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ON THE FINITENESS OF LOCAL HOMOLOGY MODULES

A. FATHI∗ AND A. HAJIKARIMI

Abstract. Let R be a commutative Noetherian ring and a be an ideal of R. Suppose
M is a finitely generated R-module and N is an Artinian R-module. We define the
concept of filter coregular sequence to determine the infimum of integers i such that
the generalized local homology Ha

i (M,N) is not finitely generated as an R̂a-module,
where R̂a denotes the a-adic completion of R. In particular, if R is a complete
semi-local ring, then Ha

i (M,N) is a finitely generated R̂a-module for all non-negative
integers i if and only if (0 :N a+ Ann(M)) has finite length.

1. Introduction
In this paper, we consider a commutative Noetherian ring R with non-zero

identity, and an ideal a ⊆ R, as well as two R-modules M and N . We denote
the a-adic completion of N by Λa(N), and note that the a-adic completion
functor Λa(·) is an additive covariant functor on the category of R-modules.
We use La

i (·) to denote the i-th left derived functor of Λa(·). However, since
the tensor functor is not left exact and the inverse limit is not right exact
on the category of R-modules, computing the left-derived functors of Λa(·) is
generally difficult. Moreover, it is important to note that La

0(·) ≇ Λa(·).
Matlis studied La

i (·) in the case where a is generated by a regular sequence
and R is a local ring in [9, 10], and proved some duality between this functor
and the local cohomology functor. Recently, Divaani-Aazar et al. in [4]
studied the containment of La

i (·) in a Serre class of R-modules up to a given
upper bound s ≥ 0.

Cuong and Nam in [3] defined the i-th local homology Ha
i (N) of N with

respect to a as follows:
Ha

i (N) := lim←−
n∈N

TorRi (R/an, N) .

They also showed that La
i (N) ∼= Ha

i (N) when N is Artinian. Similarly, the
i-th generalized local homology Ha

i (M,N) of M and N with respect to a is
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2 FATHI AND HAJIKARIMI

defined by
Ha

i (M,N) := lim←−
n∈N

TorRi (M/anM,N) ;

see [12, 13] for basic properties and more details.
Matlis in [8] introduced the concept of cosequence (or coregular sequence)

as a dual of the concept of regular sequence (see [14] and [16] for more details
and basic properties). If N is Artinian and (0 :N a) ̸= 0, then all maximal
coregular N -sequences in a have the same length, denoted by width(a, N),
where (0 :N a) denotes the set of all elements x ∈ N such that rx = 0 for all
r ∈ a. Moreover,

width(a, N) = inf{i ∈ Z : Ha
i (N) ̸= 0}

(see [2, Theorem 4.11]).
The filter regular sequences can be used to study the Artinianess of local

cohomology modules of finitely generated R-modules (see [5, Sec. 3]). In this
paper as a dual of the concept of filter regular sequence, we introduce the
concept of filter coregular sequence to study the finiteness of local homology
modules of Artinian R-modules.

Let Cosupp(N) denote the set of all prime ideals of R containing Ann(N).
A sequence x1, . . . , xn of elements of a is called a filter coregular N -sequence
(of length n) in a if

Cosupp
(
(0 :N (x1, . . . , xi−1)R)/xi(0 :N (x1, . . . , xi−1)R)

)
⊆ Max(R)

for all 1 ≤ i ≤ n, where Max(R) denotes the set of all maximal ideals of R.
Assuming that M is finitely generated and N is Artinian, we prove that if

there exists a filter coregular N -sequence in a of infinite length, then every
filter coregular N -sequence in a can be extended to a filter coregular N -
sequence in a of infinite length, and in this case we set f-width(a, N) = ∞.
Now suppose that all filter coregular N -sequences in a have finite length.
Then all maximal filter coregular N -sequences in a are of the same length,
denoted by f-width(a, N). We prove (see Theorem 2.8 and Remark 2.9) that:

f-width(Ann(M), N)

= inf{i ∈ N0 : Tor
R
i (M,N) has infinite length as an R-module}

and
f-width(a+Ann(M), N)

= inf{i ∈ N0 : H
a
i (M,N) is not a finitely generated R̂a-module}.
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In particular,

f-width(a, N)

= inf{i ∈ N0 : H
a
i (N) is not a finitely generated R̂a-module}.

