On the finiteness of local homology modules

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

2 Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran.

Abstract

Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ be an ideal of $R$. Suppose $M$ is a finitely generated $R$-module and $N$ is an Artinian $R$-module. We define the concept of filter coregular sequence to determine the infimum of integers $i$ such that the generalized local homology $\textrm{H}^{\mathfrak{a}}_i(M, N)$ is not finitely generated as an $\widehat{R}^{\mathfrak{a}}$-module, where $\widehat{R}^{\mathfrak{a}}$ denotes the $\mathfrak{a}$-adic completion of $R$. In particular, if $R$ is a complete semi-local ring, then $\textrm{H}^{\mathfrak{a}}_i(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$-module for all non-negative integers $i$ if and only if $(0:_N\mathfrak{a}+\textrm{Ann}(M))$ has finite length.

Keywords


1. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998
2. N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712–4737.
3. N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc., 131(1) (2001), 61–72.
4. K. Divaani-Aazar, H. Faridian and M. Tousi, Local homology, Koszul homology and Serre classes, Rocky Mountain J. Math., 48(6) (2018), 1841–1869.
5. A. Fathi, The first non-isomorphic local cohomology modules with respect to their ideals, J. Algebra Appl., 17(12) (2018), Article ID: 1850230. 
 6. B. Kubik, M. J. Leamer and S. Sather-Wagstaff, Homology of Artinian and Matlis reflexive modules, I, J. Pure Appl. Algebra, 215(10) (2011), 2486–2503.
7. I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, 11 (1973), 23–43.
8. E. Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495–508.
9. E. Matlis, The higher properties of R-sequences, J. Algebra, 50(1) (1978), 77–112.
10. E. Matlis, The Koszul complex and duality, Comm. Algebra, 1 (1974), 87–144.
11. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986
12. T. T. Nam, Generalized local homology for Artinian modules, Algebra Colloq., 19(1) (2012), 1205–1212.
13. T. T. Nam, Left-derived functors of the generalized I-adic completion and generalized local homology, Comm. Algebra, 38(2) (2010), 440–453.
14. A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J., 6(3) (1976), 573–587.
15. J. J. Rotman, An introduction to homological algebra, Academic Press, Inc., New York– London, 1979
16. Z. Tang and H. Zakeri, Co-Cohen-Macaulay modules and modules of generalized fractions, Comm. Algebra, 22(6) (1994), 2173–2204.
17. W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974