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(f, g)-DERIVATIONS IN RESIDUATED LATTICES

M. ZAOUI, D. GRETETE AND B. FAHID∗

Abstract. In this paper, we present and examine the characteristics of (f, g)-
derivations for a residuated lattice. Some relationships between (f, g)-derivation
and isotone, contractive and ideal (f, g)-derivations are given. The set of fixed
point of an (f, g)-derivation is introduced and its structure is studied. More
precisely, we show that the set of fixed points is also a residuated lattice.

1. Introduction
The classical two-valued logic, also known as Boolean logic, has

traditionally been used for information processing and inference. How-
ever, with the increasing interest in fuzzy logic, there is a growing
need to establish logical systems that can handle uncertain informa-
tion. Consequently, numerous non-classical logic systems such as BL-
algebras [18], MV-algebras [3], and MTV-algebras [7] have been ex-
tensively proposed and researched. Residuated lattices [22] are funda-
mental and crucial algebraic structures since all other logical algebras
are considered as special cases of residuated lattices.

The notion of derivation is a very interesting and important area
of research, which also allows the study of the structures and proper-
ties of algebraic systems. In 1957, Posner [15] introduced the notion
of derivation in a prim ring (R,+, .). In 2004, Jun and Xin [11] ap-
plied the notion of derivations to BCI-algebras. In 2005, Zhan and
Liu [23] introduced the notion of f-derivation of BCI-algebras. In
2008, Xin et al. [19] proposed the concept of a derivation on a lattice
(L,∧,∨). In the same year, Çeven and Özturk [2] introduced the no-
tion of an f-derivation on a lattice. In 2016, He et al. [9] introdused
the concept of derivation in a residuated lattice, and they character-
ized some special types of residuated lattices in terms of derivations.
In 2018, Rachunek and Salunova [16] have introduced the concept of
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derivations and a complete description of all derivations on a non-
commutative generalization of MV-algebras. In the same year, Liang
et al. [13] have presented the notions of derivations on EQ-algebras
and obtained many special types of them. In addition, Wang et al.
[20] introduced the notion of derivations of commutative multiplicative
semilattices, they investigated the related properties of some special
derivations and gave some characterizations. In 2019, Wang et al. [21]
gave some representations of MV -algebras in terms of derivations.
Rasheed and Majeed [17] studied some results of (α, β)-derivations
on prime seeding. Dey et al. [6] considered generalized orthogonal
derivations of semiprimary rings. Ciungu [5] studied the properties of
implicit derivations in pseudo-BCI-algebras. Chaudhuri [4] discussed
(σ, τ)-derivations of group rings. In 2020, Guven [8] proposed the
notion of (σ, τ)-derivations generalized on rings and discussed some
related aspects. Hosseini and Fosner [10] studied the image of left
Jordan derivations on algebras. Ali and Rahaman [1] studied a pair
of generalized derivations in rings. Zhu et al. [24] introduced the
notion of a generalized derivation and investigated some related prop-
erties of them. In 2021, Ling and Zhu [14] proposed a generalization
of a derivation in a residuated lattice and some related properties are
investigated.

In this paper, as a generalization of a derivation in a residuated
lattice, the notion of multiplicative (f, g)-derivation d is introduced,
determined by two derivations f and g from L to L. More precisely,
for any x, y ∈ L, we propose the following formula:

d(x⊗ y) = (f(x)⊗ y) ∨ (x⊗ g(y)).

Meanwhile, we discuss and investigate some related properties.
This paper is organized as follows. In section 2, we recall some

concepts and results on residuated lattices. In section 3, we propose
the notion of multiplicative (f, g)-derivation in residuated lattices and
investigate some related properties of isotone, contractive, ideal and
good commutative (f, g)-derivation. Also, we define the notion of fixed
point. In particular, we obtain that the fixed point set is a residuated
lattice.



(f, g)-DERIVATIONS IN RESIDUATED LATTICES 3

2. Preliminaries
In this section, we briefly present some basic notions used in the rest

of the work.

Definition 1. [22] An algebraic structure (L,∧,∨,⊗,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) is called a bounded commutative residuated lattice
(simply called a residuated lattice) if

(1) (L,∧,∨, 0, 1) is a bounded lattice;
(2) (L,⊗, 1) is a commutative monoid with unit element 1;
(3) For all x, y, z ∈ L, x⊗ y ≤ z if and only if x ≤ y → z.