We also show in Corollary 2.11 that if Ha
i (M,N) is a finitely generated

R̂a-module for all i ∈ N0, then (0 :N a + Ann(M)) has finite length. The
converse statement is true when R is a semi-local ring that is complete with
respect to its Jacobson radical.

2. Main results
We shall use the following notations and terminologies. Let a be an ideal

of R and N be an R-module. The radical of a will be denoted by
√
a; also,

Ann(N) will denote the ideal
{r ∈ R : rx = 0 for all x ∈ N}

of R; and (0 :N a) will denote the submodule
{x ∈ N : rx = 0 for all r ∈ a}

of N . We denote by V (a) the set of all prime ideals of R containing a; and
we use Cosupp(M) to denote V (Ann(M)). The symbol N (respectively N0)
will denote the set of positive (respectively non-negative) integers. We refer
the reader for any unexplained terminology or notation to [1, 11, 15].

Definition 2.1. Let N be an R-module. We say a prime ideal p of R is
an attached prime of N , if there exists a submodule M of N such that
p = Ann(N/M). We denote by Att(N) the set of all attached primes of
N .

For an R-module N , it is clear that Att(N) ⊆ Cosupp(N) (we
refer the reader to [14] for basic properties and more details of these
notations). When N has a secondary representation in the sense of [7], our
definition of Att(N) coincides with that of Macdonald (see
[1, Exercise 7.2.5]). In particular, the set of attached primes of an Artinian
module is a finite set.

Definition 2.2. Let N be an R-module. A sequence x1, . . . , xn of
elements of R is called a filter coregular N -sequence (of length n)
whenever

Cosupp
(
(0 :N (x1, . . . , xi−1)R)/xi(0 :N (x1, . . . , xi−1)R)

)
⊆ Max(R)
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for all 1 ≤ i ≤ n, where Max(R) denotes the set of all maximal ideals of R.
If, in addition, x1, . . . , xn belong to an ideal a, then we say that x1, . . . , xn is
a filter coregular N -sequence in a.

Lemma 2.3. Let N be an Artinian R-module. The following conditions are
equivalent:

(i) N has finite length;
(ii) Cosupp(N) ⊆ Max(R); and
(iii) Att(N) ⊆ Max(R).

Proof. Assume that N has finite length. Since N is finitely generated, we
have Cosupp(N) = Supp(N). Also, the Artinianness of N implies that
Supp(N) ⊆ Max(R), and so Cosupp(N) ⊆ Max(R). This proves the
implication (i)⇒(ii). The implication (ii)⇒(iii) is clear. Finally, to prove the
implication (iii)⇒(i), suppose that Att(N) ⊆ Max(R). Then, by [1, Propo-
sition 7.2.11], we have

√
Ann(N) =

⋂
q∈Att(N) q, and so

(⋂
q∈Att(N) q

)n
N = 0

for some positive integer n. It follows that N has finite length because Att(N)
consists of finitely many maximal ideals. □

Proposition 2.4. Let x1, . . . , xn be elements of R, and let N be an Artinian
R-module. The following conditions are equivalent:

(i) x1, . . . , xn is a filter coregular N-sequence;
(ii) (0 :N (x1, . . . , xi−1)R)/xi(0 :N (x1, . . . , xi−1)R) has finite length for all

1 ≤ i ≤ n;
(iii) Att ((0 :N (x1, . . . , xi−1)R)/xi(0 :N (x1, . . . , xi−1)R)) ⊆ Max(R) for all

1 ≤ i ≤ n; and
(iv) xi /∈

⋃
p∈Att(0:N (x1,...,xi−1)R)\Max(R) p for all 1 ≤ i ≤ n.

