Journal of Algebraic Systems



ISSN:(2345-5128)(2345-511X) Journal Homepage: www.jas.shahroodut.ac.ir

Fixed points and cut-homomorphisms generated by actions of a BE-algebra on its subalgebra

M. Sambasiva Rao

To cite this article: M. Sambasiva Rao (9 June 2024): Fixed points and cut-homomorphisms generated by actions of a *BE*-algebra on its subalgebra, Journal of Algebraic Systems, DOI: 10.22044/JAS.2023.12275.1652

To link to this article: https://doi.org/10.22044/JAS.2023.12275. 1652

Published online: 9 June 2024

FIXED POINTS AND CUT-HOMOMORPHISMS GENERATED BY ACTIONS OF A *BE*-ALGEBRA ON ITS SUBALGEBRA

M. SAMBASIVA RAO

ABSTRACT. The concept of actions of a BE-algebra on its subalgebra is introduced and certain properties of these actions are derived. The notion of cut-homomorphisms is introduced and proved that the class of all cut-homomorphisms forms an ordered BE-algebra. Properties of fixed points of cut-homomorphisms are investigated and a set of equivalent conditions is given for any two cut-homomorphisms are equal in the sense of mappings.

INTRODUCTION

The notion of *BE*-algebras was introduced and extensively studied by H. S. Kim and Y. H. Kim in [4]. These classes of *BE*-algebras were introduced as a generalization of the class of *BCK*-algebras of K. Iseki and S. Tanaka [3]. Some properties of filters of *BE*-algebras were studied by S. S. Ahn and Y. H. Kim in [1] and by B. L. Meng in [5]. In [11], A. Walendziak discussed some properties of commutative *BE*-algebras. He also investigated the relationship between *BE*-algebras, implicative algebras and *J*-algebras. In 2012, A. Rezaei, and A. Borumand Saeid [7], stated and proved the first, second and third isomorphism theorems in self distributive *BE*-algebras. Later, these authors [6] introduced the notion of commutative ideals in a *BE*-algebra. In 2013, A. Borumand Saeid, A. Rezaei and R. A. Borzooei [2] extensively studied the properties of some types of filters in *BE*-algebras and established relations among them. In 2016, the authors [10] characterized self-distributive BE-algebras, commutative BE-algebras and implicative BE-algebras with the help of left and right self maps. In [9], the author investigated certain significant properties of self-maps and endomorphisms.

In this article, the notion of an action of a BE-algebra on a given subalgebra is introduced. Certain properties of the actions generated by direct products and endomorphisms of BE-algebras are investigated. The notion of permutable actions is introduced in a BE-algebra and then proved that their composition is again an action of the BE-algebra. An ordering is

Published online: 1 April 2024

MSC(2020): Primary: 03G25.

Keywords: Subalgebra; Action of a *BE*-algebra; Cut-homomorphism; Fixed point. Received: 14 September 2022, Accepted: 5 April 2023.

SAMBASIVA RAO

introduced on the set of all actions and then derived that this set is partially ordered whenever the respective BE-algebra is commutative. It is also proved that the collection of all actions of a BE-algebra on a given subalgebra forms a semi-lattice. The concept of subcuts of subalgebras and filters of cuts are introduced. It is proved that the set of all subcuts of a given cut forms a partially ordered semi-lattice. The notion of cut-homomorphisms is introduced in BE-algebras and then it is proved that the collection of all cut-homomorphisms forms a BE-algebra which is homomorphic to the given BE-algebra. Further, it is proved that the set of all idempotent cuthomomorphisms forms an upper semi-lattice.

In the final section, the notion of fixed points of a cut-endomorphism is introduced in *BE*-algebras. A necessary and sufficient condition is given for a cut-endomorphism to have a fixed point. A set of equivalent conditions is given for any two cut-homomorphisms to be equal in the sense of mappings. Finally, some properties of fixed points and images of a cut-endomorphism are investigated.

1. Preliminaries

In this section, certain definitions and results are presented which are taken mostly from [4], [5], and [8] for the ready reference.

Definition 1.1. [4] An algebra (X, *, 1) of type (2, 0) is called a *BE*-algebra if it satisfies the following properties:

(1)
$$x * x = 1$$
,
(2) $x * 1 = 1$,
(3) $1 * x = x$,
(4) $x * (y * z) = y * (x * z)$ for all $x, y, z \in X$

A *BE*-algebra X is called *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A *BE*-algebra X is called *transitive* if

$$y * z \le (x * y) * (x * z)$$

for all $x, y, z \in X$. Every self-distributive *BE*-algebra is transitive. A *BE*algebra (X, *, 1) is said to be *commutative* [8] if (x * y) * y = (y * x) * x for all $x, y \in X$. In this case, we consider (y * x) * x as $x \vee y$. In a commutative *BE*-algebra X, it is clear that $x \vee y = y \vee x$ for all $x, y \in X$. We introduce a relation \leq on X by $x \leq y$ if and only if x * y = 1 for all $x, y \in X$.

Theorem 1.2. [5] Let X be a transitive BE-algebra and $x, y, z \in X$. Then (1) $1 \le x$ implies x = 1, (2) $y \leq z$ implies $x * y \leq x * z$ and $z * x \leq y * x$.

Definition 1.3. [4] A non-empty subset F of a *BE*-algebra X is called a *filter* of X if, for all $x, y \in X$, it satisfies the following properties:

- $(1) \ 1 \in F,$
- (2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

A subset S of a *BE*-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. Clearly every subalgebra of a *BE*-algebra contains the element 1. It is clear that every filter of a *BE*-algebra is a subalgebra. A mapping f from a *BE*-algebra (X, *, 1) into a *BE*-algebra $(Y, \circ, 1')$ is called a *homomorphism* if $f(x * y) = f(x) \circ f(y)$ for all $x, y \in X$. It is clear that f(1) = 1 whenever f is a homomorphism. A homomorphism of *BE*-algebra into itself is called an *endomorphism*.

2. Actions of BE-algebras

In this section, the notions of an action and a permutable action of a BE-algebra on a given subalgebra is introduced. Certain properties of these actions and the cuts of the BE-algebras are investigated.

Definition 2.1. Let (X, *, 1) be a *BE*-algebra and *S* is a subalgebra of *X*. A mapping $\sigma : X \times S \to S$ is called an *action* of *X* on *S* if it satisfies the following properties:

- (C1) $\sigma(a, 1) = 1$ for all $a \in X$,
- (C2) $\sigma(1, x) = x$ for all $x \in S$,
- (C3) $\sigma(a, x * y) = \sigma(a, x) * \sigma(a, y)$ for all $a \in X$ and $x, y \in S$,
- (C4) $\sigma(a, \sigma(b, x)) = \sigma(b, \sigma(a, x))$ for all $a, b \in X$ and $x \in S$.

An action σ of a *BE*-algebra X on its subalgebra S is called *idempotent* if $\sigma(a, \sigma(a, x)) = \sigma(a, x)$ for all $a \in X$ and $x \in S$. Further, σ is called a *complete action* if along with (C1)-(C4), it satisfies the following:

$$\sigma(a * b, x) = \sigma(a, x) * \sigma(b, x)$$

for all $a, b \in X$ and $x \in S$. In all the cases, we call the pair (σ, S) an S-cut of the *BE*-algebra X.

