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SOME ALGEBRAIC AND MEASURE THEORETIC PROPERTIES OF
THE RINGS OF MEASURABLE FUNCTIONS

H. HEJAZIPOUR AND A. R. NAGHIPOUR∗

Abstract. Let M(X,A, µ) be the ring of real-valued measurable functions on a
measure space (X,A, µ). We show that the maximal ideals of M(X,A, µ) are
associated with the special measurable sets in A. We also study some other alge-
braic properties of M(X,A, µ).

1. Introduction
A σ-algebra on a set X is a collection A of subsets of X that includes the

empty subset which is closed under complement and countable unions. If A is
a σ-algebra on X, then (X,A) is called a measurable space and the members
of A are called the measurable sets in X. A function µ from a σ-algebra A to
the interval [0,+∞] is called a measure if for all countable collections {Ai}∞i=1

of pairwise disjoint sets in A, µ(
∪∞

i=1Ai) =
∑∞

i=1 µ(Ai). To avoid trivialities,
we shall assume that µ(A) < ∞ for at least one A ∈ A. A measure space is
a triple (X,A, µ), where X is a set, A a σ-algebra on X, and µ a measure on
A. If Y is a topological space and f : X −→ Y is a function, then f is said
to be measurable provided that f−1(V ) is a measurable set in X for every
open set V in Y . The statement “P holds almost everywhere on (X,A, µ)”
(abbreviated to “P holds a.e. on (X,A, µ)”) means that

µ
(
{x ∈ X : P does not hold on x}

)
= 0.

The sets of real-valued measurable functions with pointwise addition and
multiplication are commutative rings with identity. Rings of real-valued mea-
surable functions have been studied in many ways for a long time by many
mathematicians (see for example [1, 2, 3, 4, 6, 7, 11, 12, 13, 15, 17, 18, 19]).
For notational convenience, we assume that M(X,A, µ) is the ring of mea-
surable functions from X to the real line R with arbitrary σ-algebra A on X
and arbitrary measure µ on A. In [9] and [10], Hejazipour and Naghipour
presented some properties of M(X,A, µ).
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2 HEJAZIPOUR AND NAGHIPOUR

We recall that a complete measure space is a measure space in which every
subset of every set of measure zero is measurable. The characteristic function
is the function χA : X −→ {0, 1}, which for a given measurable set A, has
value 1 at elements of A and 0 at elements of X\A. For every measurable
function f , the zero set and the cozero set of f are Zf := {x ∈ X : f(x) = 0}
and coZf := {x ∈ X : f(x) ̸= 0}, respectively. For a ∈ X and A ∈ A,

I(a) := {f ∈ M(X,A, µ) : f(a) = 0}
and I(A) := {f ∈ M(X,A, µ) : f(x) = 0 ∀x ∈ A} are the ideals of
functions that vanish on a and A, respectively. If J is an ideal of M(X,A, µ),
V (J) := {x ∈ X : f(x) = 0 ∀f ∈ J} is the common vanishing set of the
measurable functions in J . The reader is referred to [5, 8, 14, 16] for undefined
terms and concepts.

This paper is organized as follows. In Section 2, we investigate the maximal
ideals of the rings of real-valued measurable functions with respect to the
measures (see Theorems 2.4 and 2.7). In Section 3, we study some algebraic
properties of these rings.

2. Maximal ideals of M(X,A, µ)

To enter into the discussion, we present a basic difference between the
rings of real-valued measurable functions with respect to the measures,
M(X,A, µ), and the rings of real-valued measurable functions without
attention to the measures, M(X,A). It is easy to see that if a ∈ X, then
{f ∈ M(X,A) : f(a) = 0} is a maximal ideal of M(X,A). The following
theorem shows that this is not true in the case of M(X,A, µ).

Theorem 2.1. Let (X,A, µ) be a measure space, {a} be a measurable set
and µ({a}) = 0. Then I(a) is not a maximal ideal of M(X,A, µ).