Proof. The statements (i)–(iii) are equivalent by Lemma 2.3. For each
1 ≤ i ≤ n, we set Ni−1 := (0 :N (x1, . . . , xi−1)R). Then, in view of
[14, Proposition 2.13], we have xi /∈

⋃
p∈Att(Ni−1)\Max(R) p if and only if

Att(Ni−1/xiNi−1) = V (xiR) ∩ Att(Ni−1) ⊆ Max(R).

Therefore (iii) and (iv) are also equivalent. □
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Proposition 2.5. Let M and N be R-modules, and let x1, . . . , xn be elements
of R. For each i ∈ N0, there are the following inclusions:

Cosupp
(
TorRi (M, (0 :N (x1, . . . , xn)R))

)
⊆

(
i+n⋃
j=i

Cosupp
(
TorRj (M,N)

))

∪

(
n⋃

k=1

i+2+n−k⋃
j=i+2

Cosupp

(
TorRj

(
M,

(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

)))
; (2.1)

and if, in addition, x1, . . . , xn belong to Ann(M), then

Cosupp
(
TorRi (M,N)

)
⊆ Cosupp

(
TorRi−n (M, (0 :N (x1, . . . , xn)R))

)
∪

 n⋃
k=1

i+2−k⋃
j=i+1−k

Cosupp

(
TorRj

(
M,

(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

)) . (2.2)

Proof. We prove the claimed inclusions by induction on n. The
following commutative diagram with exact rows

0 // (0 :N x1R) // N
x1//

x1

��

x1

��=
==

==
==

= x1N // 0

0 // x1N
⊆

// N // N/x1N // 0

induces the commutative diagram

· · · // Ti(0 :N x1R) // Ti(N)
x
(i)
1 //

x
(i)
1

��

x1

$$H
HH

HH
HH

HH
Ti(x1N) // Ti−1(0 :N x1R) // · · ·

· · · // Ti+1(N/x1N) // Ti(x1N)
fi // Ti(N) // Ti(N/x1N) // · · ·

(2.3)

with exact rows, where Ti(·) := TorRi (M, ·) and x
(i)
1 := TorRi (idM , x1).

Therefore [14, Proposition 2.9(4)] implies that

Cosupp (Ti(0 :N x1R))

⊆ Cosupp (Ti(N)) ∪ Cosupp (Ti+1(x1N))

⊆ Cosupp (Ti(N)) ∪ Cosupp (Ti+1(N)) ∪ Cosupp (Ti+2(N/x1N)) (2.4)



6 FATHI AND HAJIKARIMI

for all i ∈ N0 (we note that if L→M → N is an exact sequence of R-modules,
then we can deduce from [14, Proposition 2.9(4)] that

Cosupp(M) ⊆ Cosupp(L) ∪ Cosupp(N).
This proves the inclusion (2.1) in the case when n = 1. Now assume,
inductively, that n > 1 and the inclusion (2.1) holds for smaller values of
n. If we replace N by (0 :N x1R), then, by the inductive hypothesis for
elements x2, . . . , xn, we have

Cosupp (Ti(0 :N (x1, . . . , xn)R))

⊆

(
i+n−1⋃
j=i

Cosupp (Tj(0 :N x1R))

)

∪

(
n⋃

k=2

i+2+n−k⋃
j=i+2

Cosupp

(
Tj

(
(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

)))
(2.5)

(note that if we set y1 := x2, . . . , yn−1 := xn and l := k−1, then 1 ≤ l ≤ n−1
and i+2 ≤ j ≤ i+2+n−1− l yield 2 ≤ k ≤ n and i+2 ≤ j ≤ i+2+n−k).
Now combining the inclusion (2.4) with the inclusion (2.5) yields the inclusion
(2.1) and the inductive step is complete.

