

ISSN:(2345-5128)(2345-511X)
Journal Homepage: www.jas.shahroodut.ac.ir

Fixed points and cut-homomorphisms generated by actions of a $B E$-algebra on its subalgebra
M. Sambasiva Rao

To cite this article: M. Sambasiva Rao (9 June 2024): Fixed points and cut-homomorphisms generated by actions of a $B E$-algebra on its subalgebra, Journal of Algebraic Systems, DOI: 10.22044/JAS.2023.12275.1652

To link to this article: https://doi.org/10.22044/JAS.2023.12275. 1652

FIXED POINTS AND CUT-HOMOMORPHISMS GENERATED BY ACTIONS OF A $B E$-ALGEBRA ON ITS SUBALGEBRA

M. SAMBASIVA RAO

Abstract

The concept of actions of a $B E$-algebra on its subalgebra is introduced and certain properties of these actions are derived. The notion of cut-homomorphisms is introduced and proved that the class of all cut-homomorphisms forms an ordered $B E$-algebra. Properties of fixed points of cut-homomorphisms are investigated and a set of equivalent conditions is given for any two cut-homomorphisms are equal in the sense of mappings.

InTRODUCTION

The notion of $B E$-algebras was introduced and extensively studied by H. S. Kim and Y. H. Kim in [4]. These classes of $B E$-algebras were introduced as a generalization of the class of $B C K$-algebras of K. Iseki and S. Tanaka [3]. Some properties of filters of $B E$-algebras were studied by S. S. Ahn and Y. H. Kim in [1] and by B. L. Meng in [5]. In [11], A. Walendziak discussed some properties of commutative $B E$-algebras. He also investigated the relationship between $B E$-algebras, implicative algebras and J-algebras. In 2012, A. Rezaei, and A. Borumand Saeid [7], stated and proved the first, second and third isomorphism theorems in self distributive $B E$-algebras. Later, these authors [6] introduced the notion of commutative ideals in a $B E$-algebra. In 2013, A. Borumand Saeid, A. Rezaei and R. A. Borzooei [2] extensively studied the properties of some types of filters in $B E$-algebras and established relations among them. In 2016, the authors [10] characterized self-distributive $B E$-algebras, commutative $B E$-algebras and implicative $B E$-algebras with the help of left and right self maps. In [9], the author investigated certain significant properties of self-maps and endomorphisms.

In this article, the notion of an action of a $B E$-algebra on a given subalgebra is introduced. Certain properties of the actions generated by direct products and endomorphisms of $B E$-algebras are investigated. The notion of permutable actions is introduced in a $B E$-algebra and then proved that their composition is again an action of the $B E$-algebra. An ordering is

Published online: 1 April 2024
MSC(2020): Primary: 03G25.
Keywords: Subalgebra; Action of a $B E$-algebra; Cut-homomorphism; Fixed point.
Received: 14 September 2022, Accepted: 5 April 2023.
introduced on the set of all actions and then derived that this set is partially ordered whenever the respective $B E$-algebra is commutative. It is also proved that the collection of all actions of a $B E$-algebra on a given subalgebra forms a semi-lattice. The concept of subcuts of subalgebras and filters of cuts are introduced. It is proved that the set of all subcuts of a given cut forms a partially ordered semi-lattice. The notion of cut-homomorphisms is introduced in $B E$-algebras and then it is proved that the collection of all cut-homomorphisms forms a $B E$-algebra which is homomorphic to the given $B E$-algebra. Further, it is proved that the set of all idempotent cuthomomorphisms forms an upper semi-lattice.
In the final section, the notion of fixed points of a cut-endomorphism is introduced in $B E$-algebras. A necessary and sufficient condition is given for a cut-endomorphism to have a fixed point. A set of equivalent conditions is given for any two cut-homomorphisms to be equal in the sense of mappings. Finally, some properties of fixed points and images of a cut-endomorphism are investigated.

1. Preliminaries

In this section, certain definitions and results are presented which are taken mostly from [4], [5], and [8] for the ready reference.

Definition 1.1. [4] An algebra $(X, *, 1)$ of type $(2,0)$ is called a $B E$-algebra if it satisfies the following properties:
(1) $x * x=1$,
(2) $x * 1=1$,
(3) $1 * x=x$,
(4) $x *(y * z)=y *(x * z) \quad$ for all $x, y, z \in X$.

A BE-algebra X is called self-distributive if $x *(y * z)=(x * y) *(x * z)$ for all $x, y, z \in X$. A $B E$-algebra X is called transitive if

$$
y * z \leq(x * y) *(x * z)
$$

for all $x, y, z \in X$. Every self-distributive $B E$-algebra is transitive. A $B E$ algebra $(X, *, 1)$ is said to be commutative [8] if $(x * y) * y=(y * x) * x$ for all $x, y \in X$. In this case, we consider $(y * x) * x$ as $x \vee y$. In a commutative $B E$-algebra X, it is clear that $x \vee y=y \vee x$ for all $x, y \in X$. We introduce a relation \leq on X by $x \leq y$ if and only if $x * y=1$ for all $x, y \in X$.
Theorem 1.2. [5] Let X be a transitive $B E$-algebra and $x, y, z \in X$. Then
(1) $1 \leq x$ implies $x=1$,
(2) $y \leq z$ implies $x * y \leq x * z$ and $z * x \leq y * x$.

Definition 1.3. [4] A non-empty subset F of a $B E$-algebra X is called a filter of X if, for all $x, y \in X$, it satisfies the following properties:
(1) $1 \in F$,
(2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

A subset S of a $B E$-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. Clearly every subalgebra of a $B E$-algebra contains the element 1 . It is clear that every filter of a $B E$-algebra is a subalgebra. A mapping f from a $B E$-algebra $(X, *, 1)$ into a $B E$-algebra $\left(Y, \circ, 1^{\prime}\right)$ is called a homomorphism if $f(x * y)=f(x) \circ f(y)$ for all $x, y \in X$. It is clear that $f(1)=1$ whenever f is a homomorphism. A homomorphism of $B E$-algebra into itself is called an endomorphism.

2. Actions of $B E$-algebras

In this section, the notions of an action and a permutable action of a $B E$ algebra on a given subalgebra is introduced. Certain properties of these actions and the cuts of the $B E$-algebras are investigated.

Definition 2.1. Let $(X, *, 1)$ be a $B E$-algebra and S is a subalgebra of X. A mapping $\sigma: X \times S \rightarrow S$ is called an action of X on S if it satisfies the following properties:
(C1) $\sigma(a, 1)=1$ for all $a \in X$,
(C2) $\sigma(1, x)=x$ for all $x \in S$,
(C3) $\sigma(a, x * y)=\sigma(a, x) * \sigma(a, y)$ for all $a \in X$ and $x, y \in S$,
(C4) $\sigma(a, \sigma(b, x))=\sigma(b, \sigma(a, x))$ for all $a, b \in X$ and $x \in S$.
An action σ of a $B E$-algebra X on its subalgebra S is called idempotent if $\sigma(a, \sigma(a, x))=\sigma(a, x)$ for all $a \in X$ and $x \in S$. Further, σ is called a complete action if along with (C1)-(C4), it satisfies the following:

$$
\sigma(a * b, x)=\sigma(a, x) * \sigma(b, x)
$$

for all $a, b \in X$ and $x \in S$. In all the cases, we call the pair (σ, S) an S-cut of the $B E$-algebra X.