In what follows, we denote by L a residuated lattice
(L,∧,∨,⊗,→, 0, 1).

For all x ∈ L and a natural number n, we mean x
′
= x → 0, x′′

= (x
′
)
′,

x0 = 1 and xn = xn−1 ⊗ x.

Proposition 1. [22] For all x, y, z, w ∈ L, we have
(1) 1 → x = x, x → 1 = 1;
(2) x ≤ y if and only if x → y = 1;
(3) x⊗ (x → y) ≤ y;
(4) If x ≤ y, then z → x ≤ z → y and y → z ≤ x → z;
(5) If x ≤ y and z ≤ w, then x⊗ z ≤ y ⊗ w;
(6) x⊗ y ≤ x ∧ y;
(7) x⊗ y = 0 if and only if x ≤ y

′;
(8) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z).

An element x ∈ L is called complemented if there exists an element
y ∈ L such that x ∧ y = 0 and x ∨ y = 1. By B(L), we mean the set
of all complemented elements of L, i.e.,

B(L) = {x ∈ L : ∃y ∈ L, x ∧ y = 0 and x ∨ y = 1}.

Proposition 2. [12] For a residuated lattice L we have
(1) If x ∈ B(L), then x ∧ y = x⊗ y for all y ∈ L;
(2) If x ∈ B(L), then x⊗ x = x.

At the end of this section, we remind the notion of derivation in a
residuated lattice L as follows.

Definition 2. [9] A mapping d: L −→ L is called a derivation on L if
it satisfies the following condition, for any x, y ∈ L,
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d(x⊗ y) = (d(x)⊗ y) ∨ (x⊗ d(y)).

Proposition 3. [9] Let d be a derivation of L. For all x, y ∈ L,
(1) d(0) = 0;
(2) x⊗ d(1) ≤ d(x);
(3) d(xn) = xn−1 ⊗ d(x), for any n ≥ 1;
(4) if x ≤ y

′, then d(y) ≤ x
′ and d(x) ≤ y

′;
(5) d(x

′
) ≤ (d(x))

′.

3. (f, g)-derivations in Residuated Lattices
Definition 3. Let f and g : L −→ L be derivations of L. A mapping
d: L −→ L is called an (f, g)-derivation determined by f and g if

d(x⊗ y) = (f(x)⊗ y) ∨ (x⊗ g(y)),

for any x, y ∈ L.

Example 1. Let L = {0, a, b, c, 1} such that the order on L is given
by the following Hasse diagram:

0

a b

c

1

The operations ⊗ and −→ on L are defined by the following tables:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then L is a residuated lattice.
Now, we define a map d : L −→ L as follows: for all x ∈ L,

d(x) =

{
x, x = 0, a, b

c, x = c, 1
.
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A map d is an (f, g)-derivation, determined by two derivations f
and g on L as follows: for all x ∈ L,

f(x) =

{
0, x = 0, a

b, x = b, c, 1
, g(x) =

{
0, x = 0, b

a, x = a, c, 1
.

Proposition 4. Let d be a (f, g)-derivation on L, then the following
statements hold.

(1) d(0) = 0;
(2) f(1)⊗ x ≤ d(x) and g(x) ≤ d(x), for any x ∈ L;
(3) xn−1 ⊗ f(x) ≤ d(xn) and xn−1 ⊗ g(x) ≤ d(xn), for any x ∈ L

and n > 1;
(4) if x⊗ y = 0, then y ⊗ f(x) = x⊗ g(y) = d(x⊗ y) = 0, for any

x, y ∈ L;
(5) d(x

′
) ≤ (f(x))

′ ∨ (g(x))
′, for any x ∈ L.

Proof. (1) It follows from definition that
d(0) = d(0⊗0) = (f(0)⊗0)∨(0⊗g(0)) = (0⊗0)∨(0⊗0) = (0⊗0) = 0,
i.e., d(0) = 0.
(2) Let x ∈ L. Then d(x) = d(1⊗x) = (f(1)⊗x)∨(1⊗g(x)). Hence,

f(1)⊗ x ≤ d(x) and 1⊗ g(x) = g(x) ≤ d(x).
(3) Let x ∈ L. Then d(x2) = d(x⊗x) = (f(x)⊗x)∨(x⊗g(x)). Thus,

f(x)⊗ x = x⊗ f(x) ≤ d(x2) and x⊗ g(x) ≤ d(x2). By induction, we
have
xn−1 ⊗ f(x) ≤ d(xn) and xn−1 ⊗ g(x) ≤ d(xn), for any n > 1.
(4) Let x, y ∈ L and x⊗ y = 0. Then it follows from (1) that

d(x⊗ y) = y ⊗ f(x) = x⊗ g(y) = 0.

