Journal of Algebraic Systems

Vol. 12, No. 2, (2025), pp 391-401

FURTHER STUDIES OF THE PERPENDICULAR GRAPHS OF MODULES

M. SHIRALI* AND S. SAFAEEYAN

Abstract

In this paper we continue our study of perpendicular graph of modules, that was introduced in [7]. Let R be a ring and M be an R-module. Two modules A and B are called orthogonal, written $A \perp B$, if they do not have non-zero isomorphic submodules. We associate a graph $\Gamma_{\perp}(M)$ to M with vertices $\mathcal{M}_{\perp}=\{(0) \neq A \leq M \mid \exists(0) \neq B \leq M$ such that $A \perp B\}$, and for distinct $A, B \in \mathcal{M}_{\perp}$, the vertices A and B are adjacent if and only if $A \perp B$. The main object of this article is to study the interplay of module-theoretic properties of M with graph-theoretic properties of $\Gamma_{\perp}(M)$. We study the clique number and chromatic number of $\Gamma_{\perp}(M)$. We prove that if $\omega\left(\Gamma_{\perp}(M)\right)<\infty$ and M has a simple submodule, then $\chi\left(\Gamma_{\perp}(M)\right)<\infty$. Among other results, it is shown that for a semi-simple module $M, \omega\left(\Gamma_{\perp}\left({ }_{R} M\right)\right)=\chi\left(\Gamma_{\perp}\left({ }_{R} M\right)\right)$.

1. Introduction

The present paper is sequal to [7] and so the notations introduced in Introduction of [7] will remain in force. Thus throughout the paper, R is a ring with identity and M is a left R-module,

$$
\mathcal{M}_{\perp}=\{(0) \neq A \leq M \mid \exists(0) \neq B \leq M \text { such that } A \perp B\}
$$

is the set of all vertices of the perpendicular graph. As [7], we say that two modules A and B are orthogonal, written $A \perp B$, when they

[^0]do not have non-zero isomorphic submodules. Then the perpendicular graph of M, denoted by $\Gamma_{\perp}(M)$, is an undirected simple graph with the vertex set \mathcal{M}_{\perp} in which every two distinct vertices A and B are adjacent if and only if $A \perp B$ (see [7] for more details).
An R-module M is said to be simple, if it is not a zero module and it has no non-trivial submodule. The socle of an R-module M, written $\operatorname{Soc}(M)$, is the sum of all simple submodules of M. An R-module M is said to be semi-simple, if $\operatorname{Soc}(M)=M$. By $N \leq_{e} M$, we mean N is an essential submodule of M. We say an R-module N is subisomorphic submodule of an R-module M, and denoted by $N \lesssim M$, when N is isomorphic to a submodule of M. A module M is called atomic if $M \neq 0$ and for any $x, y \in M \backslash\{0\}, x R$ and $y R$ have isomorphic nonzero submodules. For more details and some basic facts about atomic modules, the reader is referred to [3]. We should remind the reader that these atomic modules are different from those defined in [4].

Let G be a graph with the vertex set $\mathrm{V}(\mathrm{G})$. By order of G, we mean the number of vertices of G and we denote it by $|G|$. The degree of a vertex v in graph G, denoted by $\operatorname{deg}(v)$, is the number of edges incident with v. A locally finite graph is a graph in which every degree of any vertex is finite. A complete graph is a graph in which every pair of distinct vertices are adjacent. A clique of a graph is a maximal complete subgraph and the number of vertices in the largest clique of a graph G, denoted by $\omega(G)$, is called the clique number of G. An independent set is a set of vertices in a graph, no two of which are adjacent. A maximal independent set is either an independent set such that adding any other vertex to the set forces the set to contain an edge or the set of all vertices of an empty graph. The size of a maximal independent set of largest possible for a graph G is called the independence number of G, denoted by $\alpha(G)$. Let $\chi(G)$, denote the chromatic number of G, that is, the minimum number of colors can be assigned to the vertices of G such that every two adjacent vertices have different colors. Obviously $\omega(G) \leq \chi(G)$. In section 2, we look at the coloring of the perpendicular graph of modules. We study conditions under which the chromatic number of $\Gamma_{\perp}(M)$ is finite. We prove that if $\omega\left(\Gamma_{\perp}(M)\right)<\infty$ and M has a simple submodule, then $\chi\left(\Gamma_{\perp}(M)\right)<\infty$. Also it is shown that for a semi-simple module $M, \chi\left(\Gamma_{\perp}\left({ }_{R} M\right)\right)=\omega\left(\Gamma_{\perp}\left({ }_{R} M\right)\right)$. We give an example, which show that the semi-simple hypothesis is needed for the previous fact. In section 3, we study conditions under which the $\Gamma_{\perp}(M)$ is finite or infinite. Finally, it is proved that $\Gamma_{\perp}(M)$ is n-regular, if $\Gamma_{\perp}(M) \cong K_{n, n}$.