Example 2.2. (1) Let X be a self-distributive *BE*-algebra and S be a subalgebra of X. For any $a \in X$ and $x \in S$, define a mapping $\sigma : X \times S \to S$ by $\sigma(a, x) = a * x$. Then σ is an action of X on S. Therefore (σ, S) is an S-cut of the *BE*-algebra X. (2) Let X be a *BE*-algebra and S be a subalgebra of X. For any $a \in X$ and $x \in S$, define a mapping $\sigma : X \times S \to S$ by $\sigma(a, x) = x$. It can be routinely verified that σ is an action of X on S. Hence (σ, S) is an S-cut of X. Further, we see that σ is not complete. For consider $a, b \in X$ and $1 \neq c \in S$ be such that a * b = 1. Then

$$\sigma(a * b, c) = c$$
 and $\sigma(a, c) * \sigma(b, c) = c * c = 1$

Therefore σ is an action of X on S which is not complete.

Proposition 2.3. Let X be a BE-algebra and S be a subalgebra of X. Let $\mu: X \to S$ be a homomorphism satisfying the following:

(1)
$$\mu(a) * (x * y) = (\mu(a) * x) * (\mu(a) * y)$$
 for all $a \in X$ and $x, y \in S$.

(2)
$$\mu(a * b) * x = (\mu(a) * x) * (\mu(b) * x)$$
 for all $a, b \in X$ and $x \in S$.

For any $a \in X$ and $x \in S$, define a mapping $\sigma_{\mu} : X \times S \to S$ by $\sigma_{\mu}(a, x) = \mu(a) * x$. Then σ_{μ} is a complete action of X on S.

Proof. Since S is a subalgebra of X, we get σ_{μ} is well-defined. Then

- (C1) For any $a \in X$, we get $\sigma_{\mu}(a, 1) = \mu(a) * 1 = 1$.
- (C2) For any $x \in S$, we have $\sigma_{\mu}(1, x) = \mu(1) * x = 1 * x = x$.
- (C3) Let $a \in X$ and $x, y \in S$. Then, we get

$$\sigma_{\mu}(a, x * y) = \mu(a) * (x * y) = (\mu(a) * x) * (\mu(a) * y) = \sigma_{\mu}(a, x) * \sigma_{\mu}(a, y).$$

(C4) Let $a, b \in X$ and $x \in S$. Then, we get

$$\sigma_{\mu}(a, \sigma_{\mu}(b, x)) = \sigma_{\mu}(a, \mu(b) * x)$$

$$= \mu(a) * (\mu(b) * x)$$

$$= \mu(b) * (\mu(a) * x)$$

$$= \mu(b) * \sigma_{\mu}(a, x)$$

$$= \sigma_{\mu}(b, \sigma_{\mu}(a, x)).$$

Thus σ_{μ} is an action of X on S. Hence (σ_{μ}, S) is an S-cut of X. Further, assume that μ satisfies the condition. Let $a, b \in X$ and $x \in S$. Then

$$\sigma_{\mu}(a * b, x) = \mu(a * b) * x$$
$$= (\mu(a) * x) * (\mu(b) * x)$$
$$= \sigma_{\mu}(a, x) * \sigma_{\mu}(b, x)$$

Therefore σ_{μ} is a complete action of X on S.

Proposition 2.4. Let S_1 and S_2 be the subalgebras of the BE-algebras X_1 and X_2 respectively. Suppose σ_1 and σ_2 are the actions of X_1 on S_1 and X_2 on S_2 respectively. For all $(a,b) \in X_1 \times X_2$ and $(x,y) \in S_1 \times S_2$, define a mapping $\sigma_1 \times \sigma_2 : (X_1 \times X_2) \times (S_1 \times S_2) \to S_1 \times S_2$ by

$$(\sigma_1 \times \sigma_2)((a,b),(x,y)) = (\sigma_1(a,x),\sigma_2(b,y)).$$

Then $\sigma_1 \times \sigma_2$ is an action of the product algebra $X_1 \times X_2$ on the subalgebra $S_1 \times S_2$. Therefore $(\sigma_1 \times \sigma_2, S_1 \times S_2)$ is a cut of $X_1 \times X_2$.

Proof. Clearly $\sigma_1 \times \sigma_2$ is well-defined. Note that $S_1 \times S_2$ is a subalgebra of $X_1 \times X_2$ with element (1, 1). Now, the properties (C1)-(C4) can be routinely verified by using point-wise operations.

Proposition 2.5. Let S be a subalgebra of a BE-algebra X. Suppose $\mu : X \times S \to S$ is a mapping. For all $a, b \in X$ and $x, y \in S$, define a mapping $\sigma_{\mu} : X^2 \to S^2$ (where $X^2 = X \times X$ and $S^2 = S \times S$) by

$$\sigma_{\mu}((a,b),(x,y)) = (\mu(a,x),\mu(b,y))$$

Then μ is an action of X on S if and only if σ_{μ} is an action of X^2 on S^2 . Moreover, (μ, S) is a cut of X if and only if (σ_{μ}, S^2) is a cut of X^2 .

Proof. Clearly σ_{μ} is well-defined. Note that S^2 is a subalgebra of X^2 with element (1,1). Assume that μ is an action of X on S. Then (C1) Let $(a,b) \in X^2$. Then $\sigma_{\mu}((a,b),(1,1)) = (\mu(a,1),\mu(b,1)) = (1,1)$. (C2) Let $(x,y) \in S^2$. Then, we get

$$\sigma_{\mu}((1,1),(x,y)) = (\mu(1,x),\mu(1,y)) = (x,y).$$

(C3) Let $(a, b) \in X^2$ and $(x, y), (z, w) \in S^2$. Since μ is an action of X on S, we get the following consequence:

$$\begin{aligned} \sigma_{\mu}((a,b),(x,y)*(z,w)) &= \sigma_{\mu}((a,b),(x*z,y*w)) \\ &= (\mu(a,x*z),\mu(b,y*w)) \\ &= (\mu(a,x)*\mu(a,z),\mu(b,y)*\mu(b,w)) \\ &= (\mu(a,x),\mu(b,y))*(\mu(a,z),\mu(b,w)) \\ &= \sigma_{\mu}((a,b),(x,y))*\sigma_{\mu}((a,b),(z,w)) \end{aligned}$$

(C4) Let $(a, b), (c, d) \in X^2$ and $(x, y) \in S^2$. Since μ is an action of X on S, we get the following consequence:

$$\sigma_{\mu}((a,b),\sigma_{\mu}((c,d),(x,y)) = \sigma_{\mu}((a,b),(\mu(c,x),\mu(d,y)))$$

= $(\mu(a,\mu(c,x)),\mu(b,\mu(d,y)))$
= $(\mu(c,\mu(a,x)),\mu(d,\mu(b,y)))$
= $\sigma_{\mu}((c,d),(\mu(a,x),\mu(b,y)))$
= $\sigma_{\mu}((c,d),\sigma_{\mu}((a,b),(x,y))$

Hence σ_{μ} is an action of X^2 on S^2 . Therefore (σ_{μ}, S^2) is a cut of X^2 .