Proof. We show that I(a) is not a proper ideal with respect to the measure
µ. Suppose that f ∈ M(X,A, µ) and f(a) ̸= 0. We put

g(x) :=

{
f(x) x ̸= a,
0 x = a.

Since {a} and X\{a} are measurable sets and f is measurable, g is
measurable. Now by the definition of g, we have

µ
(
{x ∈ X : f(x) ̸= g(x)}

)
= µ({a}) = 0.

This means that f = g a.e. on (X,A, µ) and so f ∈ I(a) a.e. on (X,A, µ).
Therefore, I(a) = M(X,A, µ) a.e. on (X,A, µ). □
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It is expected that for every a ∈ X such that {a} is measurable and
µ({a}) ̸= 0, I(a) is a maximal ideal of M(X,A, µ). But these ideals are
only a small part of the maximal ideals of M(X,A, µ). We claim that
Theorem 2.4 is the most logical extension of this matter. First, we present
an important definition for studying the maximal ideals of M(X,A, µ).
Definition 2.2. Suppose that (X,A, µ) is a measure space, N ∈ A and
µ(N) ̸= 0. The set N is near -zero if for every subset A ⊆ N such that
µ(A) ̸= 0, A = N a.e. on (X,A, µ).

If A = {∅, X}, then X is a near-zero set. In this paper, to avoid trivialities,
we shall also assume that A ̸= {∅, X}.
Notation 2.3. Let (X,A, µ) be a measure space. We set

Nµ :=
{
N ∈ A : N is a near-zero set in A

}
.

In the following theorem, we show that every ideal of a near-zero set is a
maximal ideal of M(X,A, µ).
Theorem 2.4. Let (X,A, µ) be a measure space and N be a near-zero set.
Then I(N) is a maximal ideal of M(X,A, µ).
Proof. Suppose that J is an ideal of M(X,A, µ) such that

I(N) ⊆ J ⊆ M(X,A, µ) and f ∈ J\I(N).
We define

g(x) :=

{
0 x ∈ N,
f(x)− 1 x ∈ N c.

Since f is measurable and N ∈ A, g is a measurable function. By the
definition of g, g ∈ I(N) ⊆ J and so f − g ∈ J . We claim that
f − g is a unit in M(X,A, µ). For this purpose, it is sufficient to show that
µ({x ∈ N : f(x) = 0}) = 0. We put

A :=
{
x ∈ N : f(x) = 0

}
,

and
B :=

{
x ∈ N : f(x) ̸= 0

}
.

Since f is measurable, f−1({0}) and f−1(R\{0}) are measurable sets and so
A = f−1({0}) ∩ N and B = f−1(R\{0}) ∩ N are measurable. On the other
hand, N is a near-zero set and so µ(A) = 0 or µ(B) = 0. If µ(B) = 0, then
f ∈ I(N) a.e. on (X,A, µ), which is a contradiction. Thus µ(A) = 0 and
hence µ({x ∈ X : (f − g)(x) = 0}) = 0. This means that f − g is a unit
element in M(X,A, µ) and so J = M(X,A, µ) a.e. on (X,A, µ). □
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As an immediate consequence of Theorem 2.4, we have the following
corollary.
Corollary 2.5. Let (X,A, µ) be a measure space, a ∈ X and µ({a}) ̸= 0.
Then I(a) is a maximal ideal of M(X,A, µ).
Proof. Since µ({a}) ̸= 0, {a} is a near-zero set. Therefore, I(a) is a maximal
ideal of M(X,A, µ) by Theorem 2.4. □

The following example shows that the converse of Theorem 2.4 is not true.
Example 2.6. Let X be the real line R, A be the Lebesgue σ-algebra on R
and µ be the Lebesgue measure on A. We claim that the Lebesgue σ-algebra
has not any near-zero set. Suppose on the contrary that N is a near-zero set.
Then there exists a, b ∈ R such that N ⊆ (a, b). We put:

A1 :=
{
x ∈ (a, b) : x ∈ N, |x− a| ≤ |b− a|/2

}
.