(5) Let x ∈ L, Then
d(x

′
) = d(x

′ ⊗ 1)

= (f(x
′
)⊗ 1)) ∨ (x

′ ⊗ g(1))

= f(x
′
) ∨ (x

′ ⊗ g(1))

≤ f(x
′
) ∨ g(x

′
)

≤ (f(x))
′ ∨ (g(x))

′
.

□
Definition 4. Let d be an (f, g)-derivation on L,
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(1) d is called an isotone (f, g)-derivation provided that x ≤ y im-
plies
d(x) ≤ d(y), for any x, y ∈ L;

(2) d is called a contractive (f, g)-derivation provided that d(x) ≤ x,
for any x ∈ L.

In particular, if d is both isotone and contractive, we call d an ideal
(f, g)-derivation.

Example 2. Let L = {0, a, b, c, 1} be a chain. Define the operations
⊗ and → as follows:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then L is a residuated lattice, where x ∧ y = min{x, y} and
x ∨ y = max{x, y} for all x, y ∈ L.

Now, we define a map d : L −→ L as follows: for all x ∈ L,

d(x) =

{
x, x = 0, a, b, c

c, x = 1
.

A map d is an (f, g)-derivation, determined by two derivations f
and g on L as follows: for all x ∈ L,

f(x) =

{
x, x = 0, a, b

c, x = c, 1
, g(x) =

{
0, x = 0, a

b, x = b, c, 1
.

d is an ideal (f, g)-derivation on L.

Example 3. Let t ∈ L, Define a mapping f : L −→ L by
f(x) = x ⊗ t and g: L −→ L by g(x) = 0, for any x ∈ L, then f
and g are derivations on L. Now, we define a mapping d: L −→ L
by d(x) = x ⊗ t, for any x ∈ L. It is easy to verify that d is an ideal
(f, g)-derivation on L.

In the following example, we will provide an illustration of an
(f, g)-derivation on L, which is both contractive and not isotone.
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Example 4. Let L = {0, a, b, c, d, 1} such that the order on L is given
by the following Hasse diagram:

0

a b

c

d

1

The operations ⊗ and −→ on L are defined by the following tables:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a a a
b 0 0 b b b b
c 0 a b c c c
d 0 a b c c d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 a b 1 1 1
d 0 a b d 1 1
1 0 a b c d 1

Then L is a residuated lattice.
Now, we define a map d : L −→ L as follows: for all x ∈ L,

d(x) =

{
x, x = 0, a, b, c, d

c, x = 1
.

A map d is an (f, g)-derivation, determined by two derivations f
and g on L as follows: for all x ∈ L,

f(x) =

{
x, x = 0, a, b, c, d

a, x = 1
, g(x) =

{
x, x = 0, a, b, c, d

b, x = 1
.

d is an (f, g)-derivation on L contractive. However, d is not isotone.

Now, some properties are investigated.

Proposition 5. Let d be an (f, g)-derivation on L. If d is contractive,
then f and g are also contractive.

Proof. We know that f(x) ≤ d(x) and g(x) ≤ d(x), for any
x ∈ L. Since d is contractive (i.e., d(x) ≤ x, for any x ∈ L), it
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holds that f(x) ≤ x and g(x) ≤ x, for any x ∈ L. Thus, f and g are
contractive. □
Proposition 6. Let d be an (f, g)-derivation on L. If f or g is
contractive, then d is contractive.
Proof. Assume that f is contractive and let x ∈ L. We have
d(x) = f(x)∨(x⊗g(1)). Then the fact that f(x) ≤ x and x⊗g(1) ≤ x
imply that f(x) ∨ (x⊗ g(1)) ≤ x. Therefore, d is contractive. □
Proposition 7. Let d be an (f, g)-derivation on L. If f or g is isotone,
then d is isotone.
Proof. Assume that f is isotone and let x, y ∈ L such that x ≤ y. Then
f(x) ≤ f(y). Thus, d(x) = f(x)∨(x⊗g(1)) ≤ f(y)∨(y⊗g(1)) = d(y).
Consequently, d is isotone. □
Proposition 8. Let d be an isotone (f, g)-derivation on L. Then the
following statements hold.