Now assume that xjM = 0 for all 1 ≤ j ≤ n and we prove, by induction
on n, that the inclusion (2.2) holds. Since the functor Ti(·) is R-linear, the
endomorphism of Ti(N) given by multiplication by xj is the zero map for all
i ∈ N0 and all 1 ≤ j ≤ n. The triangle in the diagram (2.3) commutes, and
so Im x

(i)
1 ⊆ Ker fi for all i ∈ N0. Therefore

Cosupp
(
Im x

(i)
1

)
⊆ Cosupp (Ker fi) ⊆ Cosupp (Ti+1(N/x1N)) . (2.6)

Also, the exactness of rows in the diagram (2.3) implies that

Cosupp (Ti(x1N)) ⊆ Cosupp
(
Im x

(i)
1

)
∪ Cosupp (Ti−1(0 :N x1)) (2.7)

and
Cosupp (Ti(N)) ⊆ Cosupp (Ti(x1N)) ∪ Cosupp (Ti(N/x1N)) . (2.8)

The inclusions (2.6)–(2.8) yield
Cosupp (Ti(N)) ⊆ Cosupp (Ti−1(0 :N x1R))

∪ Cosupp (Ti (N/x1N))

∪ Cosupp (Ti+1 (N/x1N)) . (2.9)
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Hence, the inclusion (2.2) is true in the case when n = 1. Next suppose,
inductively, that n > 1 and that the inclusion (2.2) has been proved for
smaller values of n. If we use (0 :N x1R) and i − 1 instead of N and i
respectively, then the inductive hypothesis for elements x2, . . . , xn yields

Cosupp (Ti−1(0 :N x1R))

⊆ Cosupp (Ti−n(0 :N (x1, . . . , xn)R))

∪

 n⋃
k=2

i+2−k⋃
j=i+1−k

Cosupp

(
Tj

(
(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

)) . (2.10)

By combining the inclusions (2.9) and (2.10), we obtain the inclusion (2.2).
This completes the inductive step. □
Corollary 2.6. Let M and N be R-modules, and let x1, . . . , xn be a filter
coregular N-sequence in Ann(M). Then

Cosupp
(
TorRi (M,N)

)
⊆ Max(R) (2.11)

for all i < n, and
Cosupp

(
TorRn (M,N)

)
∪Max(R)

= Cosupp (M ⊗R (0 :N (x1, . . . , xn)R)) ∪Max(R). (2.12)
Proof. For each 1 ≤ k ≤ n, since

Cosupp

(
(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

)
⊆ Max(R),

we have

Cosupp

(
TorRi

(
M,

(0 :N (x1, . . . , xk−1)R)

xk(0 :N (x1, . . . , xk−1)R)

))
⊆ Max(R) (2.13)

for all i ∈ N0. Hence the inclusion (2.11) is an immediate consequence of the
inclusion (2.2). Now we prove the equation (2.12). If we set i = 0 in the
inclusion (2.1), then it follows from the inclusions (2.11) and (2.13) that

Cosupp (M ⊗R (0 :N (x1, . . . , xn)R))

⊆ Cosupp
(
TorRn (M,N)

)
∪Max(R). (2.14)

Conversely, if we set i = n in the inclusion (2.2), then the inclusion (2.13)
implies that

Cosupp
(
TorRn (M,N)

)
⊆ Cosupp (M ⊗R (0 :N (x1, . . . , xn)R)) ∪Max(R). (2.15)
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Now the equation (2.12) follows from the inclusions (2.14) and (2.15). □

Lemma 2.7. Let M,N and L be R-modules such that M and L are finitely
generated, and let n ∈ N. If Cosupp

(
TorRi (M,N)

)
⊆ Max(R) for all i < n

and Supp(L) ⊆ Supp(M), then

Cosupp
(
TorRi (L,N)

)
⊆ Max(R)

for all i < n. In particular, Cosupp
(
TorRi (L,N)

)
⊆ Max(R) for all i < n

if and only if Cosupp
(
TorRi (M,N)

)
⊆ Max(R) for all i < n whenever

Supp(L) = Supp(M).