Since the absolute value function and its transfers fa := |x−a| are measurable,
A1 = f−1

a ((−∞, |b − a|/2)) is a measurable set. On the other hand, N is a
near-zero set and so A1 = N a.e on (X,A, µ) or N\A1 = N a.e on (X,A, µ).
Without loss of generality, we assume that A1 = N a.e on (X,A, µ). Again
we set:

A2 :=
{
x ∈ (a, b) : x ∈ N, |x− a| ≤ |b− a|/4

}
.

Similarly, A2 = N a.e on (X,A, µ) or N\A2 = N a.e on (X,A, µ). By
repeating this process, for every n ∈ N there exists a measurable set

An :=
{
x ∈ (a, b) : x ∈ N, |x− a| ≤ |b− a|/2n

}
such that An = N a.e on (X,A, µ) and µ(An) ≤ 2−n. This implies that for
every n ∈ N, µ(N) ≤ 2−n and hence µ(N) = 0, which is a contradiction.
This means that A has not any near-zero set and so every maximal ideal of
M(X,A, µ) is not the ideal of a near-zero set.

In the following theorem, we try to present a converse of Theorem 2.4 by
the properties of σ-algebras and measures.
Theorem 2.7. Let (X,A, µ) be a measure space, A be a countable set, Nµ ̸= ∅
and every measurable cover of X has a finite subcover. Then every maximal
ideal of M(X,A, µ) is the ideal of a near-zero set.
Proof. Let J be a maximal ideal of M(X,A, µ). In the first step, we show
that for every x ∈ X, there exists a near-zero set Nx such that x ∈ Nx.
Suppose that x ∈ X and N ∈ Nµ. we consider four cases:
Case 1: {x} is measurable and µ({x}) ̸= 0. Then {x} is a near-zero set.
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Case 2: {x} is measurable and µ({x}) = 0. Then N ∪ {x} is a near-zero
set.
Case 3: {x} is not measurable. we set

C :=
{
B ∈ A : N ∪ {x} ⊆ B

}
.

C is nonempty since X ∈ C. Partially order C by
B1 ≤ B2 ⇐⇒ B1 ⊇ B2.

Assume that {Bi}i∈I be a chain of members in C. Let B :=
∩

i∈I Bi. Since A
is countable, B is a measurable set. Therefore, B is an upper bound of the
chain {Bi}i∈I . Thus the hypotheses of Zorn,s Lemma are satisfied and hence
C contains a maximal element Nx. Since N ⊆ Nx, µ(Nx) ≥ µ(N) > 0. If Nx

is not a near-zero set, there exist disjoint measurable sets A and B such that
µ(A) and µ(B) are not zero and Nx = A ∪B. Without loss of generality, we
consider four cases:
Case 1: N ⊆ A and x ∈ A. Then N ∪ {x} ⊆ A and µ(Nx\A) = µ(B) ̸= 0,

which is a contradiction. Therefore Nx is a near-zero set contains x.
Case 2: N ⊆ A, x ∈ B and B is not near-zero. Then there exist two

measurable sets K and L such that x ∈ K, µ(K) ̸= 0, µ(L) ≠ 0 and
B = K ∪ L. This means that N ∪ {x} ⊆ A ∪K and

µ(Nx\(A ∪K)) = µ(L) ̸= 0,

which is a contradiction. Therefore Nx is a near-zero set contains x.
Case 3: N ⊆ A, x ∈ B and B is a near-zero set. Then B is a near-zero set

contains x.
Case 4: N ̸⊆ A and N ̸⊆ B a.e. on (X,A, µ). Then

µ(N) = µ(N ∩ A) + µ(N ∩B) = 0,

which is a contradiction. Therefore Nx is a near-zero set contains x.
In the second step, we claim that V (J) is not empty. Suppose to the

contrary that V (J) is empty. Then for each x ∈ X, there exists fx ∈ J such
that fx(x) ̸= 0. By the first step, for every x ∈ X, there exists a near-zero
set Nx such that x ∈ Nx. We put:

K :=
{
x ∈ X : µ(Nx ∩ coZfx) = 0

}
.