(1) If z ≤ x → y, then z ≤ f(x) → d(y) and x ≤ g(z) → d(y), for
any x, y, z ∈ L;

(2) x → y ≤ f(x) → d(y) and g(x → y) ≤ x → d(y), for any
x, y ∈ L;

(3) y ≤ f(x) → d(y) and x ≤ g(y) → d(x), for any x, y ∈ L.
Proof. (1) Let x, y, z ∈ L and z ≤ x → y. Then x⊗z ≤ y. Since d is an
isotone (f, g)-derivation on L, we have (f(x)⊗ z)∨ (x⊗ g(z)) ≤ d(y),
then f(x)⊗ z ≤ d(y) and x⊗ g(z) ≤ d(y). Therefore z ≤ f(x) → d(y)
and x ≤ g(z) → d(y).
(2) Since x ⊗ (x → y) ≤ y, we have d(x ⊗ (x → y)) ≤ d(y).

It follows that (f(x) ⊗ x → y) ∨ (x ⊗ g(x → y)) ≤ d(y), which
implies f(x) ⊗ (x → y) ≤ d(y) and x ⊗ g(x → y) ≤ d(y), Therefore
x → y ≤ f(x) → d(y) and g(x → y) ≤ x → d(y) for all x, y ∈ L.
(3) Since x ⊗ y ≤ x for all x, y ∈ L, we have d(x ⊗ y) ≤ d(x). It

follows that (f(x)⊗ y)∨ (x⊗ g(y)) ≤ d(x). Thus f(x)⊗ y ≤ d(x) and
x ⊗ g(y) ≤ d(x). Therefore, y ≤ f(x) → d(y) and x ≤ g(y) → d(x)
for all x, y ∈ L. □
Proposition 9. Let d be a contractive (f, g)-derivation on L. Then
the following statements hold.

(1) If f(1) = 1, then d is an identity derivation, i.e., d(x) = x, for
any x ∈ L;
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(2) If g(x) = x, for any x ∈ L, then d is an identity derivation.

Proof. (1) From proposition 4, it follows that f(1)⊗x ≤ d(x), for any
x ∈ L. Assume that f(1) = 1, for any x ∈ L we get

x = x⊗ 1 = x⊗ f(1) ≤ d(x) ≤ x,

which shows that d(x) = x for all x ∈ L. Therefore d is an identity
derivation.
(2) From proposition 4, it follows that g(x) ≤ d(x) for any x ∈ L.

Assume that g(x) = x, we get x = g(x) ≤ d(x) ≤ x, which shows that
d(x) = x for all x ∈ L. Therefore d is an identity derivation. □

Corollary 1. Let d be a contractive (f, g)-derivation on L. If f or g
is an identity derivation, then d is also an identity derivation.

Theorem 1. Let d be an (f, g)-derivation on L. Then the following
statements hold.

(1) If f(x) → d(y) = f(x) → y, for any x, y ∈ L, then d is an ideal
(f, g)-derivation on L;

(2) The converse of (1) holds if we assume that f(f(x)) = f(x), for
any x ∈ L.

Proof. (1) Assume that f(x) → d(y) = f(x) → y, for any x, y ∈ L.
Since f(x) ⊗ 1 ≤ d(x), we have 1 ≤ f(x) → d(x) = f(x) → x,
then f(x) ⊗ 1 ≤ x. On the other hand g(1) ⊗ x ≤ g(1) ∧ x ≤ x,
which implies d(x) = (f(x) ⊗ 1) ∨ (x ⊗ g(1)) ≤ x, for any x ∈ L.
Thus, d is contractive. Moreover, for any x, y ∈ L, let x ≤ y, we have
f(x)⊗1 = f(x) ≤ x ≤ y. It follows that 1 ≤ f(x) → y = f(x) → d(y),
then f(x) ≤ d(y). Thus,

d(x) = (f(x)⊗1)∨ (x⊗g(1)) ≤ d(y)∨ (y⊗g(1)) ≤ d(y)∨g(y) ≤ d(y),

then, d(x) ≤ d(y). Hence d is isotone. Therefore d is an ideal
(f, g)-derivation on L.
(2) Let d be an ideal (f, g)-derivation on L and f(f(x)) = f(x),