Example 2.2. (1) Let X be a self-distributive $B E$-algebra and S be a subalgebra of X. For any $a \in X$ and $x \in S$, define a mapping $\sigma: X \times S \rightarrow S$ by $\sigma(a, x)=a * x$. Then σ is an action of X on S. Therefore (σ, S) is an S-cut of the $B E$-algebra X.
(2) Let X be a $B E$-algebra and S be a subalgebra of X. For any $a \in X$ and $x \in S$, define a mapping $\sigma: X \times S \rightarrow S$ by $\sigma(a, x)=x$. It can be routinely verified that σ is an action of X on S. Hence (σ, S) is an S-cut of X. Further, we see that σ is not complete. For consider $a, b \in X$ and $1 \neq c \in S$ be such that $a * b=1$. Then

$$
\sigma(a * b, c)=c \text { and } \sigma(a, c) * \sigma(b, c)=c * c=1
$$

Therefore σ is an action of X on S which is not complete.
Proposition 2.3. Let X be a $B E$-algebra and S be a subalgebra of X. Let $\mu: X \rightarrow S$ be a homomorphism satisfying the following:
(1) $\mu(a) *(x * y)=(\mu(a) * x) *(\mu(a) * y)$ for all $a \in X$ and $x, y \in S$,
(2) $\mu(a * b) * x=(\mu(a) * x) *(\mu(b) * x)$ for all $a, b \in X$ and $x \in S$.

For any $a \in X$ and $x \in S$, define a mapping $\sigma_{\mu}: X \times S \rightarrow S$ by $\sigma_{\mu}(a, x)=\mu(a) * x$. Then σ_{μ} is a complete action of X on S.

Proof. Since S is a subalgebra of X, we get σ_{μ} is well-defined. Then
(C1) For any $a \in X$, we get $\sigma_{\mu}(a, 1)=\mu(a) * 1=1$.
(C2) For any $x \in S$, we have $\sigma_{\mu}(1, x)=\mu(1) * x=1 * x=x$.
(C3) Let $a \in X$ and $x, y \in S$. Then, we get

$$
\begin{aligned}
\sigma_{\mu}(a, x * y) & =\mu(a) *(x * y) \\
& =(\mu(a) * x) *(\mu(a) * y) \\
& =\sigma_{\mu}(a, x) * \sigma_{\mu}(a, y) .
\end{aligned}
$$

(C4) Let $a, b \in X$ and $x \in S$. Then, we get

$$
\begin{aligned}
\sigma_{\mu}\left(a, \sigma_{\mu}(b, x)\right) & =\sigma_{\mu}(a, \mu(b) * x) \\
& =\mu(a) *(\mu(b) * x) \\
& =\mu(b) *(\mu(a) * x) \\
& =\mu(b) * \sigma_{\mu}(a, x) \\
& =\sigma_{\mu}\left(b, \sigma_{\mu}(a, x)\right) .
\end{aligned}
$$

Thus σ_{μ} is an action of X on S. Hence $\left(\sigma_{\mu}, S\right)$ is an S-cut of X. Further, assume that μ satisfies the condition. Let $a, b \in X$ and $x \in S$. Then

$$
\begin{aligned}
\sigma_{\mu}(a * b, x) & =\mu(a * b) * x \\
& =(\mu(a) * x) *(\mu(b) * x) \\
& =\sigma_{\mu}(a, x) * \sigma_{\mu}(b, x)
\end{aligned}
$$

Therefore σ_{μ} is a complete action of X on S.

Proposition 2.4. Let S_{1} and S_{2} be the subalgebras of the BE-algebras X_{1} and X_{2} respectively. Suppose σ_{1} and σ_{2} are the actions of X_{1} on S_{1} and X_{2} on S_{2} respectively. For all $(a, b) \in X_{1} \times X_{2}$ and $(x, y) \in S_{1} \times S_{2}$, define a mapping $\sigma_{1} \times \sigma_{2}:\left(X_{1} \times X_{2}\right) \times\left(S_{1} \times S_{2}\right) \rightarrow S_{1} \times S_{2}$ by

$$
\left(\sigma_{1} \times \sigma_{2}\right)((a, b),(x, y))=\left(\sigma_{1}(a, x), \sigma_{2}(b, y)\right) .
$$

Then $\sigma_{1} \times \sigma_{2}$ is an action of the product algebra $X_{1} \times X_{2}$ on the subalgebra $S_{1} \times S_{2}$. Therefore ($\sigma_{1} \times \sigma_{2}, S_{1} \times S_{2}$) is a cut of $X_{1} \times X_{2}$.

Proof. Clearly $\sigma_{1} \times \sigma_{2}$ is well-defined. Note that $S_{1} \times S_{2}$ is a subalgebra of $X_{1} \times X_{2}$ with element $(1,1)$. Now, the properties (C1)-(C4) can be routinely verified by using point-wise operations.

Proposition 2.5. Let S be a subalgebra of a BE-algebra X. Suppose $\mu: X \times S \rightarrow S$ is a mapping. For all $a, b \in X$ and $x, y \in S$, define a mapping $\sigma_{\mu}: X^{2} \rightarrow S^{2}\left(\right.$ where $X^{2}=X \times X$ and $\left.S^{2}=S \times S\right)$ by

$$
\sigma_{\mu}((a, b),(x, y))=(\mu(a, x), \mu(b, y))
$$

Then μ is an action of X on S if and only if σ_{μ} is an action of X^{2} on S^{2}. Moreover, (μ, S) is a cut of X if and only if $\left(\sigma_{\mu}, S^{2}\right)$ is a cut of X^{2}.

Proof. Clearly σ_{μ} is well-defined. Note that S^{2} is a subalgebra of X^{2} with element (1,1). Assume that μ is an action of X on S. Then (C1) Let $(a, b) \in X^{2}$. Then $\sigma_{\mu}((a, b),(1,1))=(\mu(a, 1), \mu(b, 1))=(1,1)$. (C2) Let $(x, y) \in S^{2}$. Then, we get

$$
\sigma_{\mu}((1,1),(x, y))=(\mu(1, x), \mu(1, y))=(x, y) .
$$

(C3) Let $(a, b) \in X^{2}$ and $(x, y),(z, w) \in S^{2}$. Since μ is an action of X on S, we get the following consequence:

$$
\begin{aligned}
\sigma_{\mu}((a, b),(x, y) *(z, w)) & =\sigma_{\mu}((a, b),(x * z, y * w)) \\
& =(\mu(a, x * z), \mu(b, y * w)) \\
& =(\mu(a, x) * \mu(a, z), \mu(b, y) * \mu(b, w)) \\
& =(\mu(a, x), \mu(b, y)) *(\mu(a, z), \mu(b, w)) \\
& =\sigma_{\mu}((a, b),(x, y)) * \sigma_{\mu}((a, b),(z, w))
\end{aligned}
$$

