Some algebraic and measure theoretic properties of the rings of measurable functions

Document Type : Original Manuscript

Authors

Department of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.

Abstract

Let $M(X, \mathcal{A}, \mu)$ be the ring of real-valued measurable functions
on a measure space $(X, \mathcal{A}, \mu)$. In this paper, we show that the maximal ideals of $M(X, \mathcal{A}, \mu)$ are associated with the special measurable sets in $\mathcal{A}$. We also study some other algebraic properties of $M(X, \mathcal{A}, \mu)$.

Keywords


1. S. K. Acharyya, S. Bag and J. Sack, Ideals in rings and intermediate rings of measurable functions, J. Algebra Appl., 19(02) (2020), 205–238.
2. A. Amini, B. Amini, E. Momtahan and M. H. Shirdareh Haghigh, Generalized rings of measurable and continuous functions, Bull. Iranian Math. Soc., 39(1) (2013), 49–64.
3. H. Azadi, M. Henriksen and E. Momtahan, Some properties of algebras of real-valued measurable functions, Acta Math. Hunger., 124(1-2) (2009), 15–23.
4. F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian J. Pure and Appl. Math., 12 (2002), 158–168.
5. K. R. Goodearl, Von Neumann Regular Rings, Krieger Publishing Company, 1991.
6. A. W. Hager, Algebras of measurable functions, Duke Math. J., 38 (1971), 21–27.
7. A. W. Hager, An example concerning algebras of measurable functions, Rocky Mountain J. Math., 3 (1971), 415–418.
8. P. R. Halmous, Measure Theory, Reprint, Springer-Verlag, New York, 1973.
9. H. Hejazipour and A. R. Naghipour, When is the ring of real measurable functions a hereditary ring?, Bull. Iranian Math. Soc., 43(6) (2017), 1905–1912. 
10. H. Hejazipour and A. R. Naghipour, Zero-divisor graph of the rings of real masurable functions with the measures, J. Algebr. Syst., 9(22) (2022), 175–192.
11. A. Jarai, Regularity properties of measurable functions satisfying a multiplicative type functional equation almost everywhere, Aequationes Math., 89 (2015), 367–381.
12. O. A. S. Karamzadeh, On maximal right ideals which are dirct summands, Bull. Iran. Math. Soc., 10(2) (1983), 40–46.
13. O. A. S. Karamzadeh, Projective maximal right ideals of self-injective rings, Proc. Amer. Math. Soc., 48(2) (1975), 286–288.
14. P. Niemiec, Spaces of measurable functions, Central European Journal of Mathematics, 11(7) (2013), 1304–1316.
15. A. R. Olfati, Self-injectivity of M(X,A) versus M(X,A) modulo its socle, Comm. Algebra, 48 (2020), 4859–4874.
16. W. Rudin, Real and Complex Analysis, Springer-Verlag, New York, 1985.
17. R. Viertl, A note on maximal ideals and residue class rings of rings of measurable functions, An. Acad. Brasil. Ci., 49 (1977), 357–358.
18. R. Viertl, Ideale in ringen messbarer funktionen, (German) Math. Nachr., 79 (1981), 201–205.
19. V. K. Zakharov and T. V. Rodionov, Naturalness of the class of Lebesgue-Borel-Hausdorffmeasurable functions, Math. Notes, 95(4) (2014), 554–563.