for any x ∈ L. Since d(y) ≤ y, for any y ∈ L, it holds that by
Proposition 1 (4) that f(x) → d(y) ≤ f(x) → y. On the other hand,
let t ≤ f(x) → y, for any t ∈ L. We obtain f(x) ⊗ t ≤ y. Since d is
isotone, it follows that d(f(x)⊗ t) ≤ d(y), for any x, y, t ∈ L. The fact
that d(x⊗y) = (f(x)⊗y)∨(x⊗g(y)), implies that f(x)⊗y ≤ d(x⊗y),
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for any x, y ∈ L. Thus, f(f(x)) ⊗ t ≤ d(f(x) ⊗ t) ≤ d(y), for any
x, y ∈ L. Hence t ≤ f(f(x)) → d(y), for any t ∈ L, which implies that

f(x) → y ≤ f(x) → d(y)

for all x, y ∈ L. Therefore, we obtain f(x) → d(y) = f(x) → y, for
any x, y ∈ L. □

Theorem 2. Let d be a contractive (f, g)-derivation on L. If
d(1) ∈ B(L), then the following statements are equivalent.

(1) d is an ideal (f, g)-derivation on L;
(2) d(x) ≤ d(1), for any x ∈ L;
(3) d(x) = d(1)⊗ x, for any x ∈ L;
(4) d(x ∧ y) = d(x) ∧ d(y), for any x, y ∈ L;
(5) d(x ∨ y) = d(x) ∨ d(y), for any x, y ∈ L;
(6) d(x⊗ y) = d(x)⊗ d(y), for any x, y ∈ L.

Proof. (1) ⇒ (2) Let x ∈ L. Since x ≤ 1, and d is isotone, then
d(x) ≤ d(1).
(2) ⇒ (3) Suppose that d(x) ≤ d(1), for any x ∈ L. Notice that

d(1) ∈ B(L), we obtain d(x) = d(1) ∧ d(x) = d(1)⊗ d(x) ≤ d(1)⊗ x.
On the other hand, since, f(1) ⊗ x ≤ d(x) and g(1) ⊗ x ≤ d(x) we
have (f(1)⊗ x) ∨ (g(1)⊗ x) ≤ d(x). Then, (f(1) ∨ g(1))⊗ x ≤ d(x).
So d(1)⊗ x ≤ d(x). Thus, d(x) = d(1)⊗ x, for any x ∈ L.
(3) ⇒ (4) Let d(x) = d(1)⊗x, for any x ∈ L. Then, for any x, y ∈ L,

we have

d(x ∧ y) = d(1)⊗ (x ∧ y)

= d(1) ∧ (x ∧ y)

= (d(1) ∧ x) ∧ (d(1) ∧ y)

= (d(1)⊗ x) ∧ (d(1)⊗ y)

= d(x) ∧ d(y).

(4) ⇒ (1) Assume that x ≤ y, then, x ∧ y = x. An consequence of
(4) is that d(x) = d(x ∧ y) = d(x) ∧ d(y), which implies d(x) ≤ d(y)
for all x, y ∈ L. Thus, d is an ideal (f, g)-derivation on L.
(3) ⇒ (5) For any x, y ∈ L, it follows from (3) and proposition 1

that

d(x ∨ y) = d(1)⊗ (x ∨ y) = (d(1)⊗ x) ∨ (d(1)⊗ y) = d(x) ∨ d(y).
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(5) ⇒ (1) Let x, y ∈ L such that x ≤ y. It follows from (5) that

d(y) = d(x ∨ y) = d(x) ∨ d(y),

for any x, y ∈ L. Then we conclude that d(x) ≤ d(y), for any x, y ∈ L.
Therefore, d is an ideal (f, g)-derivation on L.
(3) ⇒ (6) For any x, y ∈ L, it follows from (3) that

d(x⊗ y) = d(1)⊗ (x⊗ y) = (d(1)⊗ x)⊗ (d(1)⊗ y) = d(x)⊗ d(y).

(6) ⇒ (2) Let x ∈ L. Then it holds that

d(x) = d(x⊗ 1) = d(x)⊗ d(1) = d(x) ∧ d(1).

