

On the finiteness of local homology modules

A. Fathi * and A. Hajikarimi

To cite this article: A. Fathi* and A. Hajikarimi (9 June 2024): On the finiteness of local homology modules, Journal of Algebraic Systems, DOI: 10.22044/JAS.2023.12118.1631

To link to this article: https://doi.org/10.22044/JAS.2023.12118. 1631

Published online: 9 June 2024

ON THE FINITENESS OF LOCAL HOMOLOGY MODULES

A. FATHI* AND A. HAJIKARIMI

ABSTRACT. Let R be a commutative Noetherian ring and \mathfrak{a} be an ideal of R. Suppose M is a finitely generated R-module and N is an Artinian R-module. We define the concept of filter coregular sequence to determine the infimum of integers i such that the generalized local homology $\mathrm{H}^{\mathfrak{a}}_{i}(M,N)$ is not finitely generated as an $\widehat{R}^{\mathfrak{a}}$ -module, where $\widehat{R}^{\mathfrak{a}}$ denotes the \mathfrak{a} -adic completion of R. In particular, if R is a complete semi-local ring, then $\mathrm{H}^{\mathfrak{a}}_{i}(M,N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all non-negative integers i if and only if $(0:_{N}\mathfrak{a} + \mathrm{Ann}(M))$ has finite length.

1. INTRODUCTION

In this paper, we consider a commutative Noetherian ring R with non-zero identity, and an ideal $\mathfrak{a} \subseteq R$, as well as two R-modules M and N. We denote the \mathfrak{a} -adic completion of N by $\Lambda_{\mathfrak{a}}(N)$, and note that the \mathfrak{a} -adic completion functor $\Lambda_{\mathfrak{a}}(\cdot)$ is an additive covariant functor on the category of R-modules. We use $L_i^{\mathfrak{a}}(\cdot)$ to denote the *i*-th left derived functor of $\Lambda_{\mathfrak{a}}(\cdot)$. However, since the tensor functor is not left exact and the inverse limit is not right exact on the category of R-modules, computing the left-derived functors of $\Lambda_{\mathfrak{a}}(\cdot)$ is generally difficult. Moreover, it is important to note that $L_0^{\mathfrak{a}}(\cdot) \ncong \Lambda_{\mathfrak{a}}(\cdot)$.

Matlis studied $L_i^{\mathfrak{a}}(\cdot)$ in the case where \mathfrak{a} is generated by a regular sequence and R is a local ring in [9, 10], and proved some duality between this functor and the local cohomology functor. Recently, Divaani-Aazar et al. in [4] studied the containment of $L_i^{\mathfrak{a}}(\cdot)$ in a Serre class of R-modules up to a given upper bound $s \geq 0$.

Cuong and Nam in [3] defined the *i*-th local homology $H_i^{\mathfrak{a}}(N)$ of N with respect to \mathfrak{a} as follows:

$$\mathrm{H}_{i}^{\mathfrak{a}}(N) := \varprojlim_{n \in \mathbb{N}} \mathrm{Tor}_{i}^{R}(R/\mathfrak{a}^{n}, N) \,.$$

They also showed that $L_i^{\mathfrak{a}}(N) \cong H_i^{\mathfrak{a}}(N)$ when N is Artinian. Similarly, the *i*-th generalized local homology $H_i^{\mathfrak{a}}(M, N)$ of M and N with respect to \mathfrak{a} is

Published online: 1 April 2024

Keywords: Local homology; Tor functor; Finiteness; Filter coregular sequence.

MSC(2010): Primary: 13D07; Secondary: 13E05, 13C05, 13C15, 13D45.

Received: 21 July 2022, Accepted: 29 May 2023.

^{*}Corresponding author.

defined by

$$\mathrm{H}_{i}^{\mathfrak{a}}(M,N) := \varprojlim_{n \in \mathbb{N}} \mathrm{Tor}_{i}^{R}\left(M/\mathfrak{a}^{n}M,N\right);$$

see [12, 13] for basic properties and more details.

Matlis in [8] introduced the concept of cosequence (or coregular sequence) as a dual of the concept of regular sequence (see [14] and [16] for more details and basic properties). If N is Artinian and $(0:_N \mathfrak{a}) \neq 0$, then all maximal coregular N-sequences in \mathfrak{a} have the same length, denoted by width (\mathfrak{a}, N) , where $(0:_N \mathfrak{a})$ denotes the set of all elements $x \in N$ such that rx = 0 for all $r \in \mathfrak{a}$. Moreover,

width
$$(\mathfrak{a}, N) = \inf\{i \in \mathbb{Z} : \mathrm{H}_{i}^{\mathfrak{a}}(N) \neq 0\}$$

(see [2, Theorem 4.11]).

The filter regular sequences can be used to study the Artinianess of local cohomology modules of finitely generated R-modules (see [5, Sec. 3]). In this paper as a dual of the concept of filter regular sequence, we introduce the concept of filter coregular sequence to study the finiteness of local homology modules of Artinian R-modules.

Let Cosupp(N) denote the set of all prime ideals of R containing Ann(N). A sequence x_1, \ldots, x_n of elements of \mathfrak{a} is called a filter coregular N-sequence (of length n) in \mathfrak{a} if

Cosupp
$$((0:_N (x_1, \ldots, x_{i-1})R)/x_i(0:_N (x_1, \ldots, x_{i-1})R)) \subseteq Max(R)$$

for all $1 \le i \le n$, where Max(R) denotes the set of all maximal ideals of R.

Assuming that M is finitely generated and N is Artinian, we prove that if there exists a filter coregular N-sequence in \mathfrak{a} of infinite length, then every filter coregular N-sequence in \mathfrak{a} can be extended to a filter coregular Nsequence in \mathfrak{a} of infinite length, and in this case we set f-width $(\mathfrak{a}, N) = \infty$. Now suppose that all filter coregular N-sequences in \mathfrak{a} have finite length. Then all maximal filter coregular N-sequences in \mathfrak{a} are of the same length, denoted by f-width (\mathfrak{a}, N) . We prove (see Theorem 2.8 and Remark 2.9) that:

f-width(Ann(M), N)
=
$$\inf\{i \in \mathbb{N}_0 : \operatorname{Tor}_i^R(M, N) \text{ has infinite length as an } R\text{-module}\}$$

and

f-width(
$$\mathfrak{a} + \operatorname{Ann}(M), N$$
)
= inf{ $i \in \mathbb{N}_0 : \operatorname{H}_i^{\mathfrak{a}}(M, N)$ is not a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module}.

