k) = n for all n+ k ∈ N ⊕K. It is clear that f is well
defined and f ̸= 0. Since L is JM, Kerf = {0} ⊕K ≪J N ⊕K. So
according to Lemma 1.3, K is semisimple and Rad(K) = 0. Then by
hypothesis K must be zero. Contradiction with N ⊕K is essential in
L.

□

Definition 2.6. [3]. A right R-module L is called weakly co-Hopfian
if any injective endomorphism of L is essential.

Example 2.7. The following facts are well known:[9]
(1) Any Artinian R-module M (i.e., M has DCC on submodules),

is weakly co-Hopfian.
(2) The additive group Q of rational numbers is a non-Artinian

Z-module, which is weakly co-Hopfian.

Definition 2.8. [12]. A nonzero right R-module L is called prime if,
whenever N is a nonzero submodule of L and A is an ideal of R such
that NA = 0, then LA = 0.

Remark 2.9. [12].
(1) For any ring R, every compressible right R-module is prime.
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(2) Let R be a commutative ring. Then a finitely generated nonzero
R-module L is compressible if and only if L is a uniform prime
module.

(3) Let R be a commutative ring. Then an R-module L is
monoform if and only if L is a uniform prime module.

(4) Let R be a commutative ring. An R-module M is compressible
if and only if M is isomorphic to a nonzero submodule of a
finitely generated monoform R-module

(5) Let R be a commutative ring. Then every compressible R-
module is monoform.

Recall that an Artinian principal ideal ring is a left and right
Artinian, left and right principal ideal ring.

Theorem 2.10. Let R be an Artinian principal ring and L be a prime
R-module such that for each K ≤ L, Rad(K) = K. The following
statements are equivalent:

(1) L is JM.
(2) L is monoform.
(3) L is compressible.
(4) L is uniform.
(5) L is weakly co-Hopfian.

Proof. (1) ⇒ (2) Let L be a JM module and 0 ̸= N ≤ L and f : N → L
be a homomorphism. By Proposition 2.5 L is uniform, then L is weakly
co-Hopfian. Since R is an Artinian principal ring, L is finitely generated
by [1, Theorem 3.8]. So, there exists an epimorphism g : R → L such
that R/annR(L) ∼= L. Since L is prime, annR(L) is a prime ideal of R.
Hence, annR(L) is a maximal ideal of R because R is Artinian. This
implies that L is simple. Hence, L is monoform.

(2) ⇒ (1) It is clear.
(1) ⇒ (3) By (1) ⇒ (2) we obtain that L is a uniform prime finitely

generated module, hence by [12, Lemma 26.2.9] L is compressible.
(3) ⇒ (1) By Remark 2.9, every compressible R-module is

monoform, then it is JM.
(2) ⇒ (4) It is clear.
(4) ⇒ (2) Suppose L is a uniform module. According to the proof

of (1) ⇒ (2), L is simple. Therefore, L is monoform.
(4) ⇒ (5) It is clear.
(5) ⇒ (4) Assume that L is a weakly co-Hopfian module. Then L is

simple. Therefore, L is monoform.
□
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Corollary 2.11. Let R be an Artinian principal ring and L be an
R-module such that for each K ≤ L, Rad(K) = K. The following
statements are equivalent:

(1) L is JM prime.
(2) L is simple.

Proof. (1) ⇒ (2) Suppose L is a JM prime module. Then annR(L) is
a prime ideal of R. Then by Theorem 2.10, L is simple.

(2) ⇒ (1) It is clear.
□

Corollary 2.12. Let R be an Artinian principal ring and L be a JM
R-module such that for each K ≤ L, Rad(K) = K. Then End(L) is a
local ring.
Proof. Since L is a finitely generated module over an Artinian ring, L is
of finite length. Thus, L is an indecomposable module of finite length
because L is uniform. Therefore, End(L) is a local ring.

□
Example 2.13. It is clear that a simple module is JM. But in general
the converse is not true. For example, Z is a JM Z-module. However,
Z is not simple.

Example 2.14. Every compressible R-module is JM. In general the
converse is not true. For example, Q is a JM Z-module. But it is not
compressible because HomZ(Q,Z) = {0}.

Recall that a ring R is called quasi-Frobenius if it is right or left
Artinian and right or left self-injective.

Proposition 2.15. Let R be a principal quasi-Frobenius ring and L
be a JM R-module such that for each K ≤ L, Rad(K) = K. Then the
following statements are verified:

(1) L is reflexive.
(2) L∗ and E(L∗) are finitely generated.

Proof. 1) According to Theorem 2.10, L is a finitely generated R-
module. Thus, by [6, Theorem 15.11], L is reflexive.