Conversely, assume that σ_{μ} is an action of X^2 on S^2 . (C1) Let $a \in X$. Then $(\mu(a, 1), \mu(1, 1)) = \sigma_{\mu}((a, 1), (1, 1)) = (1, 1)$. Hence $\mu(a, 1) = 1$. (C2) Let $x \in S$. Then $(\mu(1, x), \mu(1, 1)) = \sigma_{\mu}((1, 1), (1, x)) = (1, 1)$. Hence $\mu(1, x) = 1$. (C3) Let $a \in X$ and $x, y \in S$. Since σ_{μ} is an action of X^2 on S^2 , we get that

$$\begin{aligned} (\mu(a, x * y), \mu(1, 1)) &= \sigma_{\mu}((a, 1), (x * y, 1)) \\ &= \sigma_{\mu}((a, 1), (x, 1) * (y, 1)) \\ &= \sigma_{\mu}((a, 1), (x, 1)) * \sigma_{\mu}((a, 1), (y, 1)) \\ &= (\mu(a, x), \mu(1, 1)) * (\mu(a, y), \mu(1, 1)) \\ &= (\mu(a, x) * \mu(a, y), \mu(1, 1)) \end{aligned}$$

Hence $\mu(a, x * y) = \mu(a, x) * \mu(a, y)$. (C4) Let $a, b \in X$ and $x \in S$. Since σ_{μ} is an action of X^2 on S^2 . Then

$$(\mu(a,\mu(b,x)),1) = (\mu(a,\mu(b,x)),\mu(1,1))$$

= $\sigma_{\mu}((a,1),(\mu(b,x),1))$
= $\sigma_{\mu}((a,1),(\mu(b,x),\mu(1,1)))$
= $\sigma_{\mu}((a,1),\sigma_{\mu}((b,1),(x,1)))$
= $\sigma_{\mu}((b,1),\sigma_{\mu}((a,1),(x,1)))$
= $\sigma_{\mu}((b,1),(\mu(a,x),\mu(1,1)))$
= $(\mu(b,\mu(a,x)),\mu(1,1))$
= $(\mu(b,\mu(a,x)),1)$

Hence $\mu(a, \mu(b, x)) = \mu(b, \mu(a, x))$. Thus μ is an action of X on S.

Proposition 2.6. Let X be a BE-algebra and S be a subalgebra of X. Suppose $\mu : X \to X$ is an endomorphism and $\sigma : X \times S \to S$ is a

mapping. For $a \in X$ and $x \in S$, define a mapping $\sigma_{\mu} : X \times S \to S$ by

$$\sigma_{\mu}(a, x) = \sigma(\mu(a), x)$$

If σ is a complete action of X on S, then σ_{μ} is a complete action of X on S. Further, the converse is also true whenever μ is surjective.

Proof. Assume that σ is a complete action of X on S. Then, we get

(C1) For any $a \in X$, we get that $\sigma_{\mu}(a, 1) = \sigma(\mu(a), 1) = 1$.

(C2) For any $x \in S$, we get $\sigma_{\mu}(1, x) = \sigma(\mu(1), x) = \sigma(1, x) = x$.

(C3) Let $a \in X$ and $x, y \in S$. Since σ is an action of X on S and μ is an endomorphism, we get that

$$\sigma_{\mu}(a, x * y) = \sigma(\mu(a), x * y)$$

= $\sigma(\mu(a), x) * \sigma(\mu(a), y)$
= $\sigma_{\mu}(a, x) * \sigma_{\mu}(a, y)$

(C4) Let $a, b \in X$ and $x \in S$. Since σ is an action of X on S, we get

$$\sigma_{\mu}(a, \sigma_{\mu}(b, x)) = \sigma_{\mu}(a, \sigma(\mu(b), x))$$
$$= \sigma(\mu(a), \sigma(\mu(b), x))$$
$$= \sigma(\mu(b), \sigma(\mu(a), x))$$
$$= \sigma_{\mu}(b, \sigma(\mu(a), x))$$
$$= \sigma_{\mu}(b, \sigma_{\mu}(a, x))$$

(C5) Let $a, b \in X$ and $x \in S$. Since σ is a complete action, we get

$$\sigma_{\mu}(a * b, x) = \sigma(\mu(a * b), x)$$

= $\sigma(\mu(a) * \mu(b), x)$
= $\sigma(\mu(a), x) * \sigma(\mu(b), x)$
= $\sigma_{\mu}(a, x) * \sigma_{\mu}(b, x)$

Therefore σ_{μ} is a complete action of X on S. To prove the converse, let us suppose that μ is a surjective mapping. Assume that σ_{μ} is a complete action of X on S. Then, we get

(C1) Let $a \in X$. Since μ is surjective, there exists $b \in X$ such that $\mu(b) = a$. Now, $\sigma(a, 1) = \sigma(\mu(b), 1) = \sigma_{\mu}(b, 1) = 1$.

(C2) For any $x \in S$, we get $\sigma(1, x) = \sigma(\mu(1), x) = \sigma_{\mu}(1, x) = x$.

(C3) Let $a \in X$ and $x, y \in S$. Since μ is surjective, there exist $b \in X$ such

that $\mu(b) = a$. Since σ_{μ} is an action of X on S, we get

$$\sigma(a, x * y) = \sigma(\mu(b), x * y)$$

= $\sigma_{\mu}(b, x * y)$
= $\sigma_{\mu}(b, x) * \sigma_{\mu}(b, y)$
= $\sigma(\mu(b), x) * \sigma(\mu(b), y)$
= $\sigma(a, x) * \sigma(a, y)$

(C4) Let $a, b \in X$ and $x \in S$. Since μ is surjective, there exist $a_0, b_0 \in X$ such that $\mu(a_0) = a$ and $\mu(b_0) = b$. Since σ_{μ} is an action,

$$\sigma(a, \sigma(b, x)) = \sigma(\mu(a_0), \sigma(\mu(b_0), x))$$

$$= \sigma(\mu(a_0), \sigma_\mu(b_0, x))$$

$$= \sigma_\mu(a_0, \sigma_\mu(b_0, x))$$

$$= \sigma_\mu(b_0, \sigma_\mu(a_0, x))$$

$$= \sigma(\mu(b_0), \sigma(\mu(a_0), x))$$

$$= \sigma(b, \sigma(a, x))$$

(C5) Let $a, b \in X$ and $x \in S$. Since μ is a surjective mapping, there exist $a_0, b_0 \in X$ such that $\mu(a_0) = a$ and $\mu(b_0) = b$. Since σ_{μ} is an action of X on S, we get

$$\sigma(a * b, x) = \sigma(\mu(a_0) * \mu(b_0), x) = \sigma(\mu(a_0 * b_0), x) = \sigma_{\mu}(a_0 * b_0, x) = \sigma_{\mu}(a_0, x) * \sigma_{\mu}(b_0, x) = \sigma(\mu(a_0), x) * \sigma(\mu(b_0), x) = \sigma(a, x) * \sigma(b, x)$$

Therefore σ is a complete action of X on S.