Proof. Assume that Cosupp
(
TorRi (M,N)

)
⊆ Max(R) for all i < n and we

prove by induction on n that for every finitely generated R-module L with
Supp(L) ⊆ Supp(M), Cosupp

(
TorRi (L,N)

)
⊆ Max(R) for all i < n. Assume

that L is a finitely generated R-module such that Supp(L) ⊆ Supp(M). By
Gruson’s theorem [17, Theorem 4.1] there exists a chain

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lm = L

of submodules of L such that, for each 1 ≤ j ≤ m, Lj/Lj−1 is a homomorphic
image of a direct sum of finitely many copies of M . For each 1 ≤ j ≤ m, the
exact sequence

0→ Lj−1 → Lj → Lj/Lj−1 → 0

induces the following long exact sequence

· · · → TorRi (Lj−1, N)→ TorRi (Lj, N)→ TorRi (Lj/Lj−1, N)→ · · · .

Hence

Cosupp(TorRi (Lj, N))

⊆ Cosupp(TorRi (Lj−1, N)) ∪ Cosupp(TorRi (Lj/Lj−1, N))
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for all 1 ≤ j ≤ m and all i. It follows that
Cosupp(TorRi (L,N))

= Cosupp(TorRi (Lm, N))

⊆ Cosupp(TorRi (Lm−1, N)) ∪ Cosupp(TorRi (Lm/Lm−1, N))

...

⊆ Cosupp(TorRi (L0, N)) ∪

(
m⋃
j=1

Cosupp(TorRi (Lj/Lj−1, N)

)

=
m⋃
j=1

Cosupp(TorRi (Lj/Lj−1, N)

for all i. Thus to prove the assertion it is sufficient for us to prove that
Cosupp(TorRi (Lj/Lj−1, N) ⊆ Max(R) for all 1 ≤ j ≤ m and all i < n. Hence
the situation can be reduced to the case m = 1. Thus there exists an exact
sequence

0→ K →M t → L→ 0

for some t ∈ N and some finitely generated R-module K. This exact sequence
induces the following long exact sequence

· · · → TorRi (M,N)t → TorRi (L,N)→ TorRi−1 (K,N)→ · · · . (2.16)
For n = 1, it follows from the exact sequence

(M ⊗R N)t → L⊗R N → 0

that
Cosupp(L⊗R N) ⊆ Cosupp(M ⊗R N) ⊆ Max(R).

Therefore the result holds for n = 1. Now assume, inductively, that n > 1
and the result has been proved for smaller values of n. It follows from the
exact sequence (2.16) that

Cosupp(TorRi (L,N))

⊆ Cosupp(TorRi (M,N)) ∪ Cosupp(TorRi−1 (K,N)) (2.17)
for all i. Since Supp(K) ⊆ Supp(M), the induction hypothesis implies that

Cosupp(TorRi (K,N)) ⊆ Max(R)

for all i < n− 1. Thus, by the hypothesis and the inclusion (2.17), we have
Cosupp(TorRi (L,N)) ⊆ Max(R)
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for all i < n. This completes the inductive step. □

Now, we are ready to state and prove the main result of this paper. Let a be
an ideal of R and let N be an Artinian R-module. Among the other things,
the following theorem shows that the infimum of integers i with the property
that the local homology module Ha

i (N) is not finitely generated as an R̂a-
module and the common length of all maximal filter coregular N -sequences
in a are same.

Theorem 2.8. Let a be an ideal of R, and let M and N be R-modules such
that M is finitely generated and N is Artinian. For each n ∈ N, the following
conditions are equivalent:

(i) there is a filter coregular N-sequence in a of length n;
(ii) any filter coregular N-sequence in a of length less than n can be extended

to a filter coregular N-sequence in a of length n;
(iii) Cosupp

(
TorRi (R/a, N)

)
⊆ Max(R) (or equivalently TorRi (R/a, N) has

finite length) for all i < n;
(iv) if Supp(M) = V (a), then Cosupp

(
TorRi (M,N)

)
⊆ Max(R) (or equiv-

alently TorRi (M,N) has finite length) for all i < n; and
(v) if Ann(M) ⊆ a, then Ha

i (M,N) is a finitely generated R̂a-module for all
i < n.