2. Clique Number and Chromatic Number of Perpendicular Graph

Let M be an R-module. In this section, we obtain some results on the clique number of $\Gamma_{\perp}(M)$. We study the condition under which the chromatic number of $\Gamma_{\perp}(M)$ is finite. We show that if $\omega\left(\Gamma_{\perp}(M)\right)<\infty$ and M has a simple submodule, then $\chi\left(\Gamma_{\perp}(M)\right)<\infty$. The next result is a counterpart of [1, Theorem 3.8].

Proposition 2.1. Let M be an R-module, $\Gamma_{\perp}(M)$ be infinite and S be a simple submodule of M of finite degree. Then the following statements hold :
(1) The number of non-isomorphic simple submodules of M is finite.
(2) $\chi\left(\Gamma_{\perp}(M)\right)<\infty$.
(3) $\alpha\left(\Gamma_{\perp}(M)\right)=\infty$.

Proof. (1) Every two non-isomorphic simple submodules are adjacent. Now, if the number of non-isomorphic simple submodules of M is infinite and hence $\operatorname{deg}(S)=\infty$, which is a contradiction.
(2) Let $\mathcal{X}=\left\{X_{i}\right\}_{i \in I}$ be all of the vertices of $\Gamma_{\perp}(M)$ which are not adjacent to S and $\mathcal{Y}=\left\{Y_{j}\right\}_{j \in J}$ be all of vertices of $\Gamma_{\perp}(M)$ which are adjacent to S. It is clear that $|\mathcal{Y}|$ is finite. For each $i \in I, X_{i} \not \perp S$ and for each $j \in J, Y_{j} \perp S$. But for any $X_{\alpha}, X_{\beta} \in \mathcal{X}$ we have $X_{\alpha} \not \perp S$ and $X_{\beta} \not \perp S$ such that $\alpha, \beta \in I$. Furthermore any two distinct elements X_{α} and X_{β} of \mathcal{X} have isomorphic simple submodules, i.e., $X_{\alpha} \not \perp X_{\beta}$. This shows that all of vertices in \mathcal{X} can be colored by one color. Inasmuch as \mathcal{Y} is finite, we deduce that of $\chi\left(\Gamma_{\perp}(M)\right)<\infty$.
(3) By proof of (2), \mathcal{X} is a maximal independent set of $\Gamma_{\perp}(M)$. Also note that \mathcal{X} is infinite independent set in $\Gamma_{\perp}(M)$ and so $\alpha\left(\Gamma_{\perp}(M)\right)=\infty$.

The next lemma states every element of a clique in $\Gamma_{\perp}(M)$ is an atomic module.

Lemma 2.2. Let M be an R-module and $\omega\left(\Gamma_{\perp}(M)\right)=n$ such that $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is the complete subgraph in $\Gamma_{\perp}(M)$. Then for any $A, B \leq A_{i}$ such that $1 \leq i \leq n, A \not \perp B$.

Proof. Suppose that there exists $1 \leq i \leq n$ and $A, B \leq A_{i}$ such that $A \perp B$. For any j such that $1 \leq i \neq j \leq n$, we have $A \perp A_{j}$ and $B \perp A_{j}$, as $A_{i} \perp A_{j}$. Hence

$$
\mathcal{A}=\left\{A, B, A_{1}, A_{2}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{n}\right\}
$$

induces a clique in $\Gamma_{\perp}(M)$, which is a contradiction.

The next result is a counterpart of [1, Theorem 3.10].
Theorem 2.3. Let M be an R-module which has a simple submodule and $\omega\left(\Gamma_{\perp}(M)\right)<\infty$. Then the following hold:
(1) The number of non-isomorphic simple submodules of M is finite.
(2) $\chi\left(\Gamma_{\perp}(M)\right)<\infty$.