Definition 2.7. Let (X, *, 1) be a *BE*-algebra and *S* be a subalgebra of *X*. Two actions σ_i and σ_j of *X* on *S* are said to be *permutable* if for all $a, b \in X$ and $x \in S$, the following property holds:

$$\sigma_i(a, \sigma_j(b, x)) = \sigma_i(b, \sigma_j(a, x)).$$

Example 2.8. Let $X = \{1, a, b, c\}$ be the given set. Define a binary operation * on X as given in the following table:

Clearly (X, *, 1) is a *BE*-algebra. Consider the subalgebra $S = \{b, 1\}$. Define two mappings σ_1 and σ_2 from $X \times S$ into S as given by

$$\sigma_1(x,y) = x * y \qquad \sigma_2(x,y) = y$$

for all $x \in X$ and $y \in S$. Clearly σ_1 and σ_2 are actions of X on S. It can be easily verified that σ_1 and σ_2 are permutable actions of X on S.

Proposition 2.9. Let X be a BE-algebra and S is a subalgebra of X. Let σ_1 and σ_2 be two permutable actions of X on S. Define the composition of the actions σ_1 and σ_2 as

$$(\sigma_1 \circ \sigma_2)(a, x) = \sigma_1(a, \sigma_2(a, x))$$

for all $a \in X$ and $x \in S$. Then $\sigma_1 \circ \sigma_2$ is an action of X on S.

Proof. (C1) and (C2) are clear. To prove (C3), let $a \in X$ and $x, y \in S$. Then, we get the following:

$$(\sigma_1 \circ \sigma_2)(a, x * y) = \sigma_1(a, \sigma_2(a, x * y))$$

= $\sigma_1(a, \sigma_2(a, x) * \sigma_2(a, y))$
= $\sigma_1(a, \sigma_2(a, x)) * \sigma_1(a, \sigma_2(a, y))$
= $(\sigma_1 \circ \sigma_2)(a, x) * (\sigma_1 \circ \sigma_2)(a, y)$

(C4). Let $a, b \in X$ and $x \in S$. Since σ_1 and σ_2 are permutable, we get

$$\begin{aligned} (\sigma_1 \circ \sigma_2)(a, (\sigma_1 \circ \sigma_2)(b, x)) &= (\sigma_1 \circ \sigma_2)(a, \sigma_1(b, \sigma_2(b, x))) \\ &= \sigma_1(a, \sigma_2(a, \sigma_1(b, \sigma_2(b, x)))) \\ &= \sigma_1(a, \sigma_2(b, \sigma_1(a, \sigma_2(b, x)))) \\ &= \sigma_1(b, \sigma_2(a, \sigma_1(a, \sigma_2(b, x)))) \\ &= \sigma_1(b, \sigma_2(a, \sigma_1(b, \sigma_2(a, x)))) \\ &= \sigma_1(b, \sigma_2(b, \sigma_1(a, \sigma_2(a, x)))) \\ &= \sigma_1(b, \sigma_2(b, (\sigma_1 \circ \sigma_2)(a, x))) \\ &= (\sigma_1 \circ \sigma_2)(b, (\sigma_1 \circ \sigma_2)(a, x)) \end{aligned}$$

Therefore $\sigma_1 \circ \sigma_2$ is an action of X on S.

Theorem 2.10. Let X be a BE-algebra with given ordering \leq . Suppose that S is a subalgebra of X and $\Sigma(X)$ denotes the set of all actions of X on S. For any $\sigma_1, \sigma_2 \in \Sigma(X)$, define an ordering \leq_{σ} on the set of all actions of X on S as given by

$$\sigma_1 \leq_{\sigma} \sigma_2$$
 if and only if $\sigma_1(a, x) \leq \sigma_2(a, x)$

for all $a \in X$ and $x \in S$. Then \leq_{σ} is a BE-ordering on $\Sigma(X)$. Further, if X is commutative, then \leq_{σ} is a partial ordering on $\Sigma(X)$.

Proof. Since S is a subalgebra of X and \leq is a *BE*-ordering on X, it is clear that \leq_{σ} is reflexive. Further, if X is commutative, then it is transitive. Hence \leq_{σ} is transitive on $\Sigma(X)$. Since X is commutative, we get that \leq is anti-symmetric and hence \leq_{σ} is anti-symmetric on $\Sigma(X)$. Therefore \leq_{σ} is a partial ordering on $\Sigma(X)$.

Suppose that X is a commutative *BE*-algebra and S is a subalgebra of X. Let σ_1 and σ_2 be two actions of X on S. Due to the commutativity of the subalgebra S, we get

$$\sigma_1(a,x) \lor \sigma_2(a,x) = (\sigma_2(a,x) \ast \sigma_1(a,x)) \ast \sigma_1(a,x)$$

for any $a \in X$ and $x \in S$. Further, we have

 $\sigma_1(a, x) \lor \sigma_2(a, x) = \sigma_2(a, x) \lor \sigma_1(a, x).$

Lemma 2.11. Let X be a BE-algebra and S a commutative subalgebra of X. If σ is an action of X on S, then $\sigma(a, x \lor y) = \sigma(a, x) \lor \sigma(a, y)$ for any $a \in X$ and $x, y \in S$.

Proof. Routine verification.

Proposition 2.12. Suppose X is a BE-algebra and S a commutative subalgebra of X. Let σ_1 and σ_2 be two permutable actions of X on S. Define the supremum of the actions σ_1 and σ_2 as given under

$$(\sigma_1 \sqcup \sigma_2)(a, x) = \sigma_1(a, x) \lor \sigma_2(a, x)$$

for all $a \in X$ and $x \in S$. Then $\sigma_1 \sqcup \sigma_2$ is an action of X on S. Further $\sigma_1 \sqcup \sigma_2$ is a complete action of X on S whenever both σ_1 and σ_2 are complete actions of X on S.