2) Since R is Artinian and L∗ is finitely generated, E(L∗) is finitely
generated.

□
Proposition 2.16. Let L be a JM R-module and f be a surjective
endomorphism of L. If N ≤ L, then f(N) ≪J L if and only if
N ≪J L.
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Proof. ⇒) Let N + Y = L with Rad(L/Y ) = L/Y for some Y ≤ L.
Then f(N) + f(Y ) = L. Then f(Y ) = L because f(N) ≪J L and
Rad(L/f(Y )) = L/f(Y ). This implies that Kerf + Y = L. Since L is
JM, Kerf ≪J L. Hence Y = L. Therefore N ≪J L.
⇐) By Lemma 1.2. □

Definition 2.17. [11]. A module L is said to be fully retractable if for
any nonzero submodule N of L and every nonzero element
g ∈ HomR(N,L) we have HomR(L,N)g ̸= 0.
Proposition 2.18. Let L be a fully retractable R-module such that for
every nonzero submodule N of L, the kernel of any nonzero
endomorphism of N is Jacobson-small. Then L is JM.
Proof. Let 0 ̸= N ≤ L and f : N → L such that f ̸= 0. Since L is fully
retractable, there exists g : L → N , g ̸= 0. Consider

NLN
gf

We have gf ̸= 0 because L is fully retractable. By hypothesis,
Ker(gf) ≪J N . Since Kerf ⊆ Ker(gf), thus according to Lemma 1.2,
Kerf ≪J N . Therefore L is JM.

□
Proposition 2.19. Let L be a semisimple quasi-injective R-module.
Then the following statements are equivalent:

(1) L is JM;
(2) L is Jacobson Hopfian.

Proof. (1) ⇒ (2) Is clear.
(2) ⇒ (1) Let 0 ̸= N ≤ L and f : N → L such that f ̸= 0.

Since L is quasi-injective, there exists g ∈ EndR(L) such that gi = f
where i is the inclusion map. Hence, g(x) = f(x) for each x ∈ N
and so Kerf ≤ Kerg. Since L is Jacobson Hopfian, Kerg ≪J L. So
Kerf ≪J L. On the other hand, Kerf ≤ N and L is semisimple, then
N is a direct summand of L. Hence by Lemma 1.2, Kerf ≪J N . This
shows that L is JM.

□
Corollary 2.20. If R is a semisimple ring, then every R-module is
JM.
Proof. By [10, Theorem 5] and Proposition 2.19 . □

It is obvious that every small monoform module is JM. The following
example shows that the converse is false, in general.
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Example 2.21. Let R be a semisimple ring, hence according to
Corollary 2.20, R(N) is JM. But the kernel of every endomorphism of
R(N) is not small by [8, Example 2.11]. Thus R(N) is not small mono-
form.

For a right R-module L, Talebi and Vanaja [15], defined the
submodule

Z(L) = ∩{Kerf : f ∈ Hom(L,N), N ∈ S}
= ∩{K ⊂ L,L/K ∈ S}

as a dual of singular submodule, where S denotes the class of all small
right R-modules. A module L is called cosingular (resp. noncosingular)
if Z(L) = 0 (resp. Z(L) = L). Recall that a ring R is called CP in
case every cosingular right R-module is projective. (see [14]).

Proposition 2.22. Let R be a CP ring such that has no nonzero
semisimple projective R-module and L be a cosingular R-module. Then
the following statements are equivalent:

(1) L is JM.
(2) L is small monoform.

Proof. (1) ⇒ (2) Let L be a JM R-module, N be a nonzero submodule
of L and f ∈ Hom(N,L) be a nonzero partial endomorphism. Assume
Kerf +K = N for some K ≤ N . Since L is JM, Kerf ≪J N . Then
by Theorem 2.4, N = K ⊕ H for some semisimple submodule H of
N . Since L is cosingular, H is cosingular. And since R is CP, H is
projective. By hypothesis, H = 0. This implies that N = K and so
Kerf ≪ N . Hence L is small monoform.
(2) ⇒ (1) Is clear.

□
Recall that a ring R is right CD if and only if every cosingular right

R-module is discrete (see [13]).

Proposition 2.23. [13, Proposition 2.26] Let R be a commutative
domain. Then the following are equivalent:

(1) R is CD;
(2) Every cosingular R-module is projective.

Corollary 2.24. Let R be a commutative domain and L be a cosingular
R-module. If R is right CD such that has no nonzero semisimple
projective R-module. Then the following statements are equivalent:

(1) L is JM.
(2) L is small monoform.
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Lemma 2.25. For an R-module L, consider the following assertions.
(1) L is JM.
(2) For every right R-module Y , if there exists an epimorphism

L → L⊕ Y , then Y is semisimple.
Then (1) ⇒ (2).