In particular,

f-width(
$$\mathfrak{a}, N$$
)
= inf{ $i \in \mathbb{N}_0 : \mathrm{H}_i^{\mathfrak{a}}(N)$ is not a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module}

We also show in Corollary 2.11 that if $H_i^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all $i \in \mathbb{N}_0$, then $(0 :_N \mathfrak{a} + \operatorname{Ann}(M))$ has finite length. The converse statement is true when R is a semi-local ring that is complete with respect to its Jacobson radical.

2. Main results

We shall use the following notations and terminologies. Let \mathfrak{a} be an ideal of R and N be an R-module. The radical of \mathfrak{a} will be denoted by $\sqrt{\mathfrak{a}}$; also, $\operatorname{Ann}(N)$ will denote the ideal

$$\{r \in R : rx = 0 \text{ for all } x \in N\}$$

of R; and $(0:_N \mathfrak{a})$ will denote the submodule

 $\{x \in N : rx = 0 \text{ for all } r \in \mathfrak{a}\}\$

of N. We denote by $V(\mathfrak{a})$ the set of all prime ideals of R containing \mathfrak{a} ; and we use $\operatorname{Cosupp}(M)$ to denote $V(\operatorname{Ann}(M))$. The symbol \mathbb{N} (respectively \mathbb{N}_0) will denote the set of positive (respectively non-negative) integers. We refer the reader for any unexplained terminology or notation to [1, 11, 15].

Definition 2.1. Let N be an R-module. We say a prime ideal \mathfrak{p} of R is an *attached prime* of N, if there exists a submodule M of N such that $\mathfrak{p} = \operatorname{Ann}(N/M)$. We denote by $\operatorname{Att}(N)$ the set of all attached primes of N.

For an *R*-module N, it is clear that $Att(N) \subseteq Cosupp(N)$ (we refer the reader to [14] for basic properties and more details of these notations). When N has a *secondary representation* in the sense of [7], our definition of Att(N) coincides with that of Macdonald (see [1, Exercise 7.2.5]). In particular, the set of attached primes of an Artinian module is a finite set.

Definition 2.2. Let N be an R-module. A sequence x_1, \ldots, x_n of elements of R is called a filter coregular N-sequence (of length n) whenever

Cosupp $((0:_N (x_1, \ldots, x_{i-1})R)/x_i(0:_N (x_1, \ldots, x_{i-1})R)) \subseteq Max(R)$

for all $1 \leq i \leq n$, where Max(R) denotes the set of all maximal ideals of R. If, in addition, x_1, \ldots, x_n belong to an ideal \mathfrak{a} , then we say that x_1, \ldots, x_n is a filter coregular N-sequence in \mathfrak{a} .

Lemma 2.3. Let N be an Artinian R-module. The following conditions are equivalent:

- (i) N has finite length;
- (ii) $\operatorname{Cosupp}(N) \subseteq \operatorname{Max}(R)$; and
- (iii) $\operatorname{Att}(N) \subseteq \operatorname{Max}(R)$.

Proof. Assume that N has finite length. Since N is finitely generated, we have Cosupp(N) = Supp(N). Also, the Artinianness of N implies that $\text{Supp}(N) \subseteq \text{Max}(R)$, and so $\text{Cosupp}(N) \subseteq \text{Max}(R)$. This proves the implication (i)⇒(ii). The implication (ii)⇒(iii) is clear. Finally, to prove the implication (iii)⇒(i), suppose that $\text{Att}(N) \subseteq \text{Max}(R)$. Then, by [1, Proposition 7.2.11], we have $\sqrt{\text{Ann}(N)} = \bigcap_{\mathfrak{q} \in \text{Att}(N)} \mathfrak{q}$, and so $\left(\bigcap_{\mathfrak{q} \in \text{Att}(N)} \mathfrak{q}\right)^n N = 0$ for some positive integer n. It follows that N has finite length because Att(N) consists of finitely many maximal ideals. □

Proposition 2.4. Let x_1, \ldots, x_n be elements of R, and let N be an Artinian R-module. The following conditions are equivalent:

- (i) x_1, \ldots, x_n is a filter coregular N-sequence;
- (ii) $(0:_N (x_1, \dots, x_{i-1})R)/x_i(0:_N (x_1, \dots, x_{i-1})R)$ has finite length for all $1 \le i \le n;$
- (iii) $\operatorname{Att}((0:_{N}(x_{1},\ldots,x_{i-1})R)/x_{i}(0:_{N}(x_{1},\ldots,x_{i-1})R)) \subseteq \operatorname{Max}(R)$ for all $1 \leq i \leq n$; and
- (iv) $x_i \notin \bigcup_{\mathfrak{p} \in \operatorname{Att}(0:_N(x_1, \dots, x_{i-1})R) \setminus \operatorname{Max}(R)} \mathfrak{p}$ for all $1 \le i \le n$.

Proof. The statements (i)–(iii) are equivalent by Lemma 2.3. For each $1 \leq i \leq n$, we set $N_{i-1} := (0 :_N (x_1, \ldots, x_{i-1})R)$. Then, in view of [14, Proposition 2.13], we have $x_i \notin \bigcup_{\mathfrak{p} \in \operatorname{Att}(N_{i-1}) \setminus \operatorname{Max}(R)} \mathfrak{p}$ if and only if

$$\operatorname{Att}(N_{i-1}/x_iN_{i-1}) = \operatorname{V}(x_iR) \cap \operatorname{Att}(N_{i-1}) \subseteq \operatorname{Max}(R).$$

Therefore (iii) and (iv) are also equivalent.