Proof. (1) On the contrary, assume that the number of non-isomorphic simple submodules of M is infinite, but the set of all non-isomorphic simple submodules of M induces a clique in $\Gamma_{\perp}(M)$, and it is contradicted with $\omega\left(\Gamma_{\perp}(M)\right)<\infty$.
(2) Assume that $\omega\left(\Gamma_{\perp}(M)\right)<\infty$ and S is a simple submodule of M. Two cases may happen:
(Case 1) If $\Gamma_{\perp}(M)$ is a finite graph, then it is clear that

$$
\chi\left(\Gamma_{\perp}(M)\right)<\infty .
$$

(Case 2) If $\Gamma_{\perp}(M)$ is an infinite graph, then the number of vertices of $\Gamma_{\perp}(M)$ is infinite. Two cases may happen:
(Case a) If $\operatorname{deg}(S)<\infty$, then by Proposition 2.1, $\chi\left(\Gamma_{\perp}(M)\right)<\infty$.
(Case b) If $\operatorname{deg}(S)=\infty$, then the number of vertices of $\Gamma_{\perp}(M)$ which are adjacent to S is infinite. Assume that $\mathcal{X}=\left\{X_{i}\right\}_{i \in I}$ is all of the vertices of $\Gamma_{\perp}(M)$ which are adjacent to S and $\mathcal{Y}=\left\{Y_{j}\right\}_{j \in J}$ is all of the vertices of $\Gamma_{\perp}(M)$ which are not adjacent to S. It is clear that no two vertices of \mathcal{Y} are adjacent. Therefore the vertices in \mathcal{Y} are mutually non-adjacent, hence all of vertices in \mathcal{Y} can be colored by one color. Since $\omega\left(\Gamma_{\perp}(M)\right)<\infty$, assume that $\omega\left(\Gamma_{\perp}(M)\right)=n$. There exist $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{M}_{\perp}$ such that $A_{i} \perp A_{j}$, for any $1 \leq i \neq j \leq n$. Hence $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a clique in $\Gamma_{\perp}(M)$, which all of vertices in \mathcal{A} can be colored by n color. We let $\mathcal{M}_{\perp}=\mathcal{X} \cup \mathcal{Y}$, it is easy to see that at most one of A_{i} is in \mathcal{Y}. Without less of generality, assume that $A_{1} \in \mathcal{Y}$ and we give $A_{i} \in \mathcal{X}$ for $2 \leq i \leq n$. Now we put $\mathcal{T}=\mathcal{X} \backslash\left\{A_{2}, \ldots, A_{n}\right\}$. It is clear that for any $X_{i} \in \mathcal{T}, X_{i}$ is not adjacent to all of the vertices in \mathcal{A}. Now, suppose that

$$
\begin{aligned}
& \mathcal{A}_{2}=\left\{X_{i} \in \mathcal{T} \mid X_{i} \not \perp A_{2}\right\}, \\
& \mathcal{A}_{3}=\left\{X_{i} \in \mathcal{T} \mid X_{i} \not \perp A_{3}\right\} \backslash \mathcal{A}_{2}, \\
& \vdots \\
& \mathcal{A}_{n}=\left\{X_{i} \in \mathcal{T} \mid X_{i} \not \perp \not \perp A_{n}\right\} \backslash \bigcup_{i=2}^{i=n-1} \mathcal{A}_{i} .
\end{aligned}
$$

We claim that $\mathcal{T}=\bigcup_{i=2}^{i=n} \mathcal{A}_{i}$. It is clear that $\bigcup_{i=2}^{i=n} \mathcal{A}_{i} \subset \mathcal{T}$ and we show that $\mathcal{T} \subset \bigcup_{i=2}^{i=n} \mathcal{A}_{i}$. Suppose that $X \in \mathcal{T}$, so there exists $2 \leq i \leq n$ such
that $X \not \perp A_{i}$. Hence $X \in \mathcal{A}_{i}$. Finally, we claim that for any $2 \leq i \leq n$, every two vertices of \mathcal{A}_{i} are not adjacent. Let $Z, Y \in \mathcal{A}_{i}$ such that $Z \perp Y$. We know that $Z \not \perp A_{i}, Y \not \perp A_{i}$. So there exist $Z_{1} \leq Z$ and $Y_{1} \leq Y$ and $A, B \leq A_{i}$ such that $Z_{1} \cong A, Y_{1} \cong B$. By previous lemma, $A \not \perp B$, i.e., A and B have isomorphic submodules. In this case Z_{1} and Y_{1} have isomorphic submodules, which is a contradiction. Hence all vertices of \mathcal{A}_{i} can be colored by A_{i} color, for some $2 \leq i \leq n$. Thus the graph $\Gamma_{\perp}(M)$ can be colored so that adjacent vertices have different color. In this case, we have $\chi\left(\Gamma_{\perp}(M)\right)=\omega\left(\Gamma_{\perp}(M)\right)$.