Proof. (C1), (C2) and (C3) can be routinely verified. To prove (C4), let $a \in X$ and $x \in S$. For simplicity of the representation, in the following, we

use the notation $\sigma_i(a_x) = \sigma_i(a, x)$ and $\sigma_i(b_x) = \sigma_i(b, x)$ for i = 1, 2. Since σ_1 and σ_2 are permutable, we get

$$\begin{aligned} (\sigma_1 \sqcup \sigma_2)(a, (\sigma_1 \sqcup \sigma_2)(b_x)) &= (\sigma_1 \sqcup \sigma_2)(a, \sigma_1(b_x) \lor \sigma_2(b_x)) \\ &= \sigma_1(a, \sigma_1(b_x) \lor \sigma_2(b_x)) \\ &\lor \sigma_2(a, \sigma_1(b_x)) \lor \sigma_2(b_x)) \\ &= \sigma_1(a, \sigma_1(b_x)) \lor \sigma_1(a, \sigma_2(b_x))) \\ &\lor \sigma_2(a, \sigma_1(b_x)) \lor \sigma_2(a, \sigma_2(b_x)) \\ &= \sigma_1(b, \sigma_1(a_x)) \lor \sigma_1(b, \sigma_2(a_x))) \\ &\lor \sigma_2(b, \sigma_1(a_x)) \lor \sigma_2(b, \sigma_2(a_x)) \\ &= \sigma_1(b, \sigma_1(a_x) \lor \sigma_2(a_x)) \lor \sigma_2(b, \sigma_1(a_x) \lor \sigma_2(a_x)) \\ &= \sigma_1(b, (\sigma_1 \sqcup \sigma_2)(a_x)) \lor \sigma_2(b, (\sigma_1 \sqcup \sigma_2)(a_x)) \\ &= (\sigma_1 \sqcup \sigma_2)(b, (\sigma_1 \sqcup \sigma_2)(a_x)) \end{aligned}$$

Hence $\sigma_1 \sqcup \sigma_2$ is an action of X on S. Further, suppose that σ_1, σ_2 are complete actions of X on S. It can be routinely verified that $\sigma_1 \sqcup \sigma_2$ is a complete action of X on S.

The following theorem is a direct consequence of the above results.

Theorem 2.13. Suppose (X, *, 1) is a BE-algebra and S a commutative subalgebra of X. Let $\Sigma(X)$ be the set of all permutable actions of X on S. Then $(\Sigma(X), \sqcup)$ is a semi-lattice with partial ordering \leq_{σ} . Therefore $(\Sigma(X), \leq_{\sigma})$ is a partially order set.

3. Cut-homomorphisms

In this section, the concept of subcuts of subalgebras of a BE-algebra is introduced. The notion of cut-homomorphisms is introduced in BE-algebras. It is proved that the collection of all idempotent cut-homomorphism forms an upper semi-lattice.

Definition 3.1. Let S be a subalgebra of a *BE*-algebra X. Suppose (σ, S) is a cut of a *BE*-algebra X. A subalgebra S' of S is said to a *subcut* of S if S' is closed under action by elements of X. In this case, we simply call (σ, S') a subcut of (σ, S) .

Definition 3.2. Suppose that S is a subalgebra of a *BE*-algebra X and (σ, S) is a cut of X. A subcut (σ, F) of the cut (σ, S) is called a *filter* of (σ, S) if it satisfies the following properties:

- (1) F is a filter of S,
- (2) $\sigma(x, y) \leq x$ for all $x \in S$ and $1 \neq y \in F$.

In this case, we simply call that F is a filter of the cut (σ, S) . For any subalgebra S of X, it is clear that $\{1\}$ is a filter of any cut (σ, S) . A filter F of a cut (σ, S) is called *proper* if $F \neq S$.

Example 3.3. Let $X = \{1, a, b, c\}$ be a set. Define a binary operation * on X as follows:

*	1	a	b	c
1	1	a	b	С
a	1	1	b	С
b	1	$\frac{1}{a}$	1	С
c	1	a	b	1

It can be routinely seen that (X, *, 1) is a *BE*-algebra. Consider the subalgebra $S = \{a, b, 1\}$. Define a mapping $\sigma : X \times S \longrightarrow S$ by $\sigma(a, 1) = 1$, $\sigma(1, x) = x$ for all $a \in X, x \in S$, and

$$\sigma(c, a) = a, \ \sigma(c, b) = b \text{ and } \sigma(c, c) = 1$$

Note that σ is an action of X on S. Consider the set $F = \{1, a\}$. Then, it can be easily verified that F is a filter of the cut (σ, S) .

Proposition 3.4. Let S be a subalgebra of a BE-algebra (X, *, 1) and σ is an action of X on S. Then the set-intersection of any two filters of the cut (σ, S) is again a filter of (σ, S) .

Proof. Given that σ an action of X on S. Let (σ, F_1) and (σ, F_2) be two filters of the cut (σ, S) . Clearly $F_1 \cap F_2$ is a filter of S. Therefore the intersection of F_1 and F_2 is a filter of the cut (σ, S) .

The following corollaries are direct consequences of Proposition 3.4.

Corollary 3.5. Let S be a subalgebra of a BE-algebra X and σ is an action of X on S. Suppose $\{F_{\alpha}\}_{\alpha \in \Delta}$ is an indexed family of filters of the cut (σ, S) . Then the set intersection $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is a filter of (σ, S) .

Corollary 3.6. Let S be a subalgebra of a BE-algebra X. If σ is an action of X on S, then the intersection of all filters of (σ, S) is $\{1\}$.

Proposition 3.7. Let S be a commutative subalgebra of a BE-algebra X. Suppose σ_1 and σ_2 are two actions of X on S. If F is filter of both the cuts (σ_1, S) and (σ_2, S) , then F is a filter of $(\sigma_1 \sqcup \sigma_2, S)$. *Proof.* By Proposition 2.12, $\sigma_1 \sqcup \sigma_2$ is an action of X on S. Let $x \in S$ and $1 \neq y \in F$. Since F is filter of (σ_1, S) and (σ_2, S) , we get

$$\sigma_1(x,y) \le x$$
 and $\sigma_2(x,y) \le x$.

Hence $(\sigma_1 \sqcup \sigma_2)(x, y) = \sigma_1(x, y) \lor \sigma_2(x, y) \le x$ for all $x \in S$ and $1 \ne y \in F$. Therefore F is a filter of the cut $(\sigma_1 \sqcup \sigma_2, S)$.

Theorem 3.8. Let S be a commutative subalgebra of a BE-algebra X. Suppose $\{\sigma_i\}_{i\in\Delta}$ is an indexed family of actions of X on S. For any filter F of S, the set $\{(\sigma_i, F)\}_{i\in\Delta}$ of all subcuts forms a partially ordered semi-lattice with respect to the operation \sqcup .

Proof. By Proposition 3.7 and Theorem 2.10, it follows.

Definition 3.9. Let F and G be two filters of a *BE*-algebra X. Suppose σ and μ are actions of X on F and G respectively. For the cuts (σ, F) and (μ, G) of X, the mapping $f : (\sigma, F) \longrightarrow (\mu, G)$ is called a *cut-homomorphism* if it satisfies the following properties:

(H1)
$$f(x * y) = f(x) * f(y)$$
 for all $x, y \in F$,

(H2) $f(\sigma(a, x)) = \mu(a, f(x))$ for all $a \in X$ and $x \in F$.

A bijective cut-homomorphism is called a *cut-isomorphism*. A cuthomomorphism from a cut (σ, F) into itself is called a *cut-endomorphism*.

Proposition 3.10. The composition of any two cut-homomorphisms of a BE-algebra is again a cut-homomorphism.