Proposition 2.5. Let M and N be R-modules, and let x_1, \ldots, x_n be elements of R. For each $i \in \mathbb{N}_0$, there are the following inclusions:

$$Cosupp\left(\operatorname{Tor}_{i}^{R}\left(M,\left(0:_{N}(x_{1},\ldots,x_{n})R\right)\right)\right)$$

$$\subseteq \left(\bigcup_{j=i}^{i+n} \operatorname{Cosupp}\left(\operatorname{Tor}_{j}^{R}\left(M,N\right)\right)\right)$$

$$\cup \left(\bigcup_{k=1}^{n} \bigcup_{j=i+2}^{i+2+n-k} \operatorname{Cosupp}\left(\operatorname{Tor}_{j}^{R}\left(M,\frac{\left(0:_{N}(x_{1},\ldots,x_{k-1})R\right)}{x_{k}\left(0:_{N}(x_{1},\ldots,x_{k-1})R\right)}\right)\right)\right); \quad (2.1)$$

and if, in addition, x_1, \ldots, x_n belong to Ann(M), then

$$Cosupp\left(\operatorname{Tor}_{i}^{R}(M,N)\right) \subseteq Cosupp\left(\operatorname{Tor}_{i-n}^{R}(M,\left(0:_{N}(x_{1},\ldots,x_{n})R\right))\right) \\ \cup \left(\bigcup_{k=1}^{n}\bigcup_{j=i+1-k}^{i+2-k}Cosupp\left(\operatorname{Tor}_{j}^{R}\left(M,\frac{\left(0:_{N}(x_{1},\ldots,x_{k-1})R\right)}{x_{k}\left(0:_{N}(x_{1},\ldots,x_{k-1})R\right)}\right)\right)\right).$$
(2.2)

Proof. We prove the claimed inclusions by induction on n. The following commutative diagram with exact rows

$$0 \Rightarrow (0:_N x_1 R) \longrightarrow N \xrightarrow{x_1} x_1 N \longrightarrow 0$$

$$\downarrow x_1 \xrightarrow{x_1} 0 \longrightarrow x_1 N \xrightarrow{\subseteq} N \longrightarrow N/x_1 N \Rightarrow 0$$

induces the commutative diagram

$$\cdots \to T_i(0:_N x_1 R) \longrightarrow T_i(N) \xrightarrow{x_1^{(i)}} T_i(x_1 N) \to T_{i-1}(0:_N x_1 R) \to \cdots$$

$$\downarrow x_1^{(i)} \xrightarrow{x_1} T_i(N) \xrightarrow{f_i} T_i(N) \longrightarrow T_i(N/x_1 N) \longrightarrow \cdots$$

$$(2.3)$$

with exact rows, where $T_i(\cdot) := \operatorname{Tor}_i^R(M, \cdot)$ and $x_1^{(i)} := \operatorname{Tor}_i^R(\operatorname{id}_M, x_1)$. Therefore [14, Proposition 2.9(4)] implies that

$$Cosupp (T_i(0:_N x_1 R))$$

$$\subseteq Cosupp (T_i(N)) \cup Cosupp (T_{i+1}(x_1 N))$$

$$\subseteq Cosupp (T_i(N)) \cup Cosupp (T_{i+1}(N)) \cup Cosupp (T_{i+2}(N/x_1 N))$$
(2.4)

for all $i \in \mathbb{N}_0$ (we note that if $L \to M \to N$ is an exact sequence of *R*-modules, then we can deduce from [14, Proposition 2.9(4)] that

$$\operatorname{Cosupp}(M) \subseteq \operatorname{Cosupp}(L) \cup \operatorname{Cosupp}(N).$$

This proves the inclusion (2.1) in the case when n = 1. Now assume, inductively, that n > 1 and the inclusion (2.1) holds for smaller values of n. If we replace N by $(0 :_N x_1 R)$, then, by the inductive hypothesis for elements x_2, \ldots, x_n , we have

$$Cosupp \left(T_{i}(0:_{N}(x_{1},\ldots,x_{n})R)\right)$$

$$\subseteq \left(\bigcup_{j=i}^{i+n-1} Cosupp \left(T_{j}(0:_{N}x_{1}R)\right)\right)$$

$$\cup \left(\bigcup_{k=2}^{n} \bigcup_{j=i+2}^{i+2+n-k} Cosupp \left(T_{j}\left(\frac{\left(0:_{N}(x_{1},\ldots,x_{k-1})R\right)}{x_{k}(0:_{N}(x_{1},\ldots,x_{k-1})R)}\right)\right)\right)$$

$$(2.5)$$

(note that if we set $y_1 := x_2, \ldots, y_{n-1} := x_n$ and l := k-1, then $1 \le l \le n-1$ and $i+2 \le j \le i+2+n-1-l$ yield $2 \le k \le n$ and $i+2 \le j \le i+2+n-k$). Now combining the inclusion (2.4) with the inclusion (2.5) yields the inclusion (2.1) and the inductive step is complete.

Now assume that $x_j M = 0$ for all $1 \leq j \leq n$ and we prove, by induction on n, that the inclusion (2.2) holds. Since the functor $T_i(\cdot)$ is R-linear, the endomorphism of $T_i(N)$ given by multiplication by x_j is the zero map for all $i \in \mathbb{N}_0$ and all $1 \leq j \leq n$. The triangle in the diagram (2.3) commutes, and so $\operatorname{Im} x_1^{(i)} \subseteq \operatorname{Ker} f_i$ for all $i \in \mathbb{N}_0$. Therefore

$$\operatorname{Cosupp}\left(\operatorname{Im} x_{1}^{(i)}\right) \subseteq \operatorname{Cosupp}\left(\operatorname{Ker} f_{i}\right) \subseteq \operatorname{Cosupp}\left(T_{i+1}(N/x_{1}N)\right).$$
(2.6)

Also, the exactness of rows in the diagram (2.3) implies that

$$\operatorname{Cosupp}\left(T_{i}(x_{1}N)\right) \subseteq \operatorname{Cosupp}\left(\operatorname{Im} x_{1}^{(i)}\right) \cup \operatorname{Cosupp}\left(T_{i-1}(0:_{N} x_{1})\right) \qquad (2.7)$$

and

$$\operatorname{Cosupp}\left(T_{i}(N)\right) \subseteq \operatorname{Cosupp}\left(T_{i}(x_{1}N)\right) \cup \operatorname{Cosupp}\left(T_{i}(N/x_{1}N)\right).$$
(2.8)

