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DOMINATION NUMBER AND IDENTIFYING CODE NUMBER OF
THE SUBDIVISION GRAPHS

S. AHMADI, E. VATANDOOST AND A. BEHTOEI∗

Abstract. Let G = (V,E) be a simple graph. A set C of vertices of G is an
identifying code of G if for every two vertices x and y the sets NG[x] ∩ C and
NG[y] ∩ C are non-empty and different. Given a graph G, the smallest size of an
identifying code of G is called the identifying code number of G and is denoted by
γID(G). In this paper, we prove that the identifying code number of the subdivision
of a graph G of order n is at most n. Also, we prove that the identifying code number
of the subdivision of graphs Kn, Kr,s and CP (s) are n, r + s and 2s, respectively.
Finally, we conjecture that for every graph G of order n the identifying code number
of the subdivision of G is n.

1. Introduction
In this paper, all graphs are assumed to be finite, simple and undirected.

We will often use the notation G = (V,E) to denote the graph with a non-
empty vertex set V = V (G) and edge set E = E(G). The order of a graph
is the number of vertices in graph and the size of a graph is the number
of edges in graph. An edge of G with endpoints u and v is denoted by
{u, v} (which sometimes and for convenient we write it as uv), and we write
u ∼ v to indicate that two vertices u and v are adjacent in G. For every
vertex x ∈ V (G), the open neighborhood of vertex x is denoted by NG(x) and
defined as NG(x) = {y ∈ V (G) : x ∼ y}. Also the close neighborhood of
vertex x ∈ V (G), is NG[x] = NG(x) ∪ {x}. The degree of a vertex x ∈ V (G)
is degG(x) =

∣∣NG(x)
∣∣. The maximum degree and minimum degree of G

are denoted by ∆(G) and δ(G), respectively. A complete bipartite graph is
a special kind of bipartite graph in which every vertex of the first part is
adjacent to each vertex of the second part. The complete bipartite graph of
order r+s is denoted by Kr,s. For any X ⊆ V (G), the induced subgraph on X,
is denoted by G[X]. The Cocktail party graph of order 2s denoted by CP (s)
is obtained by removing s disjoint edges from the complete graph K2s. The
subdivision graph of G is the graph obtained by inserting an additional vertex
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2 AHMADI, VATANDOOST AND BEHTOEI

into each edge of G, denoted by S(G). Sometimes the new vertex inserted
into the edge {vi, vj} is denoted by vij. A subset D of the vertices of G is a
dominating set of G if every vertex in V (G) \ D is adjacent to at least one
vertex in D. The domination number of G, which is denoted by γ(G), is the
minimum size of a dominating set of G. A set C is called a separating set of
G, if for each pair u, v of vertices of G,NG[u]∩C ̸= NG[v]∩C (equivalently,
(NG[u]△NG[v])∩C ̸= ∅). If a dominating set C in G is a separating set of G,
then we say that C is an identifying code of G and if G has an identifying code,
then we say that G is an identifiable graph. Given a graph G, the smallest
size of an identifying code of G is called the identifying code number of G
and denoted by γID(G). If for two distinct vertices x and y, NG[x] = NG[y],
then they are called twins. It is noteworthy that a graph G is identifiable
if and only if G is twin-free. In recent years much attention drawn to the
domination theory which is a very interesting branch of graph theory. The
concept of domination expanded to other parameters of domination such as
2-rainbow domination, signed domination, Roman domination, total Roman
domination, and identifying code. For more details, we refer the reader to
[1, 4, 6, 15, 16, 17, 18, 21].

The identifying code concept was introduced by Karpovsky et al. [14] in
1998. Later, several various families of graphs have been studied such as cycles
and paths [5, 10], trees [3], triangular and square grids [13] and, triangle-free
graphs [8]. Also identifying codes have found applications in various fields.
These applications include sensor network monitoring [7], identifying codes
in random networks [9], communication networks [20] and, the structural
analysis of RNA proteins [11].