The next result is a counterpart of [2, Theorem 2.5]. Now for any semi-simple R-module M, we find the clique number and chromatic number of $\Gamma_{\perp}(M)$ and observe that they are in fact the same.

Proposition 2.4. Let M be semi-simple R-module such that $\Gamma_{\perp}(M) \neq \emptyset$. Then the following statements hold:
(1) The clique number and the chromatic number of $\Gamma_{\perp}(M)$ are equal to the cardinal number of the set of non-isomorphic simple submodules of M.
(2) The girth of $\Gamma_{\perp}(M)$ is 3 except when M has exactly two nonisomorphic simple submodules.

Proof. (1) Let $\left\{N_{i}\right\}_{i \in I}$ be a clique in $\Gamma_{\perp}(M)$. So for any $i \neq j \in I$, $N_{i} \perp N_{j}$. Also for any $i \in I, N_{i}$ contains a simple submodule of M such as S_{i}. Thus for any $i, j \in I, S_{i} \perp S_{j}$, i.e., $S_{i} \not \approx S_{j}$. Assume that \mathcal{S} is all of non-isomorphic simple submodules of M, hence $|I| \leq|\mathcal{S}|$ such that \mathcal{S} is the largest clique in $\Gamma_{\perp}(M)$. Therefore the clique number of $\Gamma_{\perp}(M)$ is the cardinal number of the set of non-isomorphic simple submodules of M. But $|\mathcal{S}|=\omega\left(\Gamma_{\perp}(M)\right) \leq \chi\left(\Gamma_{\perp}(M)\right)$ and so $\chi\left(\Gamma_{\perp}(M)\right) \geq|\mathcal{S}|$. We show that $\chi\left(\Gamma_{\perp}(M)\right)=|\mathcal{S}|$. Let $N \in \mathcal{M}_{\perp}$, so N contains a simple submodule of M such as S and we put:

$$
N_{S}=\left\{T \in \mathcal{S} \mid T \cong N_{1} \leq N\right\}
$$

By the Axiom of choice, for any $N \in \mathcal{M}_{\perp}$, we choose $T \in N_{S}$. Hence N, T can be colored by one color. We claim that by these conditions, $\Gamma_{\perp}(M)$ is colored. In fact we find the least of the number of color in $\Gamma_{\perp}(M)$ which adjacent vertices have different color. Suppose that N, K are two adjacent vertices in $\Gamma_{\perp}(M)$ such that have the same color. So N and $T_{1} \in \mathcal{S}$ have the same color, also K and $T_{2} \in \mathcal{S}$ have the same color. Therefore T_{1} and T_{2} have the same color, but $T_{1}, T_{2} \in \mathcal{S}$ and so $T_{1}=T_{2}$. Also $T_{2} \cong K_{1} \leq K$ and $T_{1} \cong N_{1} \leq N$, that is $N_{1} \cong K_{1}$, i.e., $N \not \perp K$, which is a contradiction. Thus $\chi\left(\Gamma_{\perp}(M)\right) \leq|\mathcal{S}|$, so $\chi\left(\Gamma_{\perp}(M)\right)=|\mathcal{S}|$.
(2) Assume that the number of non-isomorphic simple submodules of M is $|I|$. If $|I| \geq 3$, then it is clear that $\operatorname{gr}\left(\Gamma_{\perp}(M)\right)=3$. But if M has two non-isomorphic simple submodules S_{1} and S_{2}, then $\Gamma_{\perp}(M)$ is a bipartite graph. Thus $\operatorname{gr}\left(\Gamma_{\perp}(M)\right)=4$ or $\operatorname{gr}\left(\Gamma_{\perp}(M)\right)=\infty$.

The following example illustrate that condition of semi-simple is required on Proposition 2.4.

Example 2.5. Let $R=\mathbb{Z}$ and consider the R-module

$$
M=\mathbb{Z} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}
$$

such that p, q are distinct prime number. Note that M is not semisimple module and $\omega\left(\Gamma_{\perp}(M)\right)=3$ such that the number of nonisomorphic simple submodules of M is 2 . Also $\operatorname{gr}\left(\Gamma_{\perp}(M)\right)=3$.