The inclusions (2.6)-(2.8) yield

$$Cosupp (T_i(N)) \subseteq Cosupp (T_{i-1}(0:_N x_1R)) \cup Cosupp (T_i (N/x_1N)) \cup Cosupp (T_{i+1} (N/x_1N)).$$
(2.9)

Hence, the inclusion (2.2) is true in the case when n = 1. Next suppose, inductively, that n > 1 and that the inclusion (2.2) has been proved for smaller values of n. If we use $(0 :_N x_1 R)$ and i - 1 instead of N and i respectively, then the inductive hypothesis for elements x_2, \ldots, x_n yields

$$Cosupp \left(T_{i-1}(0:_N x_1 R)\right)$$

$$\subseteq Cosupp \left(T_{i-n}(0:_N (x_1, \dots, x_n) R)\right)$$

$$\cup \left(\bigcup_{k=2}^n \bigcup_{j=i+1-k}^{i+2-k} Cosupp \left(T_j \left(\frac{(0:_N (x_1, \dots, x_{k-1}) R)}{x_k(0:_N (x_1, \dots, x_{k-1}) R)}\right)\right)\right).$$
(2.10)

By combining the inclusions (2.9) and (2.10), we obtain the inclusion (2.2). This completes the inductive step.

Corollary 2.6. Let M and N be R-modules, and let x_1, \ldots, x_n be a filter coregular N-sequence in Ann(M). Then

$$\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}\left(M,N\right)\right) \subseteq \operatorname{Max}(R) \tag{2.11}$$

for all i < n, and

$$\operatorname{Cosupp}\left(\operatorname{Tor}_{n}^{R}\left(M,N\right)\right) \cup \operatorname{Max}(R) \\ = \operatorname{Cosupp}\left(M \otimes_{R} \left(0:_{N} (x_{1},\ldots,x_{n})R\right)\right) \cup \operatorname{Max}(R).$$
(2.12)

Proof. For each $1 \le k \le n$, since

$$\operatorname{Cosupp}\left(\frac{(0:_N(x_1,\ldots,x_{k-1})R)}{x_k(0:_N(x_1,\ldots,x_{k-1})R)}\right) \subseteq \operatorname{Max}(R),$$

we have

$$\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}\left(M, \frac{\left(0:_{N}(x_{1}, \dots, x_{k-1})R\right)}{x_{k}(0:_{N}(x_{1}, \dots, x_{k-1})R)}\right)\right) \subseteq \operatorname{Max}(R)$$
(2.13)

for all $i \in \mathbb{N}_0$. Hence the inclusion (2.11) is an immediate consequence of the inclusion (2.2). Now we prove the equation (2.12). If we set i = 0 in the inclusion (2.1), then it follows from the inclusions (2.11) and (2.13) that

$$\operatorname{Cosupp}\left(M \otimes_{R} \left(0:_{N} (x_{1}, \dots, x_{n})R\right)\right)$$
$$\subseteq \operatorname{Cosupp}\left(\operatorname{Tor}_{n}^{R}(M, N)\right) \cup \operatorname{Max}(R).$$
(2.14)

Conversely, if we set i = n in the inclusion (2.2), then the inclusion (2.13) implies that

$$\operatorname{Cosupp}\left(\operatorname{Tor}_{n}^{R}\left(M,N\right)\right) \\ \subseteq \operatorname{Cosupp}\left(M \otimes_{R} \left(0:_{N} (x_{1},\ldots,x_{n})R\right)\right) \cup \operatorname{Max}(R).$$
(2.15)

Now the equation (2.12) follows from the inclusions (2.14) and (2.15).

Lemma 2.7. Let M, N and L be R-modules such that M and L are finitely generated, and let $n \in \mathbb{N}$. If $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(M,N)\right) \subseteq \operatorname{Max}(R)$ for all i < n and $\operatorname{Supp}(L) \subseteq \operatorname{Supp}(M)$, then

$$\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}\left(L,N\right)\right) \subseteq \operatorname{Max}(R)$$

for all i < n. In particular, $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(L,N)\right) \subseteq \operatorname{Max}(R)$ for all i < nif and only if $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(M,N)\right) \subseteq \operatorname{Max}(R)$ for all i < n whenever $\operatorname{Supp}(L) = \operatorname{Supp}(M)$.

Proof. Assume that $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(M,N)\right) \subseteq \operatorname{Max}(R)$ for all i < n and we prove by induction on n that for every finitely generated R-module L with $\operatorname{Supp}(L) \subseteq \operatorname{Supp}(M)$, $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(L,N)\right) \subseteq \operatorname{Max}(R)$ for all i < n. Assume that L is a finitely generated R-module such that $\operatorname{Supp}(L) \subseteq \operatorname{Supp}(M)$. By Gruson's theorem [17, Theorem 4.1] there exists a chain

$$0 = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_m = L$$

of submodules of L such that, for each $1 \leq j \leq m$, L_j/L_{j-1} is a homomorphic image of a direct sum of finitely many copies of M. For each $1 \leq j \leq m$, the exact sequence

$$0 \to L_{j-1} \to L_j \to L_j/L_{j-1} \to 0$$

induces the following long exact sequence

$$\cdots \to \operatorname{Tor}_{i}^{R}(L_{j-1}, N) \to \operatorname{Tor}_{i}^{R}(L_{j}, N) \to \operatorname{Tor}_{i}^{R}(L_{j}/L_{j-1}, N) \to \cdots$$