Proof. (1) ⇒ (2) Let g : L → L ⊕ Y be a surjective homomorphism,
and let π : L ⊕ Y → L the natural projection. It is obvious that
Ker(πg) = g−1(0 ⊕ Y ). Since L is JM, Ker(πg) ≪J L. According to
Lemma 1.2,

0⊕ Y = g[g−1(0⊕ Y )] = g(Ker(πg)) ≪J L⊕ Y.

Thus Y ≪J Y by Lemma 1.2. Therefore, Y is semisimple by Lemma 1.3.
□

In the following, we characterize the class of rings R for which every
(free) R- module is JM.

Theorem 2.26. Let R be a ring. The following assertions are
equivalent:

(1) R is semisimple.
(2) Any R-module is JM.
(3) Any projective R-module is JM.
(4) Any free R-module is JM.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) Clear.
(4) ⇒ (1) Let L = R(N), by (4) L is a JM R-module. Since L ∼= L⊕L,

L is semisimple by Lemma 2.25. Therefore R is semisimple.
□

Proposition 2.27. Every nonzero submodule of JM module is JM.

Proof. Let N be a nonzero submodule of a JM module L. For any
0 ̸= K ≤ N , let f : K → N be a nonzero partial endomorphism of N ,
then if ̸= 0 where i : N → L is the inclusion mapping. Since L is JM,
Ker(if) ≪J K, hence Kerf ≪J K, and so N is JM. □
Remark 2.28. Let π : Z → Z/12Z, where π is the natural projection.
However Z/12Z is not JM Z-module because

0 ̸= f = 4x ∈ End(Z/12Z)
and Kerf =< 3 > is not Jacobson-small in Z/12Z.

(1) Let L = Z/3Z⊕Z/4Z. Each of Z/3Z and Z/4Z is a JM module
(because every of each is small monoform). Since L ∼= Z/12Z.
Then the direct sum of JM modules is not necessarily JM.
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(2) Since Z is a JM Z-module and Z/12Z is not JM Z-module.
Then the homomorphic image of JM module is not necessarily
JM.

Proposition 2.29. Let L be a Noetherian R-module. Then L is JM
iff any non-zero 3-generated submodule of L is JM.

Proof. ⇒) Clear from Proposition 2.27.
⇐) suppose that any non-zero 3-generated submodule of L is JM.

Let N be a non-zero submodule of L and f : N → L such that f ̸= 0.
If Kerf = 0 then Kerf ≪J N . If Kerf ̸= 0, let x ∈ Kerf . Let y ∈ N
and z = f(y). Put P = Rx + Ry + Rz is 3-generated submodule of
L. Let H = Rx + Ry and h = f |H : H → P . By hypothesis P is JM,
hence Kerh ≪J H ≤ N . But x ∈ Kerh, so

< x >⊆ Kerh ≪J N.

Since L is Noetherian R-module, Kerf is finitely generated, hence

Kerf =
n∑

i=1

Rxi,

for some xi ∈ L, 1 ≤ i ≤ n. We have < xi >≪J N for every 1 ≤ i ≤ n.
Thus according to Lemma 1.2, Kerf =

∑n
i=1Rxi ≪J N . Therefore L

is JM.
□

Corollary 2.30. Let R be an Artinian principal ideal ring and L be a
weakly co-Hopfian R-module. Then the following are equivalent:

(1) L is JM.
(2) Any non-zero 3-generated submodule of L is JM.

Proof. By [1, Theorem 3.8], L must be finitely generated module. Then
L is a Noetherian since R is Artinian principal ideal ring. Thus by
Propostion 2.29 the result is obtained. □
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تک-فرم جیکبسون های مدول

الموسوی عبدالرحیم

و معرفی را هستند تک-فرم های مدول از سره تعمیمی که تک-فرم جیکبسون های مدول مقاله این در
جیکبسون مدول های از استفاده با ساده نیمه حلقه های از مشخصه سازی یک می دهیم. قرار مطالعه مورد
R-مدول هر اگر تنها و اگر است ساده نیمه R حلقه می دهیم نشان واقع در می دهیم. ارائه تک-فرم
تراکم پذیری، تک-فرم، جیکبسون تک-فرم، مفاهیم می دهیم نشان بعلاوه باشد. تک-فرم جیکبسون

هستند. معادل حلقه ها در ضعیف هم-هاپفیان و یکنواختی

تک-فرم. جیکبسون مدول های کوچک، تک-فرم مدول های تک-فرم، مدول های کلیدی: کلمات
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