The following figure shows that $\omega\left(\Gamma_{\perp}\left(\mathbb{Z}_{210}\right)\right)=\chi\left(\Gamma_{\perp}\left(\mathbb{Z}_{210}\right)\right)=4$ and the number of non-isomorphic simple submodules is 4 .

Figure 1. \mathbb{Z}_{210}

3. Perpendicular Graph and Some Finiteness Conditions

In this section, we find results with hypothesis which all vertices are finite degree. Also we show that $\Gamma_{\perp}(M)$ is finite if and only if M contains a simple submodule and every simple submodule of M has a finite degree. Finally, it is proved that $\Gamma_{\perp}(M)$ is n-regular, if $\Gamma_{\perp}(M) \cong K_{n, n}$.

Let $A \in \mathcal{M}_{\perp}$. By $\mathrm{N}(A)$, we mean the set of all vertices which are adjacent to A. It is called the neighbor of A in $\Gamma_{\perp}(M)$. Also $\mathrm{S}(A)$ means that all of submodules of A.

Lemma 3.1. Let M be an R-module such that every vertex of $\Gamma_{\perp}(M)$ has a finite degree. Then the number of submodules of any vertex of $\Gamma_{\perp}(M)$ is finite.

Proof. Assume that $N \in \mathcal{M}_{\perp}$ so there exists $K \leq M$ such that $K \perp N$. Since all submodules of N are adjacent to K and the degree of every vertex of $\Gamma_{\perp}(M)$ is finite, the number of submodules of N is finite.

Now, we reduced the conditions of Lemma 3.1, we infer:
Lemma 3.2. Let M be an R-module. If M contains a simple submodule and every simple submodule of M has a finite degree, then the number of submodules of any vertex of $\Gamma_{\perp}(M)$ is finite.

Proof. Assume that S is a simple submodule of M such that $S \in \mathcal{M}_{\perp}$. We know that the number of vertices of $\Gamma_{\perp}(M)$ which adjacent to S is finite, so suppose that $\mathrm{N}(S)=\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$. Since $S \perp N_{i}, S$ is adjacent to all submodules of N_{i}. That is the number of submodules of N_{i} is finite. Now, suppose that $\mathcal{B}=\left\{M_{j}\right\}_{j \in J}$ is the family all vertices of $\Gamma_{\perp}(M)$ which are not adjacent to S. We note that the vertices of \mathcal{B} are mutually non-adjacent (If $M_{1}, M_{2} \in \mathcal{B}$ and $M_{1} \perp M_{2}$, inasmuch as $S \not \perp M_{1}$ and $S \not \perp M_{2}$ so there exist $M_{1}^{\prime} \leq M_{1}$ and $M_{2}^{\prime} \leq M_{2}$ such that $M_{1}^{\prime} \cong S \cong M_{2}^{\prime}$, which is a contradiction). For any $K \in \mathrm{~S}\left(M_{j}\right)$, since $M_{j} \in \mathcal{M}_{\perp}$, there exists $N_{i} \in \mathrm{~N}(S)$ such that $M_{j} \perp N_{i}$. Hence $K \perp N_{i}$. On the other hand, for every $N_{i} \in \mathrm{~N}(S), N_{i}$ contains a simple submodule, hence assume that $S_{i} \subset N_{i}$, for every $1 \leq i \leq n$. Thus $K \perp S_{i}$ for any $K \in \mathrm{~S}\left(M_{j}\right)$. Since $\operatorname{deg}\left(S_{i}\right)<\infty,\left|\mathrm{S}\left(M_{j}\right)\right|<\infty$. Hence the number of submodules of M_{j} is finite.

The next example shows that the converse Lemmas 3.1 and 3.2 are not true.

Example 3.3. Let $R=\mathbb{Z}$ and consider the R-module

$$
M=\mathbb{Z}_{q} \oplus \mathbb{Z}_{p^{\infty}}
$$

where p, q are distinct prime number. By [6, Theorem 2.4], every submodule of M is $A \oplus B$ such that $A \leq \mathbb{Z}_{p^{\infty}}$ and $B \leq \mathbb{Z}_{q}$. Hence $\Gamma_{\perp}(M)$ is an infinite star graph such that for any $N \in \mathcal{M}_{\perp},|\mathrm{S}(N)|<\infty$ but $\operatorname{deg}\left(\mathbb{Z}_{\mathrm{q}}\right)=\infty$.