This paper deals with the study of the subdivision of some graphs. In
Section 2, we show that γ(S(G)) ≤ |V (G)| − 1. Specially, we prove that
γ(S(Kn)) = n − 1, γ(S(CP (s))) = 2s − 1, and γ(S(Kr,s)) = r + s − 1. In
Section 3, we show that the identifying code number of the subdivision of a
graph G of order n is at most n. Also, we prove that the identifying code
number of the subdivision graphs S(Kn), S(K1,n), S(Kr,s) and S(CP (s)) are
n, n+1, r+s and 2s, respectively. According to this facts, we conjecture that
for every graph G of order n the identifying code number of the subdivision
of G is n.
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2. Domination number of S(G)

In this section, the domination number of S(G) for some graphs is investi-
gated.

Lemma 2.1. Let G be a graph of order n ≥ 2 which contains the path Pℓ as
an induced subgraph. Then γ(S(G)) ≤ n−

⌈
ℓ−1
3

⌉
.

Proof. Let
V (Pℓ) = {v1, v2, . . . , vℓ}, E(Pℓ) = {ei = {vi, vi+1} : 1 ≤ i ≤ ℓ− 1}

and NS(G)(vii+1) = {vi, vi+1} for 1 ≤ i ≤ ℓ − 1 where vii+1 ∈ V (S(G)) is the
new vertex of degree two inserted on the edge ei.
If ℓ = 3k, then

D = (V (G) \ V (Pℓ)) ∪
{
vi ∈ V (Pℓ) : i = 3t, 1 ≤ t ≤

⌈
ℓ− 1

3

⌉}
∪
{
vii+1 : i = 3t+ 1, 0 ≤ t ≤

⌊
ℓ− 1

3

⌋}
is a dominating set for S(G). Thus γ(S(G)) ≤ |D| = n− ℓ

3 .
If ℓ = 3k + 1, then

D = (V (G) \ V (Pℓ)) ∪
{
vi ∈ V (Pℓ) : i = 3t, 1 ≤ t ≤

⌈
ℓ− 1

3

⌉}
∪
{
vii+1 : i = 3t+ 1, 0 ≤ t ≤

⌊
ℓ− 4

3

⌋}
∪ {vℓ}

is a dominating set for S(G). Thus γ(S(G)) ≤ |D| = n− ℓ−1
3 .

If ℓ = 3k + 2, then

D = (V (G) \ V (Pℓ)) ∪
{
vi ∈ V (Pℓ) : i = 3t, 1 ≤ t ≤

⌊
ℓ− 1

3

⌋}
∪
{
vii+1 : i = 3t+ 1, 0 ≤ t ≤

⌊
ℓ− 1

3

⌋}
is a dominating set for S(G). Thus γ(S(G)) ≤ |D| = n− ℓ+1

3 . □
Theorem 2.2. If n ≥ 2 is a positive integer, then γ(S(Kn)) = n− 1.

Proof. Suppose n ∈ {2, 3}. It is easy to see that γ(S(K2)) = 1 and
γ(S(K3)) = 2. Let n ≥ 4 and V (Kn) = {v1, v2, . . . , vn} and

V (S(Kn)) = V (Kn) ∪ {vij : vivj ∈ E(Kn)}.
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Note that NS(Kn)(vi) = {vij : vj ∈ NKn
(vi)} and NS(Kn)(vij) = {vi, vj}.

By Lemma 2.1, γ(S(Kn)) ≤ n − 1. Now let D be a dominating set of
S(Kn) with minimum cardinality. Without loss of generality, we assume that
v1 /∈ D. Since D is a dominating set for S(Kn), so v1 is dominated by a
vertex in D. Hence, there is 2 ≤ j ≤ n such that v1j ∈ D. Without loss of
generality, Suppose that v12 ∈ D. Since D is a dominating set of S(G), for
every 3 ≤ j ≤ n we have v1j ∈ D or vj ∈ D. So, |D| ≥ n − 1. Therefore,
γ(S(Kn)) = n− 1. □
Theorem 2.3. Let s ≥ 3 be a positive integer. Then γ(S(CP (s))) = 2s− 1.

Proof. Suppose that V (CP (s)) = {v1, v2, . . . , v2s} in which
{v1vs+1, v2vs+2, ..., vsv2s} ∩ E(CP (s)) = ∅

and
V (S(CP (s))) = V (CP (s)) ∪ {vij : vivj ∈ E(CP (s))}.