(C4) Let $(a, b),(c, d) \in X^{2}$ and $(x, y) \in S^{2}$. Since μ is an action of X on S, we get the following consequence:

$$
\begin{aligned}
\sigma_{\mu}\left((a, b), \sigma_{\mu}((c, d),(x, y))\right. & =\sigma_{\mu}((a, b),(\mu(c, x), \mu(d, y))) \\
& =(\mu(a, \mu(c, x)), \mu(b, \mu(d, y))) \\
& =(\mu(c, \mu(a, x)), \mu(d, \mu(b, y))) \\
& =\sigma_{\mu}((c, d),(\mu(a, x), \mu(b, y))) \\
& =\sigma_{\mu}\left((c, d), \sigma_{\mu}((a, b),(x, y))\right.
\end{aligned}
$$

Hence σ_{μ} is an action of X^{2} on S^{2}. Therefore $\left(\sigma_{\mu}, S^{2}\right)$ is a cut of X^{2}.
Conversely, assume that σ_{μ} is an action of X^{2} on S^{2}. (C1) Let $a \in X$. Then $(\mu(a, 1), \mu(1,1))=\sigma_{\mu}((a, 1),(1,1))=(1,1)$. Hence $\mu(a, 1)=1$. (C2) Let $x \in S$. Then $(\mu(1, x), \mu(1,1))=\sigma_{\mu}((1,1),(1, x))=(1,1)$. Hence $\mu(1, x)=1$. (C3) Let $a \in X$ and $x, y \in S$. Since σ_{μ} is an action of X^{2} on S^{2}, we get that

$$
\begin{aligned}
(\mu(a, x * y), \mu(1,1)) & =\sigma_{\mu}((a, 1),(x * y, 1)) \\
& =\sigma_{\mu}((a, 1),(x, 1) *(y, 1)) \\
& =\sigma_{\mu}((a, 1),(x, 1)) * \sigma_{\mu}((a, 1),(y, 1)) \\
& =(\mu(a, x), \mu(1,1)) *(\mu(a, y), \mu(1,1)) \\
& =(\mu(a, x) * \mu(a, y), \mu(1,1))
\end{aligned}
$$

Hence $\mu(a, x * y)=\mu(a, x) * \mu(a, y)$. (C4) Let $a, b \in X$ and $x \in S$. Since σ_{μ} is an action of X^{2} on S^{2}. Then

$$
\begin{aligned}
(\mu(a, \mu(b, x)), 1) & =(\mu(a, \mu(b, x)), \mu(1,1)) \\
& =\sigma_{\mu}((a, 1),(\mu(b, x), 1)) \\
& =\sigma_{\mu}((a, 1),(\mu(b, x), \mu(1,1))) \\
& =\sigma_{\mu}\left((a, 1), \sigma_{\mu}((b, 1),(x, 1))\right) \\
& =\sigma_{\mu}\left((b, 1), \sigma_{\mu}((a, 1),(x, 1))\right) \\
& =\sigma_{\mu}((b, 1),(\mu(a, x), \mu(1,1))) \\
& =\sigma_{\mu}((b, 1),(\mu(a, x), 1)) \\
& =(\mu(b, \mu(a, x)), \mu(1,1)) \\
& =(\mu(b, \mu(a, x)), 1)
\end{aligned}
$$

Hence $\mu(a, \mu(b, x))=\mu(b, \mu(a, x))$. Thus μ is an action of X on S.
Proposition 2.6. Let X be a BE-algebra and S be a subalgebra of X. Suppose $\mu: X \rightarrow X$ is an endomorphism and $\sigma: X \times S \rightarrow S$ is a
mapping. For $a \in X$ and $x \in S$, define a mapping $\sigma_{\mu}: X \times S \rightarrow S$ by

$$
\sigma_{\mu}(a, x)=\sigma(\mu(a), x)
$$

If σ is a complete action of X on S, then σ_{μ} is a complete action of X on S. Further, the converse is also true whenever μ is surjective.

Proof. Assume that σ is a complete action of X on S. Then, we get
(C1) For any $a \in X$, we get that $\sigma_{\mu}(a, 1)=\sigma(\mu(a), 1)=1$.
(C2) For any $x \in S$, we get $\sigma_{\mu}(1, x)=\sigma(\mu(1), x)=\sigma(1, x)=x$.
(C3) Let $a \in X$ and $x, y \in S$. Since σ is an action of X on S and μ is an endomorphism, we get that

$$
\begin{aligned}
\sigma_{\mu}(a, x * y) & =\sigma(\mu(a), x * y) \\
& =\sigma(\mu(a), x) * \sigma(\mu(a), y) \\
& =\sigma_{\mu}(a, x) * \sigma_{\mu}(a, y)
\end{aligned}
$$

(C4) Let $a, b \in X$ and $x \in S$. Since σ is an action of X on S, we get

$$
\begin{aligned}
\sigma_{\mu}\left(a, \sigma_{\mu}(b, x)\right) & =\sigma_{\mu}(a, \sigma(\mu(b), x)) \\
& =\sigma(\mu(a), \sigma(\mu(b), x)) \\
& =\sigma(\mu(b), \sigma(\mu(a), x)) \\
& =\sigma_{\mu}(b, \sigma(\mu(a), x)) \\
& =\sigma_{\mu}\left(b, \sigma_{\mu}(a, x)\right)
\end{aligned}
$$

(C5) Let $a, b \in X$ and $x \in S$. Since σ is a complete action, we get

$$
\begin{aligned}
\sigma_{\mu}(a * b, x) & =\sigma(\mu(a * b), x) \\
& =\sigma(\mu(a) * \mu(b), x) \\
& =\sigma(\mu(a), x) * \sigma(\mu(b), x) \\
& =\sigma_{\mu}(a, x) * \sigma_{\mu}(b, x)
\end{aligned}
$$

Therefore σ_{μ} is a complete action of X on S. To prove the converse, let us suppose that μ is a surjective mapping. Assume that σ_{μ} is a complete action of X on S. Then, we get
(C1) Let $a \in X$. Since μ is surjective, there exists $b \in X$ such that $\mu(b)=a$. Now, $\sigma(a, 1)=\sigma(\mu(b), 1))=\sigma_{\mu}(b, 1)=1$.
(C2) For any $x \in S$, we get $\sigma(1, x)=\sigma(\mu(1), x)=\sigma_{\mu}(1, x)=x$.
(C3) Let $a \in X$ and $x, y \in S$. Since μ is surjective, there exist $b \in X$ such
that $\mu(b)=a$. Since σ_{μ} is an action of X on S, we get

$$
\begin{aligned}
\sigma(a, x * y) & =\sigma(\mu(b), x * y) \\
& =\sigma_{\mu}(b, x * y) \\
& =\sigma_{\mu}(b, x) * \sigma_{\mu}(b, y) \\
& =\sigma(\mu(b), x) * \sigma(\mu(b), y) \\
& =\sigma(a, x) * \sigma(a, y)
\end{aligned}
$$