The next result is a counterpart of [1, Corollary 3.9].
Theorem 3.4. Let M be an R-module such that $\Gamma_{\perp}(M) \neq \emptyset$. Then the following statements hold:
(1) If M has no simple submodule, then $\Gamma_{\perp}(M)$ is infinite.
(2) If M contains a simple submodule and every simple submodule of M has finite degree, then $\Gamma_{\perp}(M)$ is finite.

Proof. (1) It is clear.
(2) Suppose that M contains a simple submodule and every simple submodule of M has finite degree. First, the number of non-isomorphic simple submodules of M is finite. Second, assume that $\left\{S_{i}\right\}_{i \in I}$ is the family of all non-isomorphic simple submodules of M such that $|I|>1$. If there exists $i \in I$ such that the number of simple submodules isomorphic to S_{i} is infinite, then for any $i \neq j, \operatorname{deg}\left(S_{j}\right)$ is infinite which is a contradiction. Hence the number of simple submodules which are isomorphic to S_{i} is finite, for any $i \in I$. That is the number of simple submodules of M if finite. Assume that $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is the set of all simple submodules of M and we show that the number of vertices of $\Gamma_{\perp}(M)$ is finite. On the contrary the number of vertices of $\Gamma_{\perp}(M)$ is infinite. If every vertex of $\Gamma_{\perp}(M)$ is adjacent to S_{i} for some $i \in I$, then as each S_{i} is simple and has a finite degree, $\left|\Gamma_{\perp}(M)\right| \leq \sum_{i=1}^{n} \operatorname{deg}\left(S_{i}\right)<\infty$. Therefore there exists $N \in \mathcal{M}_{\perp}$ such that $N \not \perp S_{i}$ for any $i \in I$. Hence N has a submodule isomorphic to S_{i} and so for any $N \neq K \in \mathcal{M}_{\perp}, K \not \perp N$ which is the contradiction with $N \in \mathcal{M}_{\perp}$.

The following corollary is an immediate consequence of Theorem 3.4.
Corollary 3.5. Let M be an R-module and $\Gamma_{\perp}(M) \neq \emptyset$. The degree of any vertex of $\Gamma_{\perp}(M)$ is finite if and only if $\Gamma_{\perp}(M)$ is finite graph.

A ray in an infinite graph is an infinite sequence of vertices $v_{0}, v_{1}, v_{2}, \ldots$ in which each vertex appears at most once in the sequence and each two consecutive vertices in the sequence are the two endpoints of an edge in the graph.

Lemma 3.6. [5, Lemma 1] A locally finite graph has infinite diameter if and only if it contains a ray.

Using Konigs Lemma and Lemma 3.6, we are able to give a completely graph theoretic proof for Corollary 3.5. The reader is reminded that Konigs Lemma say" If a graph is connected and locally finite, then if our graph is infinite, it has a ray (an infinite path)". Now we are ready to give the second proof.

Second proof for Corollary 3.5: Let $\Gamma_{\perp}(M)$ be a locally finite graph. On the contrary assume that $\Gamma_{\perp}(M)$ is an infinite graph. By Konigs Lemma, it has a ray and by Lemma 3.6, its diameter must be infinite which is a contradiction with $\operatorname{diam}\left(\Gamma_{\perp}(M)\right) \leq 3$ in [7].

Proposition 3.7. Let M be an R-module and $\Gamma_{\perp}(M) \neq \emptyset$ such that $\Gamma_{\perp}(M)$ is finite. Then the following statements hold:
(1) Every simple submodule of M is a vertex of $\Gamma_{\perp}(M)$.
(2) The number of simple submodules of M is finite.

Proof. (1) Since $\Gamma_{\perp}(M) \neq \emptyset$, there exist $N, K \leq M$ such that $N \perp K$. But the degree of any vertex in $\Gamma_{\perp}(M)$ is finite, by Lemma 3.1, the number of submodules of any vertex is finite, i.e., every vertex contains a simple submodule. There exist non-isomorphic simple submodules S_{1} and S_{2} of M such that $S_{1} \subset N$ and $S_{2} \subset K$. Assume that S is a simple submodule of M such that $S \notin \mathcal{M}_{\perp}$. Thus $S \not \perp S_{1}$ and $S \not \perp S_{2}$, i.e., $S_{1} \cong S \cong S_{2}$ which is a contradiction.
(2) Since $\Gamma_{\perp}(M)$ is finite, the number of non-isomorphic simple submodules of M is finite. We let $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ be the set of all nonisomorphic simple submodules of M. We note, if M have just one simple submodule S_{1}, then by Lemma 3.1, every vertex contains S_{1} and so $\Gamma_{\perp}(M)=\emptyset$, which is a contradiction. If the number of simple submodules isomorphic to S_{i} is infinite, for some $1 \leq i \leq n$ then for any $i \neq j, \operatorname{deg}\left(S_{j}\right)=\infty$, which is a contradiction.