Proof. The statements (iii) and (iv) are equivalent by Lemma 2.7. The
implication (ii)⇒(i) is clear. Also, (i)⇒(iii) is an immediate consequence
of the inclusion (2.11) in Corollary 2.6.

(iii)⇒(ii). Assume that Cosupp
(
TorRi (R/a, N)

)
⊆ Max(R) for all i < n,

and suppose, for the sake of contradiction, that x1, . . . , xm is a maximal filter
coregular N -sequence in a of length 0 ≤ m < n. The maximality of x1, . . . , xm

yields

a ⊆
⋃

p∈Att(0:N (x1,...,xm)R)\Max(R)

p.

Since Att (0 :N (x1, . . . , xm)R) is a finite set, it follows from the Prime
Avoidance Theorem that a ⊆ p for some

p ∈ Att (0 :N (x1, . . . , xm)R) \Max(R).
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Hence, by the equation (2.12) in Corollary 2.6 and the hypothesis, we have

p ∈V (a) ∩ Att(0 :N (x1, . . . , xm)R)

= Att(R/a⊗R (0 :N (x1, . . . , xm)R))

⊆ Cosupp(R/a⊗R (0 :N (x1, . . . , xm)R))

⊆ Cosupp(TorRm (R/a, N)) ∪Max(R)

⊆ Max(R),

which is a contradiction. Hence the statements (i)–(iv) are equivalent.
(i)⇔(v). We prove, by induction on n, that (i) and (v) are equivalent.

Assume that M is a finitely generated R-module such that Ann(M) ⊆ a. We
first assume that n = 1. Since M ⊗R N is Artinian, we have

Ha
0(M,N) ∼= Λa(M ⊗R N)

∼= (M ⊗R N)/as(M ⊗R N)

∼= TorR0 (M/asM,N)

for all sufficiently large integers s. Also, since Supp(M/asM) = V (a), the
equivalence of (i) and (iv) implies that Ha

0(M,N) is a finitely generated
R-module or equivalently it is a finitely generated R̂a-module if and only
if a contains a filter coregular element on N (note that since Ha

0(M,N) is
a-torsion, its submodules as an R-module and as an R̂a-module are same; see
[6, Lemma 1.3]). Thus the result holds in the case n = 1.

Now assume, inductively, that n > 1 and the result has been proved for
smaller values of n. Since N is Artinian, there exists t ∈ N such that
asN = atN for all s ≥ t and so Λa(N) ∼= N/atN . Assume that either (i)
or (v) holds. Since n > 1 and

Ha
0(M,N) ∼= TorR0 (M/asM,N)

for sufficiently large integers s, if (v) holds, then TorR0 (M/asM,N) has finite
length by the hypothesis of (v). Since

Supp(R/at) = Supp(M/asM),

by Lemma 2.7,

Λa(N) ∼= TorR0 (R/at, N)

has finite length in this case. Also, if (i) holds, then, by the equivalence of (i)
and (iv), Λa(N) ∼= TorR0 (R/at, N) has finite length. Therefore in both cases
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Λa(N) has finite length. Now, the exact sequence
0→ atN → N → Λa(N)→ 0

of Artinian R-modules induces the following long exact sequences
· · · → Ha

i+1(M,Λa(N))→ Ha
i (M, atN)→ Ha

i (M,N)

→ Ha
i (M,Λa(N))→ · · · (2.18)

(see [12, Proposition 2.4]), and
· · · → TorRi+1 (R/a,Λa(N))→ TorRi

(
R/a, atN

)
→ TorRi (R/a, N)

→ TorRi (R/a,Λa(N))→ · · · . (2.19)
Since Λa(N) is Artinian, by [13, Theorems 2.3(i) and 3.2], we have

Ha
i (M,Λa(N)) ∼= Hi (Λa(M ⊗R F•)) ,

where F• is a free resolution of Λa(N). Now Λa(N) is finitely generated and
so we can assume that every component of F• is finitely generated. On the
other hand, Λa(·) is an additive exact functor on the category of finitely
generated R-modules, and hence it commutes with the homological functor
in this category. Therefore

Hi (Λa(M ⊗R F•)) ∼= Λa (Hi (M ⊗R F•)) ∼= Λa

(
TorRi (M,Λa(N))

)
.