Thus, d(x) ≤ d(1) for any x, y ∈ L. □

An ideal (f, g)-derivation is said to be good if d(1) ∈ B(L).

Example 5. Let L = {0, a, b, c, d, 1} such that the order on L is given
by the following Hasse diagram:

0

a

b

c

d

1

The operations ⊗ and −→ on L are defined by the following tables:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 b b d 0 a
b 0 b b 0 0 b
c 0 d 0 c d c
d 0 0 0 d 0 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

Then L is a residuated lattice and B(L) = {0, b, c, 1}.
Now, we define a map d : L −→ L by d(x) = x for all x ∈ L.
A map d is an (f, g)-derivation, determined by two derivations f

and g on L as follows: for all x ∈ L,
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f(x) =


0, x = 0

b, x = a, b, 1

c, x = c

d, x = d

, g(x) =


0, x = 0, b

c, x = c, 1

d, x = a, d

.

One can check that d is a good ideal (f, g)-derivation on L.
In the following, we discuss the properties of good ideal

(f, g)-derivation.
Proposition 10. Let d be a good ideal (f, g)-derivation on L. Then
it holds that

(1) for any x ∈ L, d2(x) = d(x);
(2) for any x, y ∈ L, d(x) ≤ y if and only if d(x) ≤ d(y);
(3) for any x, y ∈ L,

d(d(x) ∧ d(y)) = d(d(x) ∧ y) = d(x ∧ d(y)) = d(x ∧ y).
Proof. (1) Since d is a good ideal (f, g)-derivation on L and
d(1) ∈ B(L), we have d(x) = d(1)⊗ x. It follows that

d(d(x)) = d(1)⊗ d(x) = d(1)⊗ (d(1)⊗ x) = d(1)⊗ x = d(x),

that is, d2(x) = d(x), for any x ∈ L.
(2) Assume that d(x) ≤ y, we have d(d(x)) ≤ d(y). By statement

(1), we get d(x) ≤ d(y). Conversely, suppose that d(x) ≤ d(y), we
have d(x) ≤ d(y) ≤ y.
(3) It follows from statement (1) that d(d(x)) = d(x), for any

x ∈ L. From d(y) ≤ y, we have x ∧ d(y) ≤ x ∧ y. It follows that
d(x∧d(y)) ≤ d(x∧y), for any x, y ∈ L. On the other hand, combining
d(x∧y) ≤ d(y) and d(x∧y) ≤ d(x) ≤ x, we obtain d(x∧y) ≤ x∧d(y).
Then d(x∧y) = d(d(x∧y)) ≤ d(x∧d(y)). Thus, d(x∧y) = d(x∧d(y)),
for any x, y ∈ L. It follows that d(d(x) ∧ y) = d(d(x) ∧ d(y)). In a
similar way, we can prove that d(x ∧ y) = d(d(x) ∧ y). Therefore, we
conclude that d(d(x) ∧ d(y)) = d(d(x) ∧ y) = d(x ∧ d(y)) = d(x ∧ y),
for any x, y ∈ L. □

Next, we discuss the structure and properties of the fixed point set
of an ideal (f, g)-derivation. Firstly, we give the concept of the fixed
set of (f, g)-derivation in residuated lattices as follows.
Definition 5. Let d be an (f, g)-derivation on L. We denote by set

Fixd(L) = {x ∈ L | d(x) = x},
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the set of fixed elements of L with respect to an (f, g)-derivation d.

Now, we investigate some operations on Fixd(L).

Theorem 3. Let d be an ideal (f, g)-derivation on L. Then it holds
that

(1) for any x, y ∈ Fixd(L), x⊗ y, x ∨ y ∈ Fixd(L).
(2) If d1 and d2 are good, then d1 = d2 if and only if

Fixd1(L) = Fixd2(L).

Proof. (1) Let x, y ∈ Fixd(L),

x⊗ y = d(x)⊗ y

= ((f(1)⊗ x) ∨ g(x))⊗ y

= (f(1)⊗ x⊗ y) ∨ (y ⊗ g(x))

≤ (f(y)⊗ x) ∨ (y ⊗ g(x))

= d(x⊗ y).