(C4) Let $a, b \in X$ and $x \in S$. Since μ is surjective, there exist $a_{0}, b_{0} \in X$ such that $\mu\left(a_{0}\right)=a$ and $\mu\left(b_{0}\right)=b$. Since σ_{μ} is an action,

$$
\begin{aligned}
\sigma(a, \sigma(b, x)) & =\sigma\left(\mu\left(a_{0}\right), \sigma\left(\mu\left(b_{0}\right), x\right)\right. \\
& =\sigma\left(\mu\left(a_{0}\right), \sigma_{\mu}\left(b_{0}, x\right)\right) \\
& =\sigma_{\mu}\left(a_{0}, \sigma_{\mu}\left(b_{0}, x\right)\right) \\
& =\sigma_{\mu}\left(b_{0}, \sigma_{\mu}\left(a_{0}, x\right)\right) \\
& =\sigma_{\mu}\left(b_{0}, \sigma\left(\mu\left(a_{0}\right), x\right)\right) \\
& =\sigma\left(\mu\left(b_{0}\right), \sigma\left(\mu\left(a_{0}\right), x\right)\right) \\
& =\sigma(b, \sigma(a, x))
\end{aligned}
$$

(C5) Let $a, b \in X$ and $x \in S$. Since μ is a surjective mapping, there exist $a_{0}, b_{0} \in X$ such that $\mu\left(a_{0}\right)=a$ and $\mu\left(b_{0}\right)=b$. Since σ_{μ} is an action of X on S, we get

$$
\begin{aligned}
\sigma(a * b, x) & =\sigma\left(\mu\left(a_{0}\right) * \mu\left(b_{0}\right), x\right) \\
& =\sigma\left(\mu\left(a_{0} * b_{0}\right), x\right) \\
& =\sigma_{\mu}\left(a_{0} * b_{0}, x\right) \\
& =\sigma_{\mu}\left(a_{0}, x\right) * \sigma_{\mu}\left(b_{0}, x\right) \\
& =\sigma\left(\mu\left(a_{0}\right), x\right) * \sigma\left(\mu\left(b_{0}\right), x\right) \\
& =\sigma(a, x) * \sigma(b, x)
\end{aligned}
$$

Therefore σ is a complete action of X on S.
Definition 2.7. Let $(X, *, 1)$ be a $B E$-algebra and S be a subalgebra of X. Two actions σ_{i} and σ_{j} of X on S are said to be permutable if for all $a, b \in X$ and $x \in S$, the following property holds:

$$
\sigma_{i}\left(a, \sigma_{j}(b, x)\right)=\sigma_{i}\left(b, \sigma_{j}(a, x)\right)
$$

Example 2.8. Let $X=\{1, a, b, c\}$ be the given set. Define a binary operation * on X as given in the following table:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	1	c
b	1	a	1	c
c	1	a	1	1

Clearly $(X, *, 1)$ is a $B E$-algebra. Consider the subalgebra $S=\{b, 1\}$. Define two mappings σ_{1} and σ_{2} from $X \times S$ into S as given by

$$
\sigma_{1}(x, y)=x * y \quad \sigma_{2}(x, y)=y
$$

for all $x \in X$ and $y \in S$. Clearly σ_{1} and σ_{2} are actions of X on S. It can be easily verified that σ_{1} and σ_{2} are permutable actions of X on S.

Proposition 2.9. Let X be a $B E$-algebra and S is a subalgebra of X. Let σ_{1} and σ_{2} be two permutable actions of X on S. Define the composition of the actions σ_{1} and σ_{2} as

$$
\left(\sigma_{1} \circ \sigma_{2}\right)(a, x)=\sigma_{1}\left(a, \sigma_{2}(a, x)\right)
$$

for all $a \in X$ and $x \in S$. Then $\sigma_{1} \circ \sigma_{2}$ is an action of X on S.
Proof. (C1) and (C2) are clear. To prove (C3), let $a \in X$ and $x, y \in S$. Then, we get the following:

$$
\begin{aligned}
\left(\sigma_{1} \circ \sigma_{2}\right)(a, x * y) & =\sigma_{1}\left(a, \sigma_{2}(a, x * y)\right) \\
& =\sigma_{1}\left(a, \sigma_{2}(a, x) * \sigma_{2}(a, y)\right) \\
& =\sigma_{1}\left(a, \sigma_{2}(a, x)\right) * \sigma_{1}\left(a, \sigma_{2}(a, y)\right) \\
& =\left(\sigma_{1} \circ \sigma_{2}\right)(a, x) *\left(\sigma_{1} \circ \sigma_{2}\right)(a, y)
\end{aligned}
$$

(C4). Let $a, b \in X$ and $x \in S$. Since σ_{1} and σ_{2} are permutable, we get

$$
\begin{aligned}
\left(\sigma_{1} \circ \sigma_{2}\right)\left(a,\left(\sigma_{1} \circ \sigma_{2}\right)(b, x)\right) & =\left(\sigma_{1} \circ \sigma_{2}\right)\left(a, \sigma_{1}\left(b, \sigma_{2}(b, x)\right)\right) \\
& =\sigma_{1}\left(a, \sigma_{2}\left(a, \sigma_{1}\left(b, \sigma_{2}(b, x)\right)\right)\right) \\
& =\sigma_{1}\left(a, \sigma_{2}\left(b, \sigma_{1}\left(a, \sigma_{2}(b, x)\right)\right)\right) \\
& =\sigma_{1}\left(b, \sigma_{2}\left(a, \sigma_{1}\left(a, \sigma_{2}(b, x)\right)\right)\right) \\
& =\sigma_{1}\left(b, \sigma_{2}\left(a, \sigma_{1}\left(b, \sigma_{2}(a, x)\right)\right)\right) \\
& =\sigma_{1}\left(b, \sigma_{2}\left(b, \sigma_{1}\left(a, \sigma_{2}(a, x)\right)\right)\right) \\
& =\sigma_{1}\left(b, \sigma_{2}\left(b,\left(\sigma_{1} \circ \sigma_{2}\right)(a, x)\right)\right) \\
& =\left(\sigma_{1} \circ \sigma_{2}\right)\left(b,\left(\sigma_{1} \circ \sigma_{2}\right)(a, x)\right)
\end{aligned}
$$

Therefore $\sigma_{1} \circ \sigma_{2}$ is an action of X on S.
Theorem 2.10. Let X be a BE-algebra with given ordering \leq. Suppose that S is a subalgebra of X and $\Sigma(X)$ denotes the set of all actions of X on S. For any $\sigma_{1}, \sigma_{2} \in \Sigma(X)$, define an ordering \leq_{σ} on the set of all actions of X on S as given by

$$
\sigma_{1} \leq_{\sigma} \sigma_{2} \text { if and only if } \sigma_{1}(a, x) \leq \sigma_{2}(a, x)
$$

for all $a \in X$ and $x \in S$. Then \leq_{σ} is a BE-ordering on $\Sigma(X)$. Further, if X is commutative, then \leq_{σ} is a partial ordering on $\Sigma(X)$.