Note that NS(CP (s))(vi) = {vij : vj ∈ NCP (s)(vi)} and NS(CP (s))(vij) = {vi, vj}.
By Lemma 2.1, γ(S(CP (s)) ≤ 2s− 1.
Now let D be a dominating set of S(CP (s)) with minimum cardinality. Since

|D| = γ(S(CP (s))) ≤ 2s− 1,

without loss of generality, we can assume that v1 /∈ D. Since D is a dominating
set for S(CP (s)), v1 must be dominated by a vertex in D. Thus, there exists
j ∈ {2, 3, ..., 2s} \ {s + 1} such that v1j ∈ D. Without loss of generality,
suppose that v12 ∈ D. Simlarly, for each j ∈ {3, ..., 2s} \ {s + 1} the vertex
v1j must be dominated by D and hence, v1j ∈ D or vj ∈ D. Therefore,
|D| ≥ 2s− 2.

If vs+1 ∈ D, then |D| ≥ 2s − 1 and the proof is complete. Otherwise,
and in order to dominate vs+1, there exist j ∈ {1, 2, . . . , 2s} \ {1, s + 1}
such that vs+1 j ∈ D. However, γ(S(CP (s))) ≥ 2s − 1. Therefore,
γ(S(CP (s))) = 2s− 1. □
Theorem 2.4. If r, s are two integers such that r ≥ 2 and s ≥ 2, then
γ(S(Kr,s)) = r + s− 1.

Proof. Assume that V (Kr,s) = {x1, . . . , xr} ∪ {y1, . . . , ys} and
V (S(Kr,s)) = V (Kr,s) ∪ {zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s}

in which zij is the new vertex inserted on the edge xiyj to obtain the subdi-
vision graph S(Kr,s) from Kr,s. By Lemma 2.1,

γ(S(Kr,s)) ≤ r + s− 1.
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Now let T be a dominating set of minimum cardinality in S(Kr,s). If
{x1, . . . , xr, y1, . . . , ys} ⊆ T, then γ(S(Kr,s)) = |T | ≥ r+ s, which is a contra-
diction. Therefore, there exists at least one vertex in {x1, . . . , xr, y1, . . . , ys}
which is not in T. Wihtout loss of generality, (and by renaming the vertices
if it is necessary) assume that

{x1, . . . , xr, y1, . . . , ys} \ T = {x1, x2, . . . , xt1, y1, y2, . . . , yt2}.
Thus, {xt1+1, . . . , xr, yt2+1, . . . , ys} ⊆ T and hence |T | ≥ (r − t1) + (s − t2).
Since T is a dominating set, each vertex in {x1, . . . , xt1, y1, . . . , yt2} should
be dominated by a vertex in T, and by considering the structure of S(Kr,s),
these dominating vertices must be in the set {zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s}.
Also, since t1t2 vertices in {zij | 1 ≤ i ≤ t1, 1 ≤ j ≤ t2} must be dominated
by T , we should have {zij : 1 ≤ i ≤ t1, 1 ≤ j ≤ t2} ⊆ T. Therefore,
|T | ≥ (r − t1) + (s− t2) + t1t2. Note that

|T | ≥ (r − t1) + (s− t2) + t1t2

= (r + s) + (t1 − 1)(t2 − 1)− 1.

If we have t2 = 0, then {y1, y2, . . . , ys} ⊆ T and {x1, x2, . . . , xt1} ∩ T = ∅.
Since T is a dominating set, there exist vertices

{z1j1, z2j2, . . . , zt1jt1} ⊆ T

which dominate vertices in {x1, x2, . . . , xt1}. This implies that
|T | ≥ (r − t1) + s+ t1 = r + s,

which is a contradiction, because we show that γ(S(Kr,s)) ≤ r+ s− 1. Thus,
t2 ≥ 1 and similarly we can show that t1 ≥ 1. Therefore,