Since TorRi (M,Λa(N)) is Artinian, we obtain
Λa

(
TorRi (M,Λa(N))

) ∼= TorRi (M,Λa(N)) /ar TorRi (M,Λa(N))

for all sufficiently large integers r. Since ar TorRi (M,Λa(N)) = 0 for r ≥ t,
the above isomorphisms yield

Ha
i (M,Λa(N)) ∼= TorRi (M,Λa(N)) ∼= TorRi

(
M,N/atN

)
.

Hence Ha
i (M,Λa(N)) is a finitely generated R-module for all i ∈ N0. Also, the

above isomorphism shows that Ha
i (M,Λa(N)) is a-torsion, and so

Ha
i (M,Λa(N)) is a finitely generated R̂a-module for all i ∈ N0 by [6, Lemma

1.3]. Now, for each i ∈ N0, it follows from the long exact sequence (2.18)
that Ha

i (M,N) is a finitely generated R̂a-module if and only if Ha
i (M, atN)

is a finitely generated R̂a-module. Also, for each i ∈ N0, it follows from the
long exact sequence (2.19) that TorRi (R/a, N) has finite length if and only if
TorRi (R/a, atN) has finite length because TorRi (M,Λa(N)) has finite length
for all i. Thus to prove the equivalence of (i) and (v), in view of the equiv-
alence of (i) and (iii), we can replace N by atN and assume, in addition,
that aN = N . Therefore V (a) ∩ Att(N) = ∅, and so a ⊈

⋃
p∈Att(N) p. Let
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x1 ∈ a \
⋃

p∈Att(N) p. Then V (x1R) ∩ Att(N) = ∅, and so N = x1N . The
exact sequence

0→ (0 :N x1R)→ N
x1−→ N → 0

induces the long exact sequence

· · · → Ha
i+1(M,N)

x1−→ Ha
i+1(M,N)→ Ha

i (M, (0 :N x1R))

→ Ha
i (M,N)

x1−→ · · · . (2.20)

We first assume that (i) holds. By the equivalence of (i) and (ii), we can
extend x1 to a filter coregular N -sequence of length n in a, say x1, x2, . . . , xn.
Hence x2, . . . , xn is a filter coregular (0 :N x1R)-sequence in a, and so, by the
inductive hypothesis, Ha

i (M, (0 :N x1R)) is a finitely generated
R̂a-module for all i < n− 1. It follows from long exact sequence (2.20) that
Ha

i (M,N)/x1H
a
i (M,N) and consequently its homomorphic image

Ha
i (M,N)/(aR̂a)Ha

i (M,N) are finitely generated R̂a-modules for all i < n.
Also, by [12, Proposition 2.3(i)], we have⋂

t∈N

(aR̂a)tHa
i (M,N) =

⋂
t∈N

(atR̂a)Ha
i (M,N) =

⋂
t∈N

atHa
i (M,N) = 0.

Hence, by [11, Theorem 8.4], Ha
i (M,N) is a finitely generated R̂a-module

for all i < n. Conversely, assume that Ha
i (M,N) is a finitely generated

R̂a-module for all i < n. It follows from the long exact sequence (2.20) that
Ha

i (M, (0 :N x1R)) is a finitely generated R̂a-module for all i < n− 1, and so,
by the inductive hypothesis, there is a filter coregular (0 :N x1R)-sequence in
a of length n− 1, say x2, . . . , xn. Therefore x1, x2, . . . , xn is a filter coregular
N -sequence in a. This completes the inductive step. □

Remark 2.9. Let a be an ideal of R, and let N be an Artinian R-module.
When there exists a filter coregular N -sequence in a of infinite length, then, by
the equivalence of (i) and (ii) in Theorem 2.8, any filter coregular N -sequence
in a can be extended to a filter coregular N -sequence in a of arbitrary length,
and in this case we set

f-width(a, N) =∞.