Proof. Since S is a subalgebra of X and \leq is a $B E$-ordering on X, it is clear that \leq_{σ} is reflexive. Further, if X is commutative, then it is transitive. Hence \leq_{σ} is transitive on $\Sigma(X)$. Since X is commutative, we get that \leq is anti-symmetric and hence \leq_{σ} is anti-symmetric on $\Sigma(X)$. Therefore \leq_{σ} is a partial ordering on $\Sigma(X)$.
Suppose that X is a commutative $B E$-algebra and S is a subalgebra of X. Let σ_{1} and σ_{2} be two actions of X on S. Due to the commutativity of the subalgebra S, we get

$$
\sigma_{1}(a, x) \vee \sigma_{2}(a, x)=\left(\sigma_{2}(a, x) * \sigma_{1}(a, x)\right) * \sigma_{1}(a, x)
$$

for any $a \in X$ and $x \in S$. Further, we have

$$
\sigma_{1}(a, x) \vee \sigma_{2}(a, x)=\sigma_{2}(a, x) \vee \sigma_{1}(a, x)
$$

Lemma 2.11. Let X be a $B E$-algebra and S a commutative subalgebra of X. If σ is an action of X on S, then $\sigma(a, x \vee y)=\sigma(a, x) \vee \sigma(a, y)$ for any $a \in X$ and $x, y \in S$.

Proof. Routine verification.
Proposition 2.12. Suppose X is a $B E$-algebra and S a commutative subalgebra of X. Let σ_{1} and σ_{2} be two permutable actions of X on S. Define the supremum of the actions σ_{1} and σ_{2} as given under

$$
\left(\sigma_{1} \sqcup \sigma_{2}\right)(a, x)=\sigma_{1}(a, x) \vee \sigma_{2}(a, x)
$$

for all $a \in X$ and $x \in S$. Then $\sigma_{1} \sqcup \sigma_{2}$ is an action of X on S. Further $\sigma_{1} \sqcup \sigma_{2}$ is a complete action of X on S whenever both σ_{1} and σ_{2} are complete actions of X on S.

Proof. (C1), (C2) and (C3) can be routinely verified. To prove (C4), let $a \in X$ and $x \in S$. For simplicity of the representation, in the following, we
use the notation $\sigma_{i}\left(a_{x}\right)=\sigma_{i}(a, x)$ and $\sigma_{i}\left(b_{x}\right)=\sigma_{i}(b, x)$ for $i=1,2$. Since σ_{1} and σ_{2} are permutable, we get

$$
\begin{aligned}
\left(\sigma_{1} \sqcup \sigma_{2}\right)\left(a,\left(\sigma_{1} \sqcup \sigma_{2}\right)\left(b_{x}\right)\right)= & \left(\sigma_{1} \sqcup \sigma_{2}\right)\left(a, \sigma_{1}\left(b_{x}\right) \vee \sigma_{2}\left(b_{x}\right)\right) \\
= & \sigma_{1}\left(a, \sigma_{1}\left(b_{x}\right) \vee \sigma_{2}\left(b_{x}\right)\right) \\
& \vee \sigma_{2}\left(a, \sigma_{1}\left(b_{x}\right) \vee \sigma_{2}\left(b_{x}\right)\right) \\
= & \left.\sigma_{1}\left(a, \sigma_{1}\left(b_{x}\right)\right) \vee \sigma_{1}\left(a, \sigma_{2}\left(b_{x}\right)\right)\right) \\
& \vee \sigma_{2}\left(a, \sigma_{1}\left(b_{x}\right)\right) \vee \sigma_{2}\left(a, \sigma_{2}\left(b_{x}\right)\right) \\
= & \left.\sigma_{1}\left(b, \sigma_{1}\left(a_{x}\right)\right) \vee \sigma_{1}\left(b, \sigma_{2}\left(a_{x}\right)\right)\right) \\
& \vee \sigma_{2}\left(b, \sigma_{1}\left(a_{x}\right)\right) \vee \sigma_{2}\left(b, \sigma_{2}\left(a_{x}\right)\right) \\
= & \sigma_{1}\left(b, \sigma_{1}\left(a_{x}\right) \vee \sigma_{2}\left(a_{x}\right)\right) \vee \sigma_{2}\left(b, \sigma_{1}\left(a_{x}\right) \vee \sigma_{2}\left(a_{x}\right)\right) \\
= & \sigma_{1}\left(b,\left(\sigma_{1} \sqcup \sigma_{2}\right)\left(a_{x}\right)\right) \vee \sigma_{2}\left(b,\left(\sigma_{1} \sqcup \sigma_{2}\right)\left(a_{x}\right)\right) \\
= & \left(\sigma_{1} \sqcup \sigma_{2}\right)\left(b,\left(\sigma_{1} \sqcup \sigma_{2}\right)\left(a_{x}\right)\right)
\end{aligned}
$$

Hence $\sigma_{1} \sqcup \sigma_{2}$ is an action of X on S. Further, suppose that σ_{1}, σ_{2} are complete actions of X on S. It can be routinely verified that $\sigma_{1} \sqcup \sigma_{2}$ is a complete action of X on S.

The following theorem is a direct consequence of the above results.
Theorem 2.13. Suppose $(X, *, 1)$ is a $B E$-algebra and S a commutative subalgebra of X. Let $\Sigma(X)$ be the set of all permutable actions of X on S. Then $(\Sigma(X), \sqcup)$ is a semi-lattice with partial ordering \leq_{σ}. Therefore $\left(\Sigma(X), \leq_{\sigma}\right)$ is a partially order set.

3. Cut-homomorphisms

In this section, the concept of subcuts of subalgebras of a $B E$-algebra is introduced. The notion of cut-homomorphisms is introduced in $B E$-algebras. It is proved that the collection of all idempotent cut-homomorphism forms an upper semi-lattice.

Definition 3.1. Let S be a subalgebra of a $B E$-algebra X. Suppose (σ, S) is a cut of a $B E$-algebra X. A subalgebra S^{\prime} of S is said to a subcut of S if S^{\prime} is closed under action by elements of X. In this case, we simply call $\left(\sigma, S^{\prime}\right)$ a subcut of (σ, S).

Definition 3.2. Suppose that S is a subalgebra of a $B E$-algebra X and (σ, S) is a cut of X. A subcut (σ, F) of the cut (σ, S) is called a filter of (σ, S) if it satisfies the following properties:
(1) F is a filter of S,
(2) $\sigma(x, y) \leq x$ for all $x \in S$ and $1 \neq y \in F$.

In this case, we simply call that F is a filter of the cut (σ, S). For any subalgebra S of X, it is clear that $\{1\}$ is a filter of any cut (σ, S). A filter F of a cut (σ, S) is called proper if $F \neq S$.

Example 3.3. Let $X=\{1, a, b, c\}$ be a set. Define a binary operation $*$ on X as follows:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	1	a	b	1

It can be routinely seen that $(X, *, 1)$ is a $B E$-algebra. Consider the subalgebra $S=\{a, b, 1\}$. Define a mapping $\sigma: X \times S \longrightarrow S$ by $\sigma(a, 1)=1$, $\sigma(1, x)=x$ for all $a \in X, x \in S$, and

$$
\sigma(c, a)=a, \sigma(c, b)=b \text { and } \sigma(c, c)=1
$$

Note that σ is an action of X on S. Consider the set $F=\{1, a\}$. Then, it can be easily verified that F is a filter of the cut (σ, S).