γ(S(Kr,s)) = |T | ≥ (r + s) + (t1 − 1)(t2 − 1)− 1

in which t1 ≥ 1 and t2 ≥ 1. The minimum value of the statement
(r + s) + (t1 − 1)(t2 − 1) − 1 with the conditions t1 ≥ 1, t2 ≥ 1 occurs
just when t1 = 1 or t2 = 1 and this leads to the value r + s − 1. With-
out loss of generality, assume that t2 = 1 (the case t1 = 1 will be similarly
done). Since vertices x1, x2, . . . , xt1 are dominated by T , and by consider-
ing the structure of S(Kr,s), there exist t1 vertices of the from zij in T .
If none of these vertices is adjacent to y1, then for dominating y1 an ex-
tra vertex in {zij | 1 ≤ i ≤ r, 1 ≤ j ≤ s} is required which implies that
|T | ≥ r + s, a contradiction. Hence, we can assume that {x1, x2, . . . , xt1} are
dominated by {z1j1, . . . , zt1jt1} and z1j1 = z11 (i.e. y1 is dominated by z11).
Since the set {xt1+1, . . . , xr, y2, . . . , ys, z1j1, zt1jt1} is a subset of T and it is a
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dominating set of cardinality r+ s− 1, and by the minimality of T , we have
γ(S(Kr,s)) = |T | = r + s− 1. □

3. Identifying code number of S(G)

In this section, we determine the identifying code number of the subdivision
graphs S(Kn), S(CP (s)), S(K1,n) and, S(Kr,s) with r ≥ 2 and s ≥ 2. At first,
consider the following results.
Theorem 3.1. [12] Let n ≥ 2 be a positive integer. Then γID(Pn) =

⌈
n+1
2

⌉
.

Theorem 3.2. ([5], [10]) Let n ≥ 4 be a positive integer. Then

γID(Cn) =


3 if n = 4, 5
n
2 if n ≥ 6 is even
n+3
2 if n ≥ 7 is odd.

It is clear that for each n ≥ 3, S(Pn) ∼= P2n−1 and S(Cn) ∼= C2n. Thus, by
Theorems 3.1 and 3.2, γID(S(Pn)) = n and γID(S(Cn)) = n. In the following
two results, we show that |V (G)| is generally an upper bound for γID(S(G)).
Proposition 3.3. Let G be a graph of order n ≥ 2. Then S(G) is an
identifiable graph.
Proof. Let a and b be two arbitrary and distinct vertices in S(G). If a is
not adjacent to b in S(G), then NS(G)[a] ̸= NS(G)[b]. Let a be adjacent to
b in S(G). Since S(G) is a bipartite graph and V (G) is a partite set in it,
without loss of generality, we can assume that a ∈ V (G) and hence, there
exists c ∈ V (G)\{a} such that NS(G)(b) = {a, c}. Since c /∈ NS(G)[a], we have
NS(G)[a] ̸= NS(G)[b]. Therefore S(G) is twin-free and hence, an identifiable
graph.

□
Theorem 3.4. If G is a graph of order n ≥ 2, then γID(S(G)) ≤ n.
Proof. Let C = V (G). It is clear that C is a dominating set for S(G). We
claim that C is an identifying code for S(G). For this purpose, let x and y
be two distince vertices in V (S(G)). We consider the following cases:

Case 1) {x, y} ⊆ V (G): Since S(G) is a bipartite graph with V (G) as
a partite set, x is not adjacent to y in S(G). Thus x ∈ NS(G)[x] ∩ C and
x /∈ NS(G)[y] ∩ C. Hence, NS(G)[x] ∩ C ̸= NS(G)[y] ∩ C.

Case 2) {x, y} ∩ V (G) = ∅: In this case, there exists a vertex a ∈ V (G)
such that x ∼ a and a ≁ y. Thus a ∈ NS(G)[x] ∩ C and a /∈ NS(G)[y] ∩ C
which implies that NS(G)[x] ∩ C ̸= NS(G)[y] ∩ C.
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Case 3) x /∈ V (G) and y ∈ V (G): Assume that NS(G)(x) = {a, b} in which
ab ∈ E(G). If y /∈ {a, b}, then a ∈ NS(G)[x] ∩ C and a /∈ NS(G)[y] ∩ C. If
y = a, then b ∈ NS(G)[x] ∩ C and b /∈ NS(G)[y] ∩ C. However

NS(G)[x] ∩ C ̸= NS(G)[y] ∩ C.