Proposition 3.8. Let M be an R-module and $\Gamma_{\perp}(M) \neq \emptyset$ be a finite graph. Then the following statements hold:
(1) $\operatorname{Soc}(M) \leq_{e} M$.
(2) M is finitely cogenerated.

Proof. (1) Assume that N is a non-trivial submodule of M. Two cases may happen:
(Case 1) If $N \in \mathcal{M}_{\perp}$, then by Corollary $3.5, \operatorname{deg}(N)<\infty$ and by Lemma 3.1, N contains a simple submodule S. Hence $\operatorname{Soc}(M) \cap N \neq 0$.
(Case 2) If $N \notin \mathcal{M}_{\perp}$, since $\Gamma_{\perp}(M) \neq \emptyset$, there exist $K, L \in \mathcal{M}_{\perp}$ such that $K \perp L$. But $N \notin \mathcal{M}_{\perp}$, that is $K \not \perp N$ and $L \not \perp N$. Since $K \not \perp N$, there exist $N_{1} \leq N$ and $K_{1} \leq K$ such that $N_{1} \cong K_{1}$. Hence $N_{1} \in \mathcal{M}_{\perp}$, i.e., $\operatorname{deg}\left(N_{1}\right)<\infty$ and by Lemma 3.1, N contains a simple submodule S_{1}. Hence $\operatorname{Soc}(M) \cap N \neq 0$, i.e., $\operatorname{Soc}(M) \leq_{e} M$.
(2) By (1), $\operatorname{Soc}(M) \leq_{e} M$ and by Proposition 3.7 the number of simple submodules of M is finite. Hence $\operatorname{Soc}(M)$ is finitely generated and by [8, Proposition 21.3], M is finitely cogenerated.

The next example shows that the converse Proposition 3.8 is not true.

Example 3.9. Let $R=\mathbb{Z}$ and consider the R-module $M=\mathbb{Z}_{q}^{\infty} \oplus \mathbb{Z}_{p}^{\infty}$ where p, q are distinct prime number. It is clear that $\operatorname{Soc}(M) \leq_{e} M$ and M is finitely cogenereted. By [6, Theorem 2.4], we can see that all of submodules of M are $A \oplus B$ which $A \leq \mathbb{Z}_{p}^{\infty}, B \leq \mathbb{Z}_{q}^{\infty}$. Since $\mathrm{S}\left(\mathbb{Z}_{p}^{\infty}\right)$ and $\mathrm{S}\left(\mathbb{Z}_{q}^{\infty}\right)$ are infinite and $\mathbb{Z}_{p}^{\infty} \perp \mathbb{Z}_{q}^{\infty}, \operatorname{deg}\left(\mathbb{Z}_{\mathrm{p}}^{\infty}\right)=\operatorname{deg}\left(\mathbb{Z}_{\mathrm{q}}^{\infty}\right)=\infty$. Thus $\Gamma_{\perp}(M)$ is an infinite graph.

Theorem 3.10. Let n be a positive integer number and M an R-module such that $\Gamma_{\perp}(M)$ is an n-regular, then the following statements hold:
(1) Every non-simple vertex of $\Gamma_{\perp}(M)$ only contains a simple submodule (up to isomorphism).
(2) M has exactly two non-isomorphic simple submodules.
(3) The intersection of all non-zero submodules of M is zero.
(4) $\Gamma_{\perp}(M)$ is a complete bipartite graph K_{n}, n.

Proof. (1) On the contrary, K be a non-simple vertex of $\Gamma_{\perp}(M)$ and $S_{1}, S_{2} \subset K$, such that S_{1} and S_{2} are non-isomorphic simple submodules of M. Since $\Gamma_{\perp}(M)$ is n-regular, K is adjacent to n vertices of $\Gamma_{\perp}(M)$. Let $\mathrm{N}(K)=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Since $S_{1} \neq S_{2}, S_{1} \perp S_{2}$. But S_{1} and S_{2} are adjacent to all of vertices in $\mathrm{N}(K)$. Thus $\operatorname{deg}\left(S_{1}\right)=\operatorname{deg}\left(S_{2}\right) \geq n+1$, which is a contradiction with n-regular graph.
(2) On the contrary, S_{1}, S_{2}, S_{3} are three non-isomorphic simple submodules of M so $S_{1} \oplus S_{2}, S_{1} \oplus S_{3}, S_{2} \oplus S_{3} \in \mathcal{M}_{\perp}$, which is a contradiction with (1).
(3) The intersection of different simple submodules is zero, thus the result follows from part (2).
(4) By (2), M has exactly two non-isomorphic simple submodules S_{1}, S_{2}. Thus for any $N \in \mathcal{M}_{\perp}, S_{1} \lesssim N$ or $S_{2} \lesssim N$. Set