Hence

$$\operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L_{j}, N)) \subseteq \operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L_{j-1}, N)) \cup \operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L_{j}/L_{j-1}, N))$$

for all
$$1 \leq j \leq m$$
 and all *i*. It follows that

$$Cosupp(Tor_i^R(L, N))$$

$$= Cosupp(Tor_i^R(L_m, N))$$

$$\subseteq Cosupp(Tor_i^R(L_{m-1}, N)) \cup Cosupp(Tor_i^R(L_m/L_{m-1}, N))$$

$$\vdots$$

$$\subseteq Cosupp(Tor_i^R(L_0, N)) \cup \left(\bigcup_{j=1}^m Cosupp(Tor_i^R(L_j/L_{j-1}, N))\right)$$

$$= \bigcup_{j=1}^m Cosupp(Tor_i^R(L_j/L_{j-1}, N))$$

for all *i*. Thus to prove the assertion it is sufficient for us to prove that $\operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L_{j}/L_{j-1}, N) \subseteq \operatorname{Max}(R)$ for all $1 \leq j \leq m$ and all i < n. Hence the situation can be reduced to the case m = 1. Thus there exists an exact sequence

$$0 \to K \to M^t \to L \to 0$$

for some $t \in \mathbb{N}$ and some finitely generated *R*-module *K*. This exact sequence induces the following long exact sequence

$$\cdots \to \operatorname{Tor}_{i}^{R}(M,N)^{t} \to \operatorname{Tor}_{i}^{R}(L,N) \to \operatorname{Tor}_{i-1}^{R}(K,N) \to \cdots .$$
(2.16)

For n = 1, it follows from the exact sequence

$$(M \otimes_R N)^t \to L \otimes_R N \to 0$$

that

$$\operatorname{Cosupp}(L \otimes_R N) \subseteq \operatorname{Cosupp}(M \otimes_R N) \subseteq \operatorname{Max}(R).$$

Therefore the result holds for n = 1. Now assume, inductively, that n > 1 and the result has been proved for smaller values of n. It follows from the exact sequence (2.16) that

$$\operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L,N)) \subseteq \operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(M,N)) \cup \operatorname{Cosupp}(\operatorname{Tor}_{i-1}^{R}(K,N))$$
(2.17)

for all *i*. Since $\operatorname{Supp}(K) \subseteq \operatorname{Supp}(M)$, the induction hypothesis implies that $\operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(K, N)) \subseteq \operatorname{Max}(R)$

for all i < n - 1. Thus, by the hypothesis and the inclusion (2.17), we have $\operatorname{Cosupp}(\operatorname{Tor}_{i}^{R}(L, N)) \subseteq \operatorname{Max}(R)$ for all i < n. This completes the inductive step.

Now, we are ready to state and prove the main result of this paper. Let \mathfrak{a} be an ideal of R and let N be an Artinian R-module. Among the other things, the following theorem shows that the infimum of integers i with the property that the local homology module $\mathrm{H}_{i}^{\mathfrak{a}}(N)$ is not finitely generated as an $\widehat{R}^{\mathfrak{a}}$ module and the common length of all maximal filter coregular N-sequences in \mathfrak{a} are same.

Theorem 2.8. Let \mathfrak{a} be an ideal of R, and let M and N be R-modules such that M is finitely generated and N is Artinian. For each $n \in \mathbb{N}$, the following conditions are equivalent:

- (i) there is a filter coregular N-sequence in \mathfrak{a} of length n;
- (ii) any filter coregular N-sequence in a of length less than n can be extended to a filter coregular N-sequence in a of length n;
- (iii) Cosupp $(\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, N)) \subseteq \operatorname{Max}(R)$ (or equivalently $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, N)$ has finite length) for all i < n;
- (iv) if $\operatorname{Supp}(M) = \operatorname{V}(\mathfrak{a})$, then $\operatorname{Cosupp}\left(\operatorname{Tor}_{i}^{R}(M,N)\right) \subseteq \operatorname{Max}(R)$ (or equivalently $\operatorname{Tor}_{i}^{R}(M,N)$ has finite length) for all i < n; and
- (v) if $\operatorname{Ann}(M) \subseteq \mathfrak{a}$, then $\operatorname{H}_{i}^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all i < n.

Proof. The statements (iii) and (iv) are equivalent by Lemma 2.7. The implication (ii) \Rightarrow (i) is clear. Also, (i) \Rightarrow (iii) is an immediate consequence of the inclusion (2.11) in Corollary 2.6.

(iii) \Rightarrow (ii). Assume that Cosupp $(\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, N)) \subseteq \operatorname{Max}(R)$ for all i < n, and suppose, for the sake of contradiction, that x_{1}, \ldots, x_{m} is a maximal filter coregular N-sequence in \mathfrak{a} of length $0 \leq m < n$. The maximality of x_{1}, \ldots, x_{m} yields

Since Att $(0:_N (x_1, \ldots, x_m)R)$ is a finite set, it follows from the Prime Avoidance Theorem that $\mathfrak{a} \subseteq \mathfrak{p}$ for some

$$\mathfrak{p} \in \operatorname{Att}(0:_N (x_1,\ldots,x_m)R) \setminus \operatorname{Max}(R).$$

Hence, by the equation (2.12) in Corollary 2.6 and the hypothesis, we have

$$\mathfrak{p} \in \mathcal{V}(\mathfrak{a}) \cap \operatorname{Att}(0:_{N} (x_{1}, \dots, x_{m})R)$$

$$= \operatorname{Att}(R/\mathfrak{a} \otimes_{R} (0:_{N} (x_{1}, \dots, x_{m})R))$$

$$\subseteq \operatorname{Cosupp}(R/\mathfrak{a} \otimes_{R} (0:_{N} (x_{1}, \dots, x_{m})R))$$

$$\subseteq \operatorname{Cosupp}(\operatorname{Tor}_{m}^{R} (R/\mathfrak{a}, N)) \cup \operatorname{Max}(R)$$

$$\subseteq \operatorname{Max}(R),$$

which is a contradiction. Hence the statements (i)-(iv) are equivalent.

(i) \Leftrightarrow (v). We prove, by induction on n, that (i) and (v) are equivalent. Assume that M is a finitely generated R-module such that $Ann(M) \subseteq \mathfrak{a}$. We first assume that n = 1. Since $M \otimes_R N$ is Artinian, we have

$$H_0^{\mathfrak{a}}(M, N) \cong \Lambda_{\mathfrak{a}}(M \otimes_R N)$$
$$\cong (M \otimes_R N)/\mathfrak{a}^s(M \otimes_R N)$$
$$\cong \operatorname{Tor}_0^R (M/\mathfrak{a}^s M, N)$$

for all sufficiently large integers s. Also, since $\operatorname{Supp}(M/\mathfrak{a}^s M) = \operatorname{V}(\mathfrak{a})$, the equivalence of (i) and (iv) implies that $\operatorname{H}_0^{\mathfrak{a}}(M, N)$ is a finitely generated R-module or equivalently it is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module if and only if \mathfrak{a} contains a filter coregular element on N (note that since $\operatorname{H}_0^{\mathfrak{a}}(M, N)$ is \mathfrak{a} -torsion, its submodules as an R-module and as an $\widehat{R}^{\mathfrak{a}}$ -module are same; see [6, Lemma 1.3]). Thus the result holds in the case n = 1.