By the hypotheses, we have:

µ(K) ≤ µ

( ∪
x∈K

(Nx ∩ coZfx)

)
≤

∑
x∈K

µ(Nx ∩ coZfx) = 0.
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This means that {Nx}x∈X\K is a measurable cover for X a.e. on (X,A, µ).
If Nx, Ny ∈ {Nx}x∈X\K , then we consider two cases:
Case 1: µ(Nx∩Ny) = 0. Then Nx and Ny are disjoint sets a.e. on (X,A, µ).
Case 2: µ(Nx∩Ny) ̸= 0. Then Nx∩Ny = Nx = Ny a.e. on (X,A, µ), since

Nx and Ny are near-zero set.
This means that we can extract a finite disjoint cover Nx1

, Nx2
,...,Nxk

for
X, since every measurable cover of X has a finite subcover. By Lemma 2.3
in [9], for every i = 1, 2, ..., k, the following function is measurable:

gxi
(t) :=

{
1/fxi

(t) t ∈ coZfxi
,

0 t ∈ Zfxi
.

It follows that fxi
gxi

= χcoZfxi
∈ J and hence χNxi

χcoZfxi
= χNxi

∈ J , for
every i = 1, 2, . . . , k. Therefore, h :=

∑k
i=1 χNxi

is a unit element in J , which
is a contradiction.

In the third step, we claim that V (J) is measurable and µ(V (J)) ̸= 0.
For every f ∈ J , f−1({0}) is measurable. Since A is countable,
V (J) =

∩
f∈J f

−1({0}) is a measurable set. If µ(V (J)) = 0, then X\V (J) is
measurable and X = X\V (J) a.e. on (X,A, µ). Similar to the second step,
J has a unit, which is a contradiction.

In the fourth step, we show that there exists a near-zero set N such
that N ⊆ V (J). Suppose to the contrary that for every near-zero set N ,
N ∩ V (J) = ∅ a.e. on (X,A, µ). By the hypotheses, the first step and the
proof of the second step, there exist disjoint members N1, N2, ..., Nk ∈ Nµ

such that X = N1 ∪N2 ∪ ... ∪Nk. Now

µ

(
V (J)

)
= µ

(
V (J) ∩ (

k∪
i=1

Ni)

)

= µ

( k∪
i=1

(V (J) ∩Ni)

)

=
k∑

i=1

µ

(
V (J) ∩Ni

)
= 0,

which is a contradiction.
In the final step, with the help of the fourth step, there exists a near-

zero set N0 such that N0 ⊆ V (J). Therefore, J ⊆ I(V (J)) ⊆ I(N0).
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By Theorem 2.4, I(N0) is a maximal ideal of M(X,A, µ) and so
J = I(N0). □

Remark 2.8. We have not found any example of a measure space to show that
the conditions in Theorem 2.7 is necessarily. The lack of such
counterexamples, motivates the following question: Can we drop some
conditions in Theorem 2.7?

At the end of this section, we give an example to show that measures have
played an important role in the structure of the maximal ideals of M(X,A, µ).

Example 2.9. Assume that X is the real line R and A = P (R), the power
set of R, is the σ-algebra on R. We put two measures on the measurable
space (R,A).

(a) For any B ∈ A, the counting measure µ1 on this measurable space is
the measure defined by

µ1(B) :=

{
n(B) if B is finite,
+∞ if B is infinite.

It is easy to check that µ1 is a measure on (R,A). For every a ∈ R, µ({a}) = 1
and so {a} is a near-zero set. This means that

Nµ1
=

{
{a} : a ∈ R

}
.