Proposition 3.4. Let S be a subalgebra of a BE-algebra $(X, *, 1)$ and σ is an action of X on S. Then the set-intersection of any two filters of the cut (σ, S) is again a filter of (σ, S).

Proof. Given that σ an action of X on S. Let $\left(\sigma, F_{1}\right)$ and $\left(\sigma, F_{2}\right)$ be two filters of the cut (σ, S). Clearly $F_{1} \cap F_{2}$ is a filter of S. Therefore the intersection of F_{1} and F_{2} is a filter of the cut (σ, S).

The following corollaries are direct consequences of Proposition 3.4.
Corollary 3.5. Let S be a subalgebra of a BE-algebra X and σ is an action of X on S. Suppose $\left\{F_{\alpha}\right\}_{\alpha \in \Delta}$ is an indexed family of filters of the cut (σ, S). Then the set intersection $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is a filter of (σ, S).

Corollary 3.6. Let S be a subalgebra of a BE-algebra X. If σ is an action of X on S, then the intersection of all filters of (σ, S) is $\{1\}$.

Proposition 3.7. Let S be a commutative subalgebra of a $B E$-algebra X. Suppose σ_{1} and σ_{2} are two actions of X on S. If F is filter of both the cuts $\left(\sigma_{1}, S\right)$ and $\left(\sigma_{2}, S\right)$, then F is a filter of $\left(\sigma_{1} \sqcup \sigma_{2}, S\right)$.

Proof. By Proposition 2.12, $\sigma_{1} \sqcup \sigma_{2}$ is an action of X on S. Let $x \in S$ and $1 \neq y \in F$. Since F is filter of $\left(\sigma_{1}, S\right)$ and $\left(\sigma_{2}, S\right)$, we get

$$
\sigma_{1}(x, y) \leq x \text { and } \sigma_{2}(x, y) \leq x
$$

Hence $\left(\sigma_{1} \sqcup \sigma_{2}\right)(x, y)=\sigma_{1}(x, y) \vee \sigma_{2}(x, y) \leq x$ for all $x \in S$ and $1 \neq y \in F$. Therefore F is a filter of the cut $\left(\sigma_{1} \sqcup \sigma_{2}, S\right)$.
Theorem 3.8. Let S be a commutative subalgebra of a BE-algebra X. Suppose $\left\{\sigma_{i}\right\}_{i \in \Delta}$ is an indexed family of actions of X on S. For any filter F of S, the set $\left\{\left(\sigma_{i}, F\right)\right\}_{i \in \Delta}$ of all subcuts forms a partially ordered semi-lattice with respect to the operation \sqcup.
Proof. By Proposition 3.7 and Theorem 2.10, it follows.
Definition 3.9. Let F and G be two filters of a $B E$-algebra X. Suppose σ and μ are actions of X on F and G respectively. For the cuts (σ, F) and (μ, G) of X, the mapping $f:(\sigma, F) \longrightarrow(\mu, G)$ is called a cut-homomorphism if it satisfies the following properties:
(H1) $f(x * y)=f(x) * f(y)$ for all $x, y \in F$,
(H2) $f(\sigma(a, x))=\mu(a, f(x))$ for all $a \in X$ and $x \in F$.
A bijective cut-homomorphism is called a cut-isomorphism. A cuthomomorphism from a cut (σ, F) into itself is called a cut-endomorphism.
Proposition 3.10. The composition of any two cut-homomorphisms of a BE-algebra is again a cut-homomorphism.

Proof. Let F, G and H be three filters of a $B E$-algebra X. Suppose σ, μ and δ be three actions of X on F, G and H respectively. Let $f:(\sigma, F) \longrightarrow(\mu, G)$ and $g:(\mu, G) \longrightarrow(\delta, H)$ be two cut-homomorphisms. Clearly $g \circ f:(\sigma, F) \longrightarrow(\delta, H)$ is a cut-homomorphism.
Definition 3.11. Let (σ, F) be a cut of a $B E$-algebra X. For any $a \in X$, define a self-map $\sigma_{a}:(\sigma, F) \longrightarrow(\sigma, F)$ by $\sigma_{a}(x)=\sigma(a, x)$ for all $x \in F$.
Proposition 3.12. Let (σ, F) be a cut of a BE-algebra X. For any $a \in X$, the mapping $\sigma_{a}:(\sigma, F) \longrightarrow(\sigma, F)$ defined above is a cut-endomorphism.
Proof. Let $a \in X$. For any $x, y \in F$, we get

$$
\sigma_{a}(x * y)=\sigma(a, x * y)=\sigma(a, x) * \sigma(a, y)=\sigma_{a}(x) * \sigma_{a}(y) .
$$

For any $b \in X$ and $x \in F$, we get

$$
\sigma_{a}(\sigma(b, x))=\sigma(a, \sigma(b, x))=\sigma(b, \sigma(a, x))=\sigma\left(b, \sigma_{a}(x)\right) .
$$

Therefore σ_{a} is a cut-endomorphism.

Lemma 3.13. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$,
(1) for any $x \in(\sigma, S), \sigma_{a}(x)=x * \sigma_{a}(x)$,
(2) for any $x \in(\sigma, S), x=\sigma_{a}(x) * x$ whenever σ is complete,
(3) if F is a filter of (σ, S), then $\left(\sigma, \sigma_{a}(F)\right)$ is a subcut of (σ, S).

Proof. (1) Let $a \in X$. For any $x \in(\sigma, S)$, we get

$$
\sigma_{a}(x)=\sigma(a, x)=\sigma(1 * a, x)=\sigma(1, x) * \sigma(a, x)=x * \sigma_{a}(x)
$$

(2) Let $a \in X$ and σ is complete. For any $x \in(\sigma, S)$, we get

$$
x=\sigma(1, x)=\sigma(a * 1, x)=\sigma(a, x) * \sigma(1, x)=\sigma_{a}(x) * x
$$

(3) Let F be a filter of (σ, S). Let $\sigma_{a}(x), \sigma_{a}(y) \in \sigma_{a}(F)$ where $x, y \in F$. Then

$$
\sigma_{a}(x) * \sigma_{a}(y)=\sigma(a, x) * \sigma(a, y)=\sigma(a, x * y)=\sigma_{a}(x * y) \in \sigma_{a}(F)
$$

because of $x * y \in F$. Therefore $\sigma_{a}(F)$ is a subalgebra of X, for any $b \in X$ and $\sigma_{a}(x) \in \sigma_{a}(F)$. Then $x \in F$ and

$$
\sigma\left(b, \sigma_{a}(x)\right)=\sigma(b, \sigma(a, x))=\sigma(a, \sigma(b, x))=\sigma_{a}(\sigma(b, x)) \in \sigma_{a}(F)
$$

since $\sigma(b, x) \in F$. Hence $\sigma: X \times \sigma_{a}(F) \longrightarrow \sigma_{a}(F)$ is an action of X on $\sigma_{a}(F)$. Therefore $\left(\sigma, \sigma_{a}(F)\right)$ is a subcut of (σ, S).