Proof. Let F, G and H be three filters of a *BE*-algebra X. Suppose σ, μ and δ be three actions of X on F, G and H respectively. Let $f: (\sigma, F) \longrightarrow (\mu, G)$ and $g: (\mu, G) \longrightarrow (\delta, H)$ be two cut-homomorphisms. Clearly $g \circ f: (\sigma, F) \longrightarrow (\delta, H)$ is a cut-homomorphism. \Box

Definition 3.11. Let (σ, F) be a cut of a *BE*-algebra *X*. For any $a \in X$, define a self-map $\sigma_a : (\sigma, F) \longrightarrow (\sigma, F)$ by $\sigma_a(x) = \sigma(a, x)$ for all $x \in F$.

Proposition 3.12. Let (σ, F) be a cut of a BE-algebra X. For any $a \in X$, the mapping $\sigma_a : (\sigma, F) \longrightarrow (\sigma, F)$ defined above is a cut-endomorphism.

Proof. Let $a \in X$. For any $x, y \in F$, we get

$$\sigma_a(x*y) = \sigma(a, x*y) = \sigma(a, x) * \sigma(a, y) = \sigma_a(x) * \sigma_a(y).$$

For any $b \in X$ and $x \in F$, we get

$$\sigma_a(\sigma(b,x)) = \sigma(a,\sigma(b,x)) = \sigma(b,\sigma(a,x)) = \sigma(b,\sigma_a(x)).$$

Therefore σ_a is a cut-endomorphism.

 \square

Lemma 3.13. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$,

- (1) for any $x \in (\sigma, S)$, $\sigma_a(x) = x * \sigma_a(x)$,
- (2) for any $x \in (\sigma, S)$, $x = \sigma_a(x) * x$ whenever σ is complete,
- (3) if F is a filter of (σ, S) , then $(\sigma, \sigma_a(F))$ is a subcut of (σ, S) .

Proof. (1) Let $a \in X$. For any $x \in (\sigma, S)$, we get

$$\sigma_a(x) = \sigma(a, x) = \sigma(1 * a, x) = \sigma(1, x) * \sigma(a, x) = x * \sigma_a(x)$$

(2) Let $a \in X$ and σ is complete. For any $x \in (\sigma, S)$, we get

$$x = \sigma(1, x) = \sigma(a * 1, x) = \sigma(a, x) * \sigma(1, x) = \sigma_a(x) * x$$

(3) Let F be a filter of (σ, S) . Let $\sigma_a(x), \sigma_a(y) \in \sigma_a(F)$ where $x, y \in F$. Then

$$\sigma_a(x) * \sigma_a(y) = \sigma(a, x) * \sigma(a, y) = \sigma(a, x * y) = \sigma_a(x * y) \in \sigma_a(F)$$

because of $x * y \in F$. Therefore $\sigma_a(F)$ is a subalgebra of X, for any $b \in X$ and $\sigma_a(x) \in \sigma_a(F)$. Then $x \in F$ and

$$\sigma(b,\sigma_a(x)) = \sigma(b,\sigma(a,x)) = \sigma(a,\sigma(b,x)) = \sigma_a(\sigma(b,x)) \in \sigma_a(F)$$

since $\sigma(b, x) \in F$. Hence $\sigma : X \times \sigma_a(F) \longrightarrow \sigma_a(F)$ is an action of X on $\sigma_a(F)$. Therefore $(\sigma, \sigma_a(F))$ is a subcut of (σ, S) .

Lemma 3.14. Let (σ, S) be a cut of a BE-algebra X. For any $a, b \in X$,

- (1) σ_1 is the identity map on (σ, S) , (2) σ_a is order preserving on (σ, S) ,
- (3) $\sigma_a \circ \sigma_b = \sigma_b \circ \sigma_a$.

Proof. (1) For any $x \in S$, we get that $\sigma_1(x) = \sigma(1, x) = x$. (2) Let $x, y \in S$ and $x \leq y$. Then

$$\sigma_a(x) * \sigma_a(y) = \sigma_a(x * y) = \sigma_a(1) = \sigma(a, 1) = 1.$$

Hence $\sigma_a(x) \leq \sigma_a(y)$. Therefore σ_a is order preserving.

(3) For any $x \in S$, we have

$$(\sigma_a \circ \sigma_b)(x) = \sigma_a(\sigma_b(x))$$

= $\sigma_a(\sigma(b, x))$
= $\sigma(a, \sigma(b, x))$
= $\sigma(b, \sigma(a, x))$
= $\sigma(b, \sigma_a(x))$
= $\sigma_b(\sigma_a(x))$
= $(\sigma_b \circ \sigma_a)(x).$

Therefore $\sigma_a \circ \sigma_b = \sigma_a \circ \sigma_b$.

Theorem 3.15. Let (σ, S) be a cut of a BE-algebra X. Then the collection $\mathcal{M} = \{\sigma_a \mid a \in X\}$ is a BE-algebra and there is an onto homomorphism from X into \mathcal{M} .

Proof. For any $a, b \in X$, define a binary operation \odot on \mathcal{M} as $(\sigma_a \odot \sigma_b)(x) = \sigma_{a*b}(x)$ for all $x \in S$. For any $a \in X$, we have

$$(\sigma_a \odot \sigma_1)(x) = \sigma_{a*1}(x) = \sigma_1(x)$$

for all $x \in S$. Hence $\sigma_a \odot \sigma_1 = \sigma_1$. Again, we have

$$(\sigma_1 \odot \sigma_a)(x) = \sigma_{1*a}(x) = \sigma_a(x)$$

for all $x \in S$. Hence $\sigma_1 \odot \sigma_a = \sigma_a$. Also $(\sigma_a \odot \sigma_a)(x) = \sigma_{a*a}(x) = \sigma_1(x)$. Hence $\sigma_a \odot \sigma_a = \sigma_1$. Similarly, we can prove that $\sigma_a \odot (\sigma_b \odot \sigma_c) = \sigma_b \odot (\sigma_a \odot \sigma_c)$ for any $\sigma_a, \sigma_b, \sigma_c \in \mathcal{M}$. Therefore $(\mathcal{M}, \odot, \sigma_1)$ is a *BE*-algebra where σ_1 is the top element.

Since $(\mathcal{M}, \odot, \sigma_1)$ is a *BE*-algebra, define a mapping $\Omega : X \longrightarrow \mathcal{M}$ as $\Omega(a) = \sigma_a$ for all $a \in X$. Clearly Ω is well-defined. For any $a, b \in X$, we get $\Omega(a * b) = \sigma_{a*b} = \sigma_a \odot \sigma_b = \Omega(a) \odot \Omega(b)$. Therefore Ω is a homomorphism. Let $\sigma_a \in \mathcal{M}$. For this $a \in X$, it is clear that $\Omega(a) = \sigma_a$. Therefore Ω is an onto homomorphism.

In a self-distributive *BE*-algebra *X* with subalgebra *S*, the action $\sigma : X \times S \longrightarrow S$ defined by $\sigma(a, x) = a * x$ for all $a \in X$ and $x \in S$ is observed as the idempotent action.

Theorem 3.16. Let σ be an idempotent action of a BE-algebra X on its subalgebra S. Then the collection $K' = \{\sigma_a \mid a \in X\}$ is an upper semi-lattice with top element σ_1 .