By Theorem 2.4, for every a ∈ R, I(a) is a maximal ideal of M(R,A, µ1).
(b) Fix x0 ∈ R and for every B ∈ A, the Dirac measure is

µ2(B) :=

{
1 x0 ∈ B,
0 x0 ̸∈ B.

For every x ̸= x0, µ2({x}) = 0 and so I(x) is not a maximal ideal of
M(R,A, µ2), by Theorem 2.1. If K,L ∈ A and x0 ∈ K ∩L, then K = L a.e.
on (X,A, µ2). This implies that

Nµ2
=

{
B ∈ A : x0 ∈ B

}
.

By Theorem 2.4, for every B ∈ A such that x0 ∈ B, I(B) is a maximal ideal
of M(R,A, µ2).

3. Some algebraic properties of M(X,A, µ)

In this section, we study some algebraic properties of the rings of real-
valued measurable functions with respect to the measures. The first theorem
is about the variety of the prime ideals.
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Theorem 3.1. Let (X,A, µ) be a measure space, P be a prime ideal of
M(X,A, µ) and V (P ) ∈ A. Then µ(V (P )) = 0 or V (P ) is a near-zero set.
Proof. Assume that µ(V (P )) ̸= 0. Assume to the contrary that V (P ) is
not near-zero. Then there exist disjoint measurable sets A and B such that
µ(A) ̸= 0, µ(B) ̸= 0 and V (P ) = A ∪ B. We set f := χA and g := χB.
We claim that f and g are not in P . If f ∈ P , then f(V (P )) = {0} and
so A ∩ V (P ) = ∅. This implies that A = ∅ a.e. on (X,A, µ), which is a
contradiction. Similarly, g ̸∈ P . This means that f ̸∈ P and g ̸∈ P but
fg = 0 ∈ P , which is a contradiction. □

Let A ⊆ X. As usual A ⊆ V (I(A)). The following theorem shows that if
A and V (I(A)) are measurable, A = V (I(A)) a.e. on (X,A, µ).
Theorem 3.2. Let (X,A, µ) be a measure space and A ⊆ X. If A and
V (I(A)) are measurable, then

µ
(
{x ∈ X : x ∈ V (I(A))\A}

)
= 0.

Proof. Suppose that A and V (I(A)) are measurable sets. We define
K := V (I(A))\A and g := 1− χA.

It is easy to check that K is a measurable set and g is a measurable function.
Since g ∈ I(A), g(V (I(A)) = {0} and so g(A ∪ K) = 0 a.e. on (X,A, µ).
This means that A ∪K ⊆ A a.e. on (X,A, µ) and hence µ(K) = 0. □

The ideal of a subset of X is radical. We might hope that every radical
ideal is the ideal of some subset of X or equivalently for every ideal J of
M(X,A, µ), I(V (J)) =

√
J . But every radical ideal is the ideal of some

subset of X if and only if every prime ideal is the ideal of some subset of X
since every prime ideal is radical and every radical ideal is an intersection of
prime ideals. For better understanding of this matter in M(X,A, µ), look at
the example below.
Example 3.3. Let X be the real line, A be the power set of R and µ be the
counting measure on A. The set {0} is measurable and µ({0}) = 1. Thus
{0} is near-zero and so I(0) is a maximal ideal of M(R,A, µ), by Theorem
2.4. We set:

J :=
{
f ∈ M(R,A, µ) : f(x) = 0, for every x ∈ [−1, 1]

}
.

The ideal J is not zero since for every f ∈ M(X,A, µ), χ[−1,1]f ∈ J . If
f := χ[0,+∞) and g := χ(−∞,0] then f ̸∈ J and g ̸∈ J , but fg = 0 ∈ J .
This means that J is not prime. But J is a radical ideal, for if hn ∈ J then
for every x ∈ [−1, 1], hn(x) = 0 and so h(x) = 0. Therefore J is a radical
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ideal properly contained in I(0). Since a radical ideal is the intersection of
all prime ideals that contain it, there are prime ideals properly contained in
I(0).