Lemma 3.14. Let (σ, S) be a cut of a BE-algebra X. For any $a, b \in X$,
(1) σ_{1} is the identity map on (σ, S),
(2) σ_{a} is order preserving on (σ, S),
(3) $\sigma_{a} \circ \sigma_{b}=\sigma_{b} \circ \sigma_{a}$.

Proof. (1) For any $x \in S$, we get that $\sigma_{1}(x)=\sigma(1, x)=x$.
(2) Let $x, y \in S$ and $x \leq y$. Then

$$
\sigma_{a}(x) * \sigma_{a}(y)=\sigma_{a}(x * y)=\sigma_{a}(1)=\sigma(a, 1)=1
$$

Hence $\sigma_{a}(x) \leq \sigma_{a}(y)$. Therefore σ_{a} is order preserving.
(3) For any $x \in S$, we have

$$
\begin{aligned}
\left(\sigma_{a} \circ \sigma_{b}\right)(x) & =\sigma_{a}\left(\sigma_{b}(x)\right) \\
& =\sigma_{a}(\sigma(b, x)) \\
& =\sigma(a, \sigma(b, x)) \\
& =\sigma(b, \sigma(a, x)) \\
& =\sigma\left(b, \sigma_{a}(x)\right) \\
& =\sigma_{b}\left(\sigma_{a}(x)\right) \\
& =\left(\sigma_{b} \circ \sigma_{a}\right)(x)
\end{aligned}
$$

Therefore $\sigma_{a} \circ \sigma_{b}=\sigma_{a} \circ \sigma_{b}$.
Theorem 3.15. Let (σ, S) be a cut of a BE-algebra X. Then the collection $\mathcal{M}=\left\{\sigma_{a} \mid a \in X\right\}$ is a BE-algebra and there is an onto homomorphism from X into \mathcal{M}.

Proof. For any $a, b \in X$, define a binary operation \odot on \mathcal{M} as $\left(\sigma_{a} \odot \sigma_{b}\right)(x)=\sigma_{a * b}(x)$ for all $x \in S$. For any $a \in X$, we have

$$
\left(\sigma_{a} \odot \sigma_{1}\right)(x)=\sigma_{a * 1}(x)=\sigma_{1}(x)
$$

for all $x \in S$. Hence $\sigma_{a} \odot \sigma_{1}=\sigma_{1}$. Again, we have

$$
\left(\sigma_{1} \odot \sigma_{a}\right)(x)=\sigma_{1 * a}(x)=\sigma_{a}(x)
$$

for all $x \in S$. Hence $\sigma_{1} \odot \sigma_{a}=\sigma_{a}$. Also $\left(\sigma_{a} \odot \sigma_{a}\right)(x)=\sigma_{a * a}(x)=\sigma_{1}(x)$. Hence $\sigma_{a} \odot \sigma_{a}=\sigma_{1}$. Similarly, we can prove that $\sigma_{a} \odot\left(\sigma_{b} \odot \sigma_{c}\right)=\sigma_{b} \odot\left(\sigma_{a} \odot \sigma_{c}\right)$ for any $\sigma_{a}, \sigma_{b}, \sigma_{c} \in \mathcal{M}$. Therefore $\left(\mathcal{M}, \odot, \sigma_{1}\right)$ is a $B E$-algebra where σ_{1} is the top element.
Since $\left(\mathcal{M}, \odot, \sigma_{1}\right)$ is a $B E$-algebra, define a mapping $\Omega: X \longrightarrow \mathcal{M}$ as $\Omega(a)=\sigma_{a}$ for all $a \in X$. Clearly Ω is well-defined. For any $a, b \in X$, we get $\Omega(a * b)=\sigma_{a * b}=\sigma_{a} \odot \sigma_{b}=\Omega(a) \odot \Omega(b)$. Therefore Ω is a homomorphism. Let $\sigma_{a} \in \mathcal{M}$. For this $a \in X$, it is clear that $\Omega(a)=\sigma_{a}$. Therefore Ω is an onto homomorphism.

In a self-distributive $B E$-algebra X with subalgebra S, the action $\sigma: X \times S \longrightarrow S$ defined by $\sigma(a, x)=a * x$ for all $a \in X$ and $x \in S$ is observed as the idempotent action.

Theorem 3.16. Let σ be an idempotent action of a BE-algebra X on its subalgebra S. Then the collection $K^{\prime}=\left\{\sigma_{a} \mid a \in X\right\}$ is an upper semi-lattice with top element σ_{1}.

Proof. For any $a, b \in X$, define a binary operation \wedge on K^{\prime} as $\sigma_{a} \wedge \sigma_{b}=\sigma_{a} \circ \sigma_{b}$. For any $a \in X$, we have

$$
\begin{aligned}
\left(\sigma_{a} \wedge \sigma_{a}\right)(x) & =\left(\sigma_{a} \circ \sigma_{a}\right)(x) \\
& =\sigma_{a}\left(\sigma_{a}(x)\right) \\
& =\sigma_{a}(\sigma(a, x)) \\
& =\sigma(a, \sigma(a, x)) \\
& =\sigma(a, x) \\
& =\sigma_{a}(x)
\end{aligned}
$$

for all $x \in S$. Hence $\sigma_{a} \wedge \sigma_{a}=\sigma_{a}$. Let $a, b \in X$. By Lemma 3.14(3), we get $\sigma_{a} \wedge \sigma_{b}=\sigma_{a} \circ \sigma_{b}=\sigma_{b} \circ \sigma_{a}=\sigma_{b} \wedge \sigma_{a}$. Since the composition of self mappings is associative, it is concluded that $\left(K^{\prime}, \wedge\right)$ is a semi-lattice. For any $a \in X$ and $x \in S$, we get

$$
\left(\sigma_{a} \wedge \sigma_{1}\right)(x)=\left(\sigma_{a} \circ \sigma_{1}\right)(x)=\sigma_{a}\left(\sigma_{1}(x)\right)=\sigma_{a}(x)
$$

Hence $\sigma_{a} \wedge \sigma_{1}=\sigma_{a}$. Similarly, $\sigma_{1} \wedge \sigma_{a}=\sigma_{a}$. Therefore $\left(K^{\prime}, \wedge\right)$ is a semi-lattice where σ_{1} as the top element.

4. Fixed points of cut-endomorphisms

In this section, the concept of fixed points of a cut-endomorphism is introduced in $B E$-algebras. A necessary and sufficient condition is given for a cut-endomorphism to have a fixed point. Properties of fixed points and images of a cut-endomorphism are investigated.

Definition 4.1. Let S be a subalgebra of a $B E$-algebra X. Suppose (σ, S) be a cut of X and $f:(\sigma, S) \longrightarrow(\sigma, S)$ is a cut-endomorphism. An element $x \in S$ is called a fixed point of f if $f(x)=x$.