$$
V_{1}=\left\{N \in \mathcal{M}_{\perp} \mid S_{1} \lesssim N\right\}
$$

and $V_{2}=\left\{N \in \mathcal{M}_{\perp} \mid S_{2} \lesssim N\right\}$. Clearly, $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=\mathcal{M}_{\perp}$ and the elements of V_{i} are not adjacent, for $i=1,2$. Now suppose that $A \in V_{1}$ so there exists $0 \neq B \lesseqgtr M$ such that $A \perp B$. But $S_{1} \lesssim A$ and B contains a simple submodule, so $S_{2} \lesssim B$. This implies that $\Gamma_{\perp}(M)$ is a bipartite graph and since $\Gamma_{\perp}(M)$ is an n-regular graph, $\left|V_{1}\right|=\left|V_{2}\right|=n$, i.e., $\Gamma_{\perp}(M)$ is $K_{n, n}$.

Corollary 3.11. Let M be an R-module. $\Gamma_{\perp}(M)$ is n-regular graph if and only if $\Gamma_{\perp}(M) \cong K_{n, n}$.

The following figure, $\Gamma_{\perp}\left(\mathbb{Z}_{216}\right)$ is a 3-regular graph.

Figure 2. \mathbb{Z}_{216}

Acknowledgments

We would like to thank the referees for valuable comments and the careful reading of our manuscript.

References

1. S. Akbari, H. A. Tavallaee and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl., 11 (2012), Article ID: 1250019.
2. A. Amini, B. Amini, E. Momtahan and M. H. Shirdareh Haghighi, On a graph of ideals, Acta Math. Hungar, 134 (2012), 369-384.
3. J. Dauns and Y. Zhou, Classes of modules, Chapman and Hall, 2006.
4. O. A. S. Karamzadeh and A. R. Sajedinejad, Atomic modules, Comm. Algebra, 29 (2001), 2757-2773.
5. B. Krön, End compactifications in non-locally-finite graphs, Math. Proc. Cambridge Philos. Soc., 131(3) (2001), 427-443.
6. A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., 48 (2006), 533-545.
7. M. Shirali, E. Momtahan and S. Safaeeyan, Perpendicular graph of modules, Hokkaido Math. J., 49 (2020), 463-479.
8. B. Stenström, Rings of quotients, Springer-Verlag, New York, 1975.

Maryam Shirali

Department of Mathematics, University of Yasouj, Yasouj, Iran.
Email: maryam.shirali98@yahoo.com

Saeed Safaeeyan

Department of Mathematics, University of Yasouj, Yasouj, Iran.
Email: Safaeeyan@yu.ac.ir

Journal of Algebraic Systems

FURTHER STUDIES OF THE PERPENDICULAR

GRAPHS OF MODULES

M．SHIRALI AND S．SAFAEEYAN

$$
\begin{aligned}
& \text { مطالعه بيشتر گراف هاى متعامد مدولها } \\
& \text { مريي شيرعلى' و سعيد صفاييان「 } \\
& \text { 「, ‘, دانشكده علوم رياضى، دانشگاه ياسوج، ياسوج، ايران }
\end{aligned}
$$

 $A \perp B$ M A
 با رأسهاى
 خوشهاى و عدد رنگى گراف افير شامل زيرمدول ساده باشد، آنگاه اشاره كرد، اين است كه براى يك مدول نيمساده
كلمات كليدى: عدد رنگى، عدد خوشهاى، گراف متناهى، مدول اتميك، مدول نيسساده.

[^0]: DOI: 10.22044/JAS.2023.11606.1587.
 MSC(2010): Primary: 05C25; Secondary: 16D10.
 Keywords: Chromatic number; Clique number; Finite graph; Atomic module; Semi-simple module.
 Received: 27 January 2022, Accepted: 23 April 2023.

 * Corresponding author.