Now assume, inductively, that n > 1 and the result has been proved for smaller values of n. Since N is Artinian, there exists $t \in \mathbb{N}$ such that $\mathfrak{a}^s N = \mathfrak{a}^t N$ for all $s \ge t$ and so $\Lambda_{\mathfrak{a}}(N) \cong N/\mathfrak{a}^t N$. Assume that either (i) or (v) holds. Since n > 1 and

$$\mathrm{H}_{0}^{\mathfrak{a}}(M,N) \cong \mathrm{Tor}_{0}^{R}(M/\mathfrak{a}^{s}M,N)$$

for sufficiently large integers s, if (v) holds, then $\operatorname{Tor}_0^R(M/\mathfrak{a}^s M, N)$ has finite length by the hypothesis of (v). Since

$$\operatorname{Supp}(R/\mathfrak{a}^t) = \operatorname{Supp}(M/\mathfrak{a}^s M),$$

by Lemma 2.7,

$$\Lambda_{\mathfrak{a}}(N) \cong \operatorname{Tor}_{0}^{R}(R/\mathfrak{a}^{t}, N)$$

has finite length in this case. Also, if (i) holds, then, by the equivalence of (i) and (iv), $\Lambda_{\mathfrak{a}}(N) \cong \operatorname{Tor}_{0}^{R}(R/\mathfrak{a}^{t}, N)$ has finite length. Therefore in both cases

 $\Lambda_{\mathfrak{a}}(N)$ has finite length. Now, the exact sequence

$$0 \to \mathfrak{a}^t N \to N \to \Lambda_{\mathfrak{a}}(N) \to 0$$

of Artinian R-modules induces the following long exact sequences

(see [12, Proposition 2.4]), and

$$\cdots \to \operatorname{Tor}_{i+1}^{R} \left(R/\mathfrak{a}, \Lambda_{\mathfrak{a}}(N) \right) \to \operatorname{Tor}_{i}^{R} \left(R/\mathfrak{a}, \mathfrak{a}^{t}N \right) \to \operatorname{Tor}_{i}^{R} \left(R/\mathfrak{a}, N \right)$$

$$\to \operatorname{Tor}_{i}^{R} \left(R/\mathfrak{a}, \Lambda_{\mathfrak{a}}(N) \right) \to \cdots .$$
 (2.19)

Since $\Lambda_{\mathfrak{a}}(N)$ is Artinian, by [13, Theorems 2.3(i) and 3.2], we have

$$\mathrm{H}_{i}^{\mathfrak{a}}(M, \Lambda_{\mathfrak{a}}(N)) \cong H_{i}\left(\Lambda_{\mathfrak{a}}(M \otimes_{R} F_{\bullet})\right),$$

where F_{\bullet} is a free resolution of $\Lambda_{\mathfrak{a}}(N)$. Now $\Lambda_{\mathfrak{a}}(N)$ is finitely generated and so we can assume that every component of F_{\bullet} is finitely generated. On the other hand, $\Lambda_{\mathfrak{a}}(\cdot)$ is an additive exact functor on the category of finitely generated *R*-modules, and hence it commutes with the homological functor in this category. Therefore

$$H_i(\Lambda_{\mathfrak{a}}(M \otimes_R F_{\bullet})) \cong \Lambda_{\mathfrak{a}}(H_i(M \otimes_R F_{\bullet})) \cong \Lambda_{\mathfrak{a}}(\operatorname{Tor}_i^R(M, \Lambda_{\mathfrak{a}}(N))).$$

Since $\operatorname{Tor}_{i}^{R}(M, \Lambda_{\mathfrak{a}}(N))$ is Artinian, we obtain

$$\Lambda_{\mathfrak{a}}\left(\operatorname{Tor}_{i}^{R}\left(M,\Lambda_{\mathfrak{a}}(N)\right)\right) \cong \operatorname{Tor}_{i}^{R}\left(M,\Lambda_{\mathfrak{a}}(N)\right)/\mathfrak{a}^{r}\operatorname{Tor}_{i}^{R}\left(M,\Lambda_{\mathfrak{a}}(N)\right)$$

for all sufficiently large integers r. Since $\mathfrak{a}^r \operatorname{Tor}_i^R(M, \Lambda_\mathfrak{a}(N)) = 0$ for $r \ge t$, the above isomorphisms yield

$$\mathrm{H}_{i}^{\mathfrak{a}}(M, \Lambda_{\mathfrak{a}}(N)) \cong \mathrm{Tor}_{i}^{R}(M, \Lambda_{\mathfrak{a}}(N)) \cong \mathrm{Tor}_{i}^{R}(M, N/\mathfrak{a}^{t}N).$$