These facts show that C is an identifying code for S(G) and hence,

γID(S(G)) ≤ |C| = n.

□

Now we use the following result to show that γID(S(CP (s))) = 2s and
γID(S(Kn)) = n.

Theorem 3.5. [19] If G is a graph of order n and maximum degree ∆, then
γID(G) ≥ 2n

∆+2.

Theorem 3.6. For each n ≥ 2, γID(S(Kn)) = n.

Proof. By Theorem 3.4, we have γID(S(Kn)) ≤ n. Since |V (S(Kn))| = n(n+1)
2 ,

Theorem 3.5 implies that γID(S(Kn)) ≥ n. Thus, γID(S(Kn)) = n. □

Theorem 3.7. Let s ≥ 2 be a positive integer. Then γID(S(CP (s))) = 2s.

Proof. It is clear that S(CP (s)) is of order 2s2. By Theorem 3.4,

γID(S(CP (s))) ≤ 2s.

By Theorem 3.5, γID(S(CP (s))) ≥ 2(2s2)
(2s−2)+2 = 2s. Therefore,

γID(S(CP (s))) = 2s.

□

In the following, among some other useful results, we show that for n ≥ 4,
V (Kn) is the unique optimum identifying code in S(Kn).

Theorem 3.8. Let G be an identifiable graph of order n and C be an
identifying code of S(G). Then we have

|C| ≥ max

{
degG(x) +

⌈
degG(x)

2

⌉
: x ∈ V (G) \ C

}
.

Specially, if γID(S(G)) < n, then γID(S(G)) ≥ δ(G) +
⌈
δ(G)
2

⌉
.
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Proof. Let x be a vertex in V (G) \ C and assume that degG(x) = d,
NG(x) = {y1, y2, . . . , yd} and NS(G)(x) = {e1, e2, . . . , ed}. Since C is a domi-
nating set of S(G) and x /∈ C, there exists 1 ≤ i ≤ d such that
ei ∈ C. Also, each vertex in {e1, e2, ..., ed} \ {ei} must be dominated by C
and hence, for each j ∈ {1, 2, . . . , d}\{i} we have C∩{ei, yi} ̸= ∅. Therefore,
|C ∩{y1, . . . , yd, e1, . . . , ed}| ≥ d. Note that for each 1 ≤ i ≤ d, two vertices ei
and yi are adjacent in S(G) and hence, ei ∈ NS(G)[yi] and yi ∈ NS(G)[ei]. Now
since C is an identifying code of S(G), for each i ∈ {1, 2, . . . , d} we should
have NS(G)[ei]∩C ̸= NS(G)[yi]∩C. Therefore, for each i ∈ {1, 2, . . . , d} there
exists a vertex zi /∈ {e1, e2, ..., ed} such that zi ∈ C ∩ NS(G)(yi). Note that
when yiyj is an edge in G and z is the (new) vertex of degree two in S(G)
with NS(G)(z) = {yi, yj}, then z can play both of the roles of zi and zj in our
above statement and hence, we may have zi = zj. Thus, by pairing zi’s in
the worst case, we have |{z1, z2, . . . , zd}| ≥

⌈
degG(x)

2

⌉
. This implies that

|C| ≥ |C ∩ {y1, . . . , yd, e1, . . . , ed}|+ |C ∩ {z1, z2, ..., zd}|

≥ d+

⌈
d

2

⌉
,

which completes the proof. Note that when γID(S(G)) < n, there exists at
least one vertex x ∈ V (G) \ C and we know that degG(x) ≥ δ(G). □

Corollary 3.9. Let G be a triangle-free identifiable graph of order n and C
be an identifying code of S(G). Then,

|C| ≥ 2 max {degG(x) : x ∈ V (G) \ C } .

Specially, if γID(S(G)) < n, then γID(S(G)) ≥ 2 δ(G).