Now suppose that P is a prime ideal properly contained in I(0), J ⊆ P
and I(V (P )) = P . We claim that there exist two disjoint members in V (P ).
Otherwise, we consider two cases:
Case 1: V (P ) is empty. Then P = M(X,A, µ) a.e. on (X,A, µ), which is

a contradiction.
Case 2: For some x0 ∈ X, V (P ) = {x0}. Then µ({x0}) = 1 and so {x0}

is a near-zero set. By Theorem 2.4, I(V (P )) is a maximal ideal, which is a
contradiction.

Therefore, there exist two disjoint members x1, x2 ∈ V (P ). We define
h := χ(−∞,

x1+x2
2 ) and k := χ(

x1+x2
2 ,+∞). Since (−∞, x1+x2

2 ) and (x1+x2

2 ,+∞) are
measurable sets, h and k are measurable functions. It is easy to check that
h ̸∈ P and k ̸∈ P but hk = 0 ∈ P , which is a contradiction. This means
that for every prime ideal P such that P contained in I(0) and J ⊆ P ,
I(V (P )) ̸= P . In the other words, there exist radical ideals that is not the
ideals of some subset of X.

For the final theorem of this paper, we present the definition of germs of
real-valued measurable functions at the points in X.

Definition 3.4. Suppose that (X,A, µ) is measure space. For every a ∈ X,
J(a) :=

{
f ∈ M(X,A, µ) : f |B = 0, for some B ∈ A such that a ∈ B

}
and M(X,A, µ)/J(a) is the ring of germs of measurable functions at a.

Theorem 3.5. Let (X,A, µ) be a measure space and a ∈ X.
(a) The prime ideals contained in I(a) are in bijection with the prime ideals

in M(X,A, µ)/J(a).
(b) The ring M(X,A, µ)/J(a) is isomorphic to the localization

M(X,A, µ)I(a).

Proof. (a) It suffices to show that J(a) ⊆ P for all P ⊆ I(a). Suppose that
P ⊆ I(a) and f ∈ J(a). Then there exists B ∈ A such that a ∈ B and
f(x) = 0 for all x ∈ B. We set g := χX\B. Thus g ̸∈ I(a) and hence g ̸∈ P .
On the other hand, fg = 0 ∈ P and so f ∈ P .

(b) Suppose that f ̸∈ I(a). We claim that f becomes a unit in
M(X,A, µ)/J(a). It suffices to show that f 2 is a unit. Let
g := max{f 2, f 2(a)/2}. It is easy to check that g is a measurable function.
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Since f 2(a) > 0, g > 0 and so is a unit. The function g − f 2 is measurable
and

Zg−f2 =
{
x ∈ X : f 2(x) ≥ f 2(a)/2

}
= (f 2)

−1(
[f 2(a)/2,+∞)

)
.

Since f 2 is measurable, (f 2)
−1
([f 2(a)/2,+∞)) is a measurable set and since

a ∈ (f 2)
−1
([f 2(a)/2,+∞)), g − f 2 ∈ J(a).

Now we show that the natural map M(X,A, µ) −→ M(X,A, µ)I(a) sends
any f ∈ J(a) to 0. Since f ∈ J(a), there exists B ∈ A such that a ∈ B and
f(B) = {0}. We set g := χB. Then g ̸∈ I(a), fg = 0 and so f/1 = 0/g. □

4. Conclusion
Let (X,A, µ) be a measure space and M(X,A, µ) be the ring of measurable

functions from X to the real line R with arbitrary σ-algebra A on X and
arbitrary measure µ on A. The concept of near-zero set of (X,A, µ) is very
important in this paper. By using this concept, we show that every ideal of a
near-zero set of (X,A, µ) is a maximal ideal of M(X,A, µ). We also obtain
some results about the variety of prime ideals of M(X,A, µ). Finally, the
definition of germs of real-valued measurable functions at the points in X is
presented.
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