Hence $\operatorname{H}_{i}^{\mathfrak{a}}(M, \Lambda_{\mathfrak{a}}(N))$ is a finitely generated R-module for all $i \in \mathbb{N}_{0}$. Also, the above isomorphism shows that $\operatorname{H}_{i}^{\mathfrak{a}}(M, \Lambda_{\mathfrak{a}}(N))$ is \mathfrak{a} -torsion, and so $\operatorname{H}_{i}^{\mathfrak{a}}(M, \Lambda_{\mathfrak{a}}(N))$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all $i \in \mathbb{N}_{0}$ by [6, Lemma 1.3]. Now, for each $i \in \mathbb{N}_{0}$, it follows from the long exact sequence (2.18) that $\operatorname{H}_{i}^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module if and only if $\operatorname{H}_{i}^{\mathfrak{a}}(M, \mathfrak{a}^{t}N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module. Also, for each $i \in \mathbb{N}_{0}$, it follows from the long exact sequence (2.19) that $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, N)$ has finite length if and only if $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, \mathfrak{a}^{t}N)$ has finite length because $\operatorname{Tor}_{i}^{R}(M, \Lambda_{\mathfrak{a}}(N))$ has finite length for all i. Thus to prove the equivalence of (i) and (v), in view of the equivalence of (i) and (iii), we can replace N by $\mathfrak{a}^{t}N$ and assume, in addition, that $\mathfrak{a}N = N$. Therefore $\operatorname{V}(\mathfrak{a}) \cap \operatorname{Att}(N) = \emptyset$, and so $\mathfrak{a} \nsubseteq \bigcup_{\mathfrak{p} \in \operatorname{Att}(N)} \mathfrak{p}$. Let $x_1 \in \mathfrak{a} \setminus \bigcup_{\mathfrak{p} \in \operatorname{Att}(N)} \mathfrak{p}$. Then $\operatorname{V}(x_1 R) \cap \operatorname{Att}(N) = \emptyset$, and so $N = x_1 N$. The exact sequence

$$0 \to (0:_N x_1 R) \to N \xrightarrow{x_1} N \to 0$$

induces the long exact sequence

$$\cdots \to \mathrm{H}^{\mathfrak{a}}_{i+1}(M,N) \xrightarrow{x_1} \mathrm{H}^{\mathfrak{a}}_{i+1}(M,N) \to \mathrm{H}^{\mathfrak{a}}_{i}(M,(0:_N x_1 R)) \to \mathrm{H}^{\mathfrak{a}}_{i}(M,N) \xrightarrow{x_1} \cdots .$$
 (2.20)

We first assume that (i) holds. By the equivalence of (i) and (ii), we can extend x_1 to a filter coregular N-sequence of length n in \mathfrak{a} , say x_1, x_2, \ldots, x_n . Hence x_2, \ldots, x_n is a filter coregular $(0:_N x_1R)$ -sequence in \mathfrak{a} , and so, by the inductive hypothesis, $\operatorname{H}_i^{\mathfrak{a}}(M, (0:_N x_1R))$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all i < n - 1. It follows from long exact sequence (2.20) that $\operatorname{H}_i^{\mathfrak{a}}(M, N)/x_1 \operatorname{H}_i^{\mathfrak{a}}(M, N)$ and consequently its homomorphic image $\operatorname{H}_i^{\mathfrak{a}}(M, N)/(\mathfrak{a}\widehat{R}^{\mathfrak{a}}) \operatorname{H}_i^{\mathfrak{a}}(M, N)$ are finitely generated $\widehat{R}^{\mathfrak{a}}$ -modules for all i < n. Also, by [12, Proposition 2.3(i)], we have

$$\bigcap_{t\in\mathbb{N}} (\mathfrak{a}\widehat{R}^{\mathfrak{a}})^t \operatorname{H}^{\mathfrak{a}}_i(M,N) = \bigcap_{t\in\mathbb{N}} (\mathfrak{a}^t\widehat{R}^{\mathfrak{a}}) \operatorname{H}^{\mathfrak{a}}_i(M,N) = \bigcap_{t\in\mathbb{N}} \mathfrak{a}^t \operatorname{H}^{\mathfrak{a}}_i(M,N) = 0.$$

Hence, by [11, Theorem 8.4], $\mathrm{H}_{i}^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all i < n. Conversely, assume that $\mathrm{H}_{i}^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all i < n. It follows from the long exact sequence (2.20) that $\mathrm{H}_{i}^{\mathfrak{a}}(M, (0:_{N} x_{1}R))$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all i < n - 1, and so, by the inductive hypothesis, there is a filter coregular $(0:_{N} x_{1}R)$ -sequence in \mathfrak{a} of length n - 1, say x_{2}, \ldots, x_{n} . Therefore $x_{1}, x_{2}, \ldots, x_{n}$ is a filter coregular N-sequence in \mathfrak{a} . This completes the inductive step. \Box

Remark 2.9. Let \mathfrak{a} be an ideal of R, and let N be an Artinian R-module. When there exists a filter coregular N-sequence in \mathfrak{a} of infinite length, then, by the equivalence of (i) and (ii) in Theorem 2.8, any filter coregular N-sequence in \mathfrak{a} can be extended to a filter coregular N-sequence in \mathfrak{a} of arbitrary length, and in this case we set

f-width(
$$\mathfrak{a}, N$$
) = ∞ .

Now assume that all filter coregular N-sequences in \mathfrak{a} have finite length. Again, by the equivalence of (i) and (ii) in Theorem 2.8, we can extend any filter coregular N-sequence in \mathfrak{a} to a maximal one, and all maximal filter coregular N-sequences in \mathfrak{a} are of the same length which we denote this common length by f-width(\mathfrak{a}, N). Moreover, if M is a finitely generated R-module such that $\operatorname{Supp}(M) = \operatorname{V}(\mathfrak{a})$, then, by Theorem 2.8, we have

$$f\text{-width}(\mathfrak{a}, N) = \inf\{i \in \mathbb{N}_0 : \operatorname{Cosupp}\left(\operatorname{Tor}_i^R(M, N)\right) \nsubseteq \operatorname{Max}(R)\}$$
$$= \inf\{i \in \mathbb{N}_0 : \operatorname{Tor}_i^R(M, N) \text{ has infinite length as an } R\text{-module}\}$$
$$= \inf\{i \in \mathbb{N}_0 : \operatorname{H}_i^{\mathfrak{a}}(N) \text{ is not a finitely generated } \widehat{R}^{\mathfrak{a}}\text{-module}\}$$
(2.21)

(we note that $\mathrm{H}_{i}^{\mathfrak{a}}(R, N) = \mathrm{H}_{i}^{\mathfrak{a}}(N)$). Also, for an arbitrary finitely generated *R*-module *L*, since $\mathrm{H}_{i}^{\mathfrak{a}+\mathrm{Ann}(L)}(L, N) \cong \mathrm{H}_{i}^{\mathfrak{a}}(L, N)$, if we replace \mathfrak{a} by $\mathfrak{a}+\mathrm{Ann}(L)$ in Theorem 2.8, then the equivalence of (ii) and (v) in Theorem 2.8 yields

f-width($\mathfrak{a} + \operatorname{Ann}(L), N$) = inf{ $i \in \mathbb{N}_0 : \operatorname{H}_i^{\mathfrak{a}}(L, N)$ is not a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module}. (2.22)

Finally, since $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$, it follows from the first equality in the equation (2.21) that f-width(\mathfrak{a}, N) = f-width($\sqrt{\mathfrak{a}}, N$).