On the other hand, since d is an ideal (f, g)-derivation on L, we
have d(x ⊗ y) ≤ x ⊗ y, which implies d(x ⊗ y) = x ⊗ y. Therefore,
x⊗ y ∈ Fixd(L). Moreover, it is easy to know that

x ∨ y = d(x) ∨ d(y) ≤ d(x ∨ y) ≤ x ∨ y,

then d(x ∨ y) = x ∨ y. Hence, x ∨ y ∈ Fixd(L).
(2) Let d1 = d2 it is clear that Fixd1(L) = Fixd2(L). Conversely,

suppose that Fixd1(L) = Fixd2(L). Then d1(d1(x)) = d1(x), for
any x ∈ L, which implies d1(x) ∈ Fixd1(L) = Fixd2(L). Thus,
d2(d1(x)) = d1(x) for any x ∈ L. Similarly, we have d1(d2(x)) = d2(x),
for any x ∈ L. On the other hand, since d1 and d2 are ideal (f, g)-
derivation on L, we have

d1(d2(x)) ≤ d1(x) = d2(d1(x)),

that is d1(d2(x)) ≤ d2(d1(x)), for any x ∈ L. In a similar way, we
conclude that d2(d1(x)) ≤ d1(d2(x)). Combining them, we can obtain
d1(d2(x)) = d2(d1(x)). Thus, d1(x) = d1(d2(x)) = d2(d1(x)) = d2(x),
for any x ∈ L. finally, d1 = d2. □

Remark 1. It follows from Theorem 3 that a good ideal (f, g)-derivation
d is determined by its fixed point set Fixd(L).
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Further, as an application of the above propositions and theorems,
we leads the following result.

Theorem 4. Let d be a good ideal (f, g)-derivation on L. Then
(Fixd(L),u,∨,⊗, 7−→, 0, 1)

is a residuated lattice, where x u y = d(x ∧ y), x 7−→ y = d(x −→ y)
and 1 = d(1), for any x, y ∈ L.

Proof. We complete the proof by three steps.
(1) First, we show that (Fixd(L),u,∨,⊗, 7−→, 0, 1) is a bounded

lattice with 0 as the smallest element and 1 as the greatest element.
From theorem 3, it holds that Fixd(L) is closed under ∨. Since d
is an ideal (f, g)-derivation on L, then d(x ∧ y) ≤ d(x) = x and
d(x∧ y) ≤ d(y) = y, for any x, y ∈ Fixd(L). Thus, d(x∧ y) is a lower
bound of x and y in Fixd(L). Now, suppose that m = d(m) ∈ Fixd(L)
is an other lower bound of x and y in Fixd(L), then we have m ≤ x∧y.
Thus, m = d(m) ≤ d(x ∧ y), which implies that the greatest lower
bound (g.l.b) of x and y exists in Fixd(L) and is d(x∧ y), and will be
denoted by xuy = d(x∧y). Therefore, (Fixd(L),u,∨) is a lattice. Let
x ∈ Fixd(L), by theorem 2, it follows that xu0 = d(x∧0) = d(0) = 0
and x ∨ d(1) = d(x) ∨ d(1) = d(x ∨ 1) = d(1). Therefore, 0 is the
smallest element and 1 = d(1) is the greatest element in Fixd(L).
(2) Next, we prove that (Fixd(L),⊗, 1) is a commutative monoid

with 1 = d(1) as a neutral element. We have (Fixd(L),⊗) is closed
under ⊗, and it is easy to show that it satisfies associative laws.
Thus, (Fixd(L),⊗) is a commutative semigroup. Let x ∈ Fixd(L),
then x ⊗ 1 = x ⊗ d(1) and from property (3) of theorem 2, we have
x ⊗ d(1) = d(x). Then x ⊗ 1 = x ⊗ d(1) = x. Thus, 1 = d(1) is a
neutral element.
(3) Finally, we show that x⊗y ≤ z if and only if y ≤ x 7→ z, for any

x, y, z ∈ Fixd(L). We define x 7→ y = d(x → y). By proposition 10
(2), we have d(x) ≤ y if and only if d(x) ≤ d(y) for all x, y ∈ L. Then,
for any x, y, z ∈ Fixd(L) it follows that

x⊗ y ≤ z ⇔ y ≤ x → z

⇔ d(y) ≤ x → z

⇔ d(y) ≤ d(x → z)

⇔ y ≤ x 7→ z.
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Therefore, (Fixd(L),u,∨,⊗, 7−→, 0, 1) is a residuated lattice. □
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