Now assume that all filter coregular N -sequences in a have finite length.
Again, by the equivalence of (i) and (ii) in Theorem 2.8, we can extend any
filter coregular N -sequence in a to a maximal one, and all maximal filter
coregular N -sequences in a are of the same length which we denote this
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common length by f-width(a, N). Moreover, if M is a finitely generated R-
module such that Supp(M) = V (a), then, by Theorem 2.8, we have

f-width(a, N)

= inf{i ∈ N0 : Cosupp
(
TorRi (M,N)

)
⊈ Max(R)}

= inf{i ∈ N0 : Tor
R
i (M,N) has infinite length as an R-module}

= inf{i ∈ N0 : H
a
i (N) is not a finitely generated R̂a-module} (2.21)

(we note that Ha
i (R,N) = Ha

i (N)). Also, for an arbitrary finitely generated
R-module L, since Ha+Ann(L)

i (L,N) ∼= Ha
i (L,N), if we replace a by a+Ann(L)

in Theorem 2.8, then the equivalence of (ii) and (v) in Theorem 2.8 yields

f-width(a+Ann(L), N)

= inf{i ∈ N0 : H
a
i (L,N) is not a finitely generated R̂a-module}. (2.22)

Finally, since V (a) = V
(√

a
)
, it follows from the first equality in the equation

(2.21) that f-width(a, N) = f-width(
√
a, N).

Proposition 2.10. Let a be an ideal of R, and let N be an Artinian R-
module. If f-width(a, N) = ∞, then (0 :N a) has finite length. The converse
statement holds whenever R is a semi-local ring which is complete with respect
to its Jacobson radical.

Proof. Assume that f-width(a, N) =∞, and x1, x2, x3, . . . is a filter coregular
N -sequence of infinite length in a. There is the following descending chain of
submodules of N

(0 :N x1R) ⊇ (0 :N (x1, x2)R) ⊇ (0 :N (x1, x2, x3)R) ⊇ · · · .

Hence (0 :N (x1, . . . , xn−1)R) = (0 :N (x1, . . . , xn)R) for some n ∈ N, and so
xn(0 :N (x1, . . . , xn−1)R) = 0. Thus (0 :N (x1, . . . , xn−1)R) has finite length
because (0 :N (x1, . . . , xn−1)R)/xn(0 :N (x1, . . . , xn−1)R) has finite length by
definition. Hence (0 :N a) ⊆ (0 :N (x1, . . . , xn−1)R) has finite length. To
prove the converse statement, assume that R is a complete semi-local ring
and that (0 :N a) has finite length. Hence

Cosupp(0 :N a) = Supp(0 :N a) ⊆ Max(R).
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On the other hand, for each i ∈ N0, a + Ann(N) ⊆ Ann(TorRi (R/a, N)).
Therefore, in view of [14, Proposition 2.12], we have

Cosupp(TorRi (R/a, N)) ⊆ V (a+Ann(N))

= V (a) ∩ Cosupp(N)

= Cosupp(0 :N a)

⊆ Max(R)

for all i ∈ N0. Hence Theorem 2.8 implies that f-width(a, N) =∞. □
Corollary 2.11. Let a be an ideal of R, and let M and N be R-modules such
that M is finitely generated and N is Artinian.

(i) If TorRi (M,N) has finite length for all i ∈ N0, then (0 :N Ann(M)) has
finite length.

(ii) If Ha
i (M,N) is a finitely generated R̂a-module for all i ∈ N0, then

(0 :N a + Ann(M)) has finite length. In particular, (0 :N a) has
finite length whenever Ha

i (N) is a finitely generated R̂a-module for all
i ∈ N0.

Moreover, the converse statements hold when R is a complete semi-local ring.

Proof. It follows by the equations (2.21), (2.22) and Proposition 2.10. □
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