Proof. The proof is a direct consequence of the proof of Theorem 3.8 by
considering the fact yiyj /∈ E(G) when G is triangle-free, which itself implies
that zi ̸= zj for each i ̸= j. □

Corollary 3.10. Let n ≥ 2 be an integer and C be an identifying code of
S(Kn). If V (Kn) ⊈ C, then |C| ≥ (n− 1) +

⌈
(n−1)

2

⌉
.

Proof. By Theorem 3.8, the proof is straightforward. □

Note that γID(S(K2)) = γID(P3) = 2 and γID(S(K3)) = γID(C6) = 3. In
addition, P3 has a unique identifying code of size two, but C6 has at least
two different identifying codes of size three.
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Corollary 3.11. Let n ≥ 4 be an integer and C be an identifying code of
S(Kn) with minimum size (i.e., |C| = γID(S(Kn))). Then, C = V (Kn).

Proof. By Theorem 3.4, we have |C| = γID(S(Kn)) ≤ n. This fact and
Corollary 3.10 implies that V (Kn) \ C = ∅. Thus, V (Kn) ⊆ C and hence,
|C| ≥ n. This facts imply that γID(S(Kn)) = |C| = n and C = V (G). □

Finally, we determine the identifying code number of complete bipartite
graphs and according to obtained results, we propose a conjecture.

Theorem 3.12. [2] Let G be a graph of order n. Then γ(G) ≤ γID(G).

Theorem 3.13. Let n ≥ 2 be an integer. Then γID(S(K1,n−1)) = n.

Proof. Let G = K1,n−1 and assume that
V (G) = {v1, v2, . . . , vn},

degG(vn) = n− 1, and V (S(G)) = V (G) ∪ {vin : 1 ≤ i ≤ n− 1}. Specially,
we have NS(G)(vin) = {vi, vn}. Let D be a dominating set for S(G). Then,
|D ∩ {vi, vin}| ≥ 1 for each i ∈ {1, 2, ..., n − 1} which implies that
γ(S(G)) ≥ n− 1. It is easy to see that {vin : 1 ≤ i ≤ n− 1} is a dominating
set for S(G) and hence, γ(S(G)) ≤ n− 1. Therefore, γ(S(G)) = n− 1.

Now Also, let C be an identifying code of S(G) with the minimum
cardinality. By Theorem 3.4, |C| ≤ n. By Theorem 3.12, |C| ≥ n − 1.
Suppose on the contrary that |C| = n − 1. Since C is a dominating set
of S(G), we have |C ∩ {vi, vin}| = 1 for each i ∈ {1, 2, ..., n − 1} and since
|C| = n − 1 we must have vn /∈ C. In this case, for every 1 ≤ i ≤ n − 1,
we have NS(G)[vi] ∩ C = NS(G)[vin] ∩ C, which is a contradiction. Therefore,
γID(S(G)) = n. □
Theorem 3.14. For each pair of integers r, s ≥ 1, we have

γID(S(Kr,s)) = r + s.

Proof. By Theorem 3.13, we have γID(S(K1,s)) = 1 + s and it can be easily
seen that γID(S(K1,1)) = 2.

Hence, hereafter assume that r ≥ 2 and s ≥ 2. By Theorem 2.4,
γ(S(Kr,s)) = r + s− 1

and hence, γID(S(Kr,s)) ≥ γ(S(Kr,s)) = r + s− 1. Also, by Theorem 3.4, we
have γID(S(Kr,s)) ≤ r+ s. Let T be a dominating set of cardinality r+ s− 1
in S(Kr,s). By using the proof of Theorem 2.4 and its notations, we should
have t2 = 1 (or t1 = 1, similarly). Since y1 and x1 are dominated by z11 and
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NS(G)[x1] ∩ T = {z11} = NS(G)[z11] ∩ T , two vertices x1 and z11 can not be
identified by T and hence T is not an identifying code. Since each dominating
set of minimum cardinality in S(Kr,s) has a structure like T, each identifying
code in S(Kr,s) must be of cardinality at least r + s, and this completes the
proof. □

Conjecture 3.15. Let G be a simple graph of ordr n. Then the identifying
code number of S(G) is equal to n.
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