Example 4.2. Consider the subalgebra $S=\{a, b, 1\}$ of the $B E$-algebra X which is given in Example 3.3. Define a self-mapping $f: S \longrightarrow S$ as given by

$$
f(x)= \begin{cases}1 & \text { if } x=1 \\ a & \text { otherwise }\end{cases}
$$

It can be easily noticed that f is a cut-endomorphism on S. Under this self mapping f, the elements 1 and a of the subalgebra S are fixed points but not the element b because of $f(b)=a$.

Theorem 4.3. Let S be a subalgebra of BE-algebra X and (σ, S) be a cut of X. For any $a \in X$, the cut-endomorphism σ_{a} has a fixed point in S if and only if there exists a constant mapping $g: S \longrightarrow S$ such that $g(\sigma(a, x))=\sigma(a, g(x))$ for all $x \in S$.

Proof. Assume that σ_{a} has a fixed point, say c. For this $c \in S$, define a constant map $g: S \longrightarrow S$ by $g(x)=c$ for all $x \in S$. Then, we get $g(\sigma(a, x))=c$ and $\sigma(a, g(x))=\sigma(a, c)=\sigma_{a}(c)=c$ for all $x \in S$. Therefore $g(\sigma(a, x))=\sigma(a, g(x))$ for all $x \in S$.

Conversely, assume that there exists $c \in S$ and a constant mapping $h: S \longrightarrow S$ such that $h(x)=c$ and $h(\sigma(a, x))=\sigma(a, h(x))$ for all $x \in S$. Hence $\sigma_{a}(c)=\sigma(a, c)=\sigma(a, h(x))=h(\sigma(a, x))=c$. Therefore c is a fixed point of σ_{a}.
Proposition 4.4. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$, the class of all fixed points of σ_{a} given by

$$
\operatorname{Fix}\left(\sigma_{a}\right)=\left\{x \in S \mid \sigma_{a}(x)=x\right\}
$$

is a subcut of (σ, S).
Proof. Let $a \in X$. Since $\sigma_{a}(1)=1$, we get $1 \in \operatorname{Fix}\left(\sigma_{a}\right)$. Let $x, y \in \operatorname{Fix}\left(\sigma_{a}\right)$. Then, we get $\sigma_{a}(x)=x$ and $\sigma_{a}(y)=y$. Hence

$$
\sigma_{a}(x * y)=\sigma(a, x * y)=\sigma(a, x) * \sigma(a, y)=\sigma_{a}(x) * \sigma_{a}(y)=x * y .
$$

Thus $x * y \in \operatorname{Fix}\left(\sigma_{a}\right)$. Therefore $\operatorname{Fix}\left(\sigma_{a}\right)$ is a uni-subalgebra of (σ, S). For any $b \in X$ and $x \in \operatorname{Fix}\left(\sigma_{a}\right)$. Then $\sigma(a, x)=\sigma_{a}(x)=x$. Hence

$$
\sigma_{a}(\sigma(b, x))=\sigma(a, \sigma(b, x))=\sigma(b, \sigma(a, x))=\sigma(b, x)
$$

Hence $\sigma(b, x) \in \operatorname{Fix}\left(\sigma_{a}\right)$. Thus $\sigma: X \times F i x\left(\sigma_{a}\right) \longrightarrow F i x\left(\sigma_{a}\right)$ is an action of X on $\operatorname{Fix}\left(\sigma_{a}\right)$. Therefore $\left(\sigma, \operatorname{Fix}\left(\sigma_{a}\right)\right)$ is a subcut of (σ, S).

Let (σ, S) be a cut of a $B E$-algebra X where S is a subalgebra of X. For any cut-homomorphism σ_{a}, its image is given as

$$
\operatorname{Im}\left(\sigma_{a}\right)=\left\{\sigma_{a}(x) \mid x \in S\right\} .
$$

Proposition 4.5. Let (σ, S) be a cut of a BE-algebra X. For any $a \in X$, $\operatorname{Im}\left(\sigma_{a}\right)$ is a subalgebra of S.

Proof. Clearly $\operatorname{Im}\left(\sigma_{a}\right)$ is a subsets of S and $1 \in \operatorname{Im}\left(\sigma_{a}\right)$. Let $x, y \in \operatorname{Im}\left(\sigma_{a}\right)$. Then $x=\sigma_{a}\left(x^{\prime}\right)$ and $y=\sigma_{a}\left(y^{\prime}\right)$ for some $x^{\prime}, y^{\prime} \in S$. Now

$$
x * y=\sigma_{a}\left(x^{\prime}\right) * \sigma_{a}\left(y^{\prime}\right)=\sigma_{a}\left(x^{\prime} * y^{\prime}\right)
$$

Since $x^{\prime} * y^{\prime} \in S$, we get $x * y \in \operatorname{Im}\left(\sigma_{a}\right)$. Therefore $\operatorname{Im}\left(\sigma_{a}\right)$ is a subalgebra of S.

Lemma 4.6. Let (σ, S) be a cut of a BE-algebra X. Then Fix $\left(\sigma_{1}\right)=S$. Let $a \in X$. If σ is idempotent, then we have
(1) $\sigma_{a}(x) \in \operatorname{Fix}\left(\sigma_{a}\right)$ for all $x \in S$,
(2) $\sigma_{a}(x) \in \operatorname{Im}\left(\sigma_{a}\right)$ for all $x \in S$.

Proof. Let $a \in X$. Clearly $\operatorname{Fix}\left(\sigma_{1}\right) \subseteq S$. For any $x \in S$, we get that $\sigma_{1}(x)=\sigma(1, x)=x$. Hence $x \in \operatorname{Fix}\left(\sigma_{1}\right)$. Therefore $S \subseteq \operatorname{Fix}\left(\sigma_{1}\right)$. The remaining part is clear.

Theorem 4.7. Let σ be an idempotent action of a BE-algebra X on its subalgebra S. For any $a, b \in X$, the following are equivalent:
(1) $\sigma_{a}=\sigma_{b}$;
(2) $\operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\sigma_{b}\right)$;
(3) $\operatorname{Fix}\left(\sigma_{a}\right)=\operatorname{Fix}\left(\sigma_{b}\right)$.

Proof. (1) \Rightarrow (2): It is obvious.
$(2) \Rightarrow(3)$: Assume that $\operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\sigma_{b}\right)$. Let $x \in \operatorname{Fix}\left(\sigma_{a}\right)$. Then, we get $x=\sigma_{a}(x) \in \operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\sigma_{b}\right)$. Hence $x=\sigma_{b}(y)$ for some $y \in S$. Since σ is idempotent, we get $\sigma_{b}(x)=\sigma_{b}\left(\sigma_{b}(y)\right)=\sigma_{b}(y)=x$. Thus $x \in \operatorname{Fix}\left(\sigma_{b}\right)$. Therefore $\operatorname{Fix}\left(\sigma_{a}\right) \subseteq \operatorname{Fix}\left(\sigma_{b}\right)$. Similarly, we can obtain that $F i x\left(\sigma_{b}\right) \subseteq \operatorname