 \square

Proof. For any $a, b \in X$, define a binary operation \wedge on K' as $\sigma_a \wedge \sigma_b = \sigma_a \circ \sigma_b$. For any $a \in X$, we have

$$(\sigma_a \wedge \sigma_a)(x) = (\sigma_a \circ \sigma_a)(x)$$
$$= \sigma_a(\sigma_a(x))$$
$$= \sigma_a(\sigma(a, x))$$
$$= \sigma(a, \sigma(a, x))$$
$$= \sigma(a, x)$$
$$= \sigma_a(x)$$

for all $x \in S$. Hence $\sigma_a \wedge \sigma_a = \sigma_a$. Let $a, b \in X$. By Lemma 3.14(3), we get $\sigma_a \wedge \sigma_b = \sigma_a \circ \sigma_b = \sigma_b \circ \sigma_a = \sigma_b \wedge \sigma_a$. Since the composition of self mappings is associative, it is concluded that (K', \wedge) is a semi-lattice. For any $a \in X$ and $x \in S$, we get

$$(\sigma_a \wedge \sigma_1)(x) = (\sigma_a \circ \sigma_1)(x) = \sigma_a(\sigma_1(x)) = \sigma_a(x).$$

Hence $\sigma_a \wedge \sigma_1 = \sigma_a$. Similarly, $\sigma_1 \wedge \sigma_a = \sigma_a$. Therefore (K', \wedge) is a semi-lattice where σ_1 as the top element.

4. Fixed points of cut-endomorphisms

In this section, the concept of fixed points of a cut-endomorphism is introduced in BE-algebras. A necessary and sufficient condition is given for a cut-endomorphism to have a fixed point. Properties of fixed points and images of a cut-endomorphism are investigated.

Definition 4.1. Let S be a subalgebra of a *BE*-algebra X. Suppose (σ, S) be a cut of X and $f : (\sigma, S) \longrightarrow (\sigma, S)$ is a cut-endomorphism. An element $x \in S$ is called a *fixed point* of f if f(x) = x.

Example 4.2. Consider the subalgebra $S = \{a, b, 1\}$ of the *BE*-algebra X which is given in Example 3.3. Define a self-mapping $f : S \longrightarrow S$ as given by

$$f(x) = \begin{cases} 1 & \text{if } x = 1\\ a & \text{otherwise} \end{cases}$$

It can be easily noticed that f is a cut-endomorphism on S. Under this self mapping f, the elements 1 and a of the subalgebra S are fixed points but not the element b because of f(b) = a.

Theorem 4.3. Let S be a subalgebra of BE-algebra X and (σ, S) be a cut of X. For any $a \in X$, the cut-endomorphism σ_a has a fixed point in S if and only if there exists a constant mapping $g : S \longrightarrow S$ such that $g(\sigma(a, x)) = \sigma(a, g(x))$ for all $x \in S$.

Proof. Assume that σ_a has a fixed point, say c. For this $c \in S$, define a constant map $g : S \longrightarrow S$ by g(x) = c for all $x \in S$. Then, we get $g(\sigma(a, x)) = c$ and $\sigma(a, g(x)) = \sigma(a, c) = \sigma_a(c) = c$ for all $x \in S$. Therefore $g(\sigma(a, x)) = \sigma(a, g(x))$ for all $x \in S$.

Conversely, assume that there exists $c \in S$ and a constant mapping $h: S \longrightarrow S$ such that h(x) = c and $h(\sigma(a, x)) = \sigma(a, h(x))$ for all $x \in S$. Hence $\sigma_a(c) = \sigma(a, c) = \sigma(a, h(x)) = h(\sigma(a, x)) = c$. Therefore c is a fixed point of σ_a .

Proposition 4.4. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$, the class of all fixed points of σ_a given by

$$Fix(\sigma_a) = \{x \in S \mid \sigma_a(x) = x\}$$

is a subcut of (σ, S) .

Proof. Let $a \in X$. Since $\sigma_a(1) = 1$, we get $1 \in Fix(\sigma_a)$. Let $x, y \in Fix(\sigma_a)$. Then, we get $\sigma_a(x) = x$ and $\sigma_a(y) = y$. Hence

$$\sigma_a(x*y) = \sigma(a, x*y) = \sigma(a, x) * \sigma(a, y) = \sigma_a(x) * \sigma_a(y) = x*y.$$

Thus $x * y \in Fix(\sigma_a)$. Therefore $Fix(\sigma_a)$ is a uni-subalgebra of (σ, S) . For any $b \in X$ and $x \in Fix(\sigma_a)$. Then $\sigma(a, x) = \sigma_a(x) = x$. Hence

$$\sigma_a(\sigma(b,x)) = \sigma(a,\sigma(b,x)) = \sigma(b,\sigma(a,x)) = \sigma(b,x).$$

Hence $\sigma(b, x) \in Fix(\sigma_a)$. Thus $\sigma : X \times Fix(\sigma_a) \longrightarrow Fix(\sigma_a)$ is an action of X on $Fix(\sigma_a)$. Therefore $(\sigma, Fix(\sigma_a))$ is a subcut of (σ, S) .

Let (σ, S) be a cut of a *BE*-algebra X where S is a subalgebra of X. For any cut-homomorphism σ_a , its image is given as

$$Im(\sigma_a) = \{\sigma_a(x) \mid x \in S\}.$$

Proposition 4.5. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$, $Im(\sigma_a)$ is a subalgebra of S.

Proof. Clearly $Im(\sigma_a)$ is a subsets of S and $1 \in Im(\sigma_a)$. Let $x, y \in Im(\sigma_a)$. Then $x = \sigma_a(x')$ and $y = \sigma_a(y')$ for some $x', y' \in S$. Now

$$x * y = \sigma_a(x') * \sigma_a(y') = \sigma_a(x' * y').$$

Since $x' * y' \in S$, we get $x * y \in Im(\sigma_a)$. Therefore $Im(\sigma_a)$ is a subalgebra of S.

Lemma 4.6. Let (σ, S) be a cut of a BE-algebra X. Then $Fix(\sigma_1) = S$. Let $a \in X$. If σ is idempotent, then we have

(1)
$$\sigma_a(x) \in Fix(\sigma_a)$$
 for all $x \in S$,

(2) $\sigma_a(x) \in Im(\sigma_a)$ for all $x \in S$.

Proof. Let $a \in X$. Clearly $Fix(\sigma_1) \subseteq S$. For any $x \in S$, we get that $\sigma_1(x) = \sigma(1, x) = x$. Hence $x \in Fix(\sigma_1)$. Therefore $S \subseteq Fix(\sigma_1)$. The remaining part is clear.

Theorem 4.7. Let σ be an idempotent action of a BE-algebra X on its subalgebra S. For any $a, b \in X$, the following are equivalent:

- (1) $\sigma_a = \sigma_b;$ (2) $Im(\sigma_a) = Im(\sigma_b);$
- (3) $Fix(\sigma_a) = Fix(\sigma_b).$

Proof. $(1) \Rightarrow (2)$: It is obvious.