Proposition 2.10. Let \mathfrak{a} be an ideal of R, and let N be an Artinian R-module. If f-width $(\mathfrak{a}, N) = \infty$, then $(0:_N \mathfrak{a})$ has finite length. The converse statement holds whenever R is a semi-local ring which is complete with respect to its Jacobson radical.

Proof. Assume that f-width(\mathfrak{a} , N) = ∞ , and x_1, x_2, x_3, \ldots is a filter coregular N-sequence of infinite length in \mathfrak{a} . There is the following descending chain of submodules of N

$$(0:_N x_1 R) \supseteq (0:_N (x_1, x_2) R) \supseteq (0:_N (x_1, x_2, x_3) R) \supseteq \cdots$$

Hence $(0:_N (x_1, \ldots, x_{n-1})R) = (0:_N (x_1, \ldots, x_n)R)$ for some $n \in \mathbb{N}$, and so $x_n(0:_N (x_1, \ldots, x_{n-1})R) = 0$. Thus $(0:_N (x_1, \ldots, x_{n-1})R)$ has finite length because $(0:_N (x_1, \ldots, x_{n-1})R)/x_n(0:_N (x_1, \ldots, x_{n-1})R)$ has finite length by definition. Hence $(0:_N \mathfrak{a}) \subseteq (0:_N (x_1, \ldots, x_{n-1})R)$ has finite length. To prove the converse statement, assume that R is a complete semi-local ring and that $(0:_N \mathfrak{a})$ has finite length. Hence

$$\operatorname{Cosupp}(0:_N \mathfrak{a}) = \operatorname{Supp}(0:_N \mathfrak{a}) \subseteq \operatorname{Max}(R).$$

On the other hand, for each $i \in \mathbb{N}_0$, $\mathfrak{a} + \operatorname{Ann}(N) \subseteq \operatorname{Ann}(\operatorname{Tor}_i^R(R/\mathfrak{a}, N))$. Therefore, in view of [14, Proposition 2.12], we have

$$Cosupp(Tor_i^R (R/\mathfrak{a}, N)) \subseteq V (\mathfrak{a} + Ann(N))$$

= V (\mathfrak{a}) \cap Cosupp(N)
= Cosupp(0 :_N \mathfrak{a})
\sum Max(R)

for all $i \in \mathbb{N}_0$. Hence Theorem 2.8 implies that f-width $(\mathfrak{a}, N) = \infty$.

Corollary 2.11. Let \mathfrak{a} be an ideal of R, and let M and N be R-modules such that M is finitely generated and N is Artinian.

- (i) If $\operatorname{Tor}_{i}^{R}(M, N)$ has finite length for all $i \in \mathbb{N}_{0}$, then $(0:_{N} \operatorname{Ann}(M))$ has finite length.
- (ii) If $\operatorname{H}_{i}^{\mathfrak{a}}(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all $i \in \mathbb{N}_{0}$, then $(0 :_{N} \mathfrak{a} + \operatorname{Ann}(M))$ has finite length. In particular, $(0 :_{N} \mathfrak{a})$ has finite length whenever $\operatorname{H}_{i}^{\mathfrak{a}}(N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$ -module for all $i \in \mathbb{N}_{0}$.

Moreover, the converse statements hold when R is a complete semi-local ring.

Proof. It follows by the equations (2.21), (2.22) and Proposition 2.10.

Acknowledgments

The authors are deeply grateful to the referee for his/her useful comments and suggestions. Also, we would like to express our gratitude to Prof. Kamran Divaani-Aazar for careful reading of the manuscript and for the helpful comments and suggestions.

References

- 1. M. P. Brodmann and R. Y. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge University Press, Cambridge, 1998
- N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712–4737.
- N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, *Math. Proc. Cambridge Philos. Soc.*, 131(1) (2001), 61–72.
- K. Divaani-Aazar, H. Faridian and M. Tousi, Local homology, Koszul homology and Serre classes, *Rocky Mountain J. Math.*, 48(6) (2018), 1841–1869.
- A. Fathi, The first non-isomorphic local cohomology modules with respect to their ideals, J. Algebra Appl., 17(12) (2018), Article ID: 1850230.

- B. Kubik, M. J. Leamer and S. Sather-Wagstaff, Homology of Artinian and Matlis reflexive modules, I, J. Pure Appl. Algebra, 215(10) (2011), 2486–2503.
- I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, 11 (1973), 23–43.
- 8. E. Matlis, Modules with descending chain condition, *Trans. Amer. Math. Soc.* **97** (1960), 495–508.
- 9. E. Matlis, The higher properties of *R*-sequences, J. Algebra, **50**(1) (1978), 77–112.
- 10. E. Matlis, The Koszul complex and duality, Comm. Algebra, 1 (1974), 87–144.
- 11. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986
- T. T. Nam, Generalized local homology for Artinian modules, Algebra Colloq., 19(1) (2012), 1205–1212.
- T. T. Nam, Left-derived functors of the generalized *I*-adic completion and generalized local homology, *Comm. Algebra*, 38(2) (2010), 440–453.
- A. Ooishi, Matlis duality and the width of a module, *Hiroshima Math. J.*, 6(3) (1976), 573–587.
- J. J. Rotman, An introduction to homological algebra, Academic Press, Inc., New York– London, 1979
- Z. Tang and H. Zakeri, Co-Cohen-Macaulay modules and modules of generalized fractions, *Comm. Algebra*, 22(6) (1994), 2173–2204.
- W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974

Ali Fathi

Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran. Email: alif13870gmail.com, ali.fathi@iau.ac.ir

Alireza Hajikarimi

Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran. Email: a.hajikarimi@mau.ac.ir