 $(2) \Rightarrow (3)$: Assume that $Im(\sigma_a) = Im(\sigma_b)$. Let $x \in Fix(\sigma_a)$. Then, we get $x = \sigma_a(x) \in Im(\sigma_a) = Im(\sigma_b)$. Hence $x = \sigma_b(y)$ for some $y \in S$. Since σ is idempotent, we get $\sigma_b(x) = \sigma_b(\sigma_b(y)) = \sigma_b(y) = x$. Thus $x \in Fix(\sigma_b)$. Therefore $Fix(\sigma_a) \subseteq Fix(\sigma_b)$. Similarly, we can obtain that $Fix(\sigma_b) \subseteq Fix(\sigma_a)$. Therefore $Fix(\sigma_a) = Fix(\sigma_b)$.

(3) \Rightarrow (1): Assume that $Fix(\sigma_a) = Fix(\sigma_b)$. Let $x \in S$ be an arbitrary element. Since $\sigma_a(x) \in Fix(\sigma_a) = Fix(\sigma_b)$, we get

$$\sigma_b(\sigma_a(x)) = \sigma_a(x).$$

Also we have $\sigma_b(x) \in Fix(\sigma_b) = Fix(\sigma_a)$. Hence $\sigma_a(\sigma_b(x)) = \sigma_b(x)$. Thus, it yields

$$\sigma_a(x) = \sigma_b(\sigma_a(x)) = (\sigma_b \circ \sigma_a)(x) = (\sigma_a \circ \sigma_b)(x) = \sigma_a(\sigma_b(x)) = \sigma_b(x).$$

Hence σ_a and σ_b are equal in the sense of mappings. Thus $\sigma_a = \sigma_b$.

Theorem 4.8. Let σ and μ be two idempotent actions of a BE-algebra X on its subalgebra S. For any $a \in X$, the following are equivalent:

(1) $\sigma_a = \mu_a;$ (2) $Im(\sigma_a) = Im(\mu_a);$ (3) $Fix(\sigma_a) = Fix(\mu_a).$ *Proof.* $(1) \Rightarrow (2)$: It is obvious.

(2) \Rightarrow (3): Assume that $Im(\sigma_a) = Im(\mu_a)$. Let $x \in Fix(\sigma_a)$. Then, we get $x = \sigma_a(x) \in Im(\sigma_a) = Im(\mu_a)$.

Hence $x = \mu_a(y)$ for some $y \in S$. Now $\mu_a(x) = \mu_a(\mu_a(y)) = \mu_a(y) = x$. Thus $x \in Fix(\mu_a)$. Therefore $Fix(\sigma_a) \subseteq Fix(\mu_a)$. Similarly, we can obtain that $Fix(\mu_a) \subseteq Fix(\sigma_a)$. Therefore $Fix(\sigma_a) = Fix(\mu_a)$.

(3) \Rightarrow (1): Assume that $Fix(\sigma_a) = Fix(\mu_a)$. Let $x \in S$. Since $\sigma_a(x) \in Fix(\sigma_a) = Fix(\mu_a)$, we get $\mu_a(\sigma_a(x)) = \sigma_a(x)$. Also we have $\mu_a(x) \in Fix(\mu_a) = Fix(\sigma_a)$. Hence $\sigma_a(\mu_a(x)) = \mu_a(x)$. Thus, it yields

$$\sigma_a(x) = \mu_a(\sigma_a(x)) = (\mu_a \circ \sigma_a)(x) = (\sigma_a \circ \mu_a)(x) = \sigma_a(\mu_a(x)) = \mu_a(x).$$

Hence σ_a and μ_a are equal in the sense of mappings. Thus $\sigma_a = \mu_a$.

Theorem 4.9. Let σ be an action of a BE-algebra (X, *, 1) on its subalgebra S. Then the collection $\mathcal{K} = \{Fix(\sigma_a) \mid a \in X\}$ forms a BE-algebra with top element S. Hence there exists an onto homomorphism from \mathcal{M} into \mathcal{K} .

Proof. For any $Fix(\sigma_a), Fix(\sigma_b) \in \mathcal{K}$ where $a, b \in X$, define an operation \circledast on \mathcal{K} by

$$Fix(\sigma_a) \circledast Fix(\sigma_b) = Fix(\sigma_{a*b})$$

By Lemma 4.6(1), we have $Fix(\sigma_1) = S$. It can be routinely verified that $(\mathcal{K}, \circledast, Fix(\sigma_1))$ is a *BE*-algebra. For any $a \in X$, define

$$g:\mathcal{M}\longrightarrow\mathcal{K}$$

by $g(\sigma_a) = Fix(\sigma_a)$. Clearly g is well-defined and onto. For any $\sigma_a, \sigma_b \in \mathcal{M}$, we get

$$g(\sigma_a \odot \sigma_b) = g(\sigma_{a*b}) = Fix(\sigma_{a*b}) = Fix(\sigma_a) \circledast Fix(\sigma_b) = g(\sigma_a) \circledast g(\sigma_b).$$

Therefore g is a homomorphism.

Corollary 4.10. Let σ be an action of a BE-algebra X on its subalgebra S. Then there exists an onto homomorphism from X into \mathcal{K} .

Proof. By Theorem 3.15, Ω is a onto homomorphism from X into \mathcal{M} . By Theorem 4.9, we have g is an onto homomorphism from \mathcal{M} into \mathcal{K} . Hence $g \circ \Omega$ is the required onto homomorphism from X into \mathcal{K} .

Acknowledgments

The author wish to thank the referee for his valuable suggestions and comments which improves this presentation.

SAMBASIVA RAO

References

- S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in commutative *BE*-algebras, *Commun. Korean Math. Soc.*, 27(2) (2012), 233–242.
- A. Borumand Saeid, A. Rezaei and R. A. Borzooei, Some types of filters in *BE*-algebras, *Math. Comput. Sci.*, 7 (2013), 341–352.
- K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23(1) (1979), 1–26.
- 4. H. S. Kim and Y. H. Kim, On *BE*-algebras, *Sci. Math. Japon. Online*, (2006), 1299–1302.
- 5. B. L. Meng, On filters in BE-algebras, Sci. Math. Jpn. Online, (2010), 105–111.
- A. Rezaei and A. Borumand Saeid, Commutative ideals in *BE*-algebras, *Kyungpook Math. J.*, **52** (2012), 483–494.
- A. Rezaei and A. Borumand Saeid, Some results in *BE*-algebras, *Analele Universitatii* Oradea Fasc. Matematica, Tom XIX, (2012), 33–44.
- A. Rezaei, A. Borumand Saeid and R. A. Borzooei, Relation between Hilbert algebras and *BE*-algebras, *Appl. Appl. Math.*, 8(2) (2013), 573–584.
- 9. M. Sambasiva Rao, A Course in BE-algebras, Springer Nature, 2018.
- M. Sambasiva Rao and V. V. Kumar, Left and right self maps on *BE*-algebras, *Inter*national Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), (2016), 579–591.
- 11. A. Walendziak, On commutative *BE*-algebras, *Sci. Math. Jpn.*, (2008), 585–588.

Mukkamala Sambasiva Rao

Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India-535005. Email: mssraomaths35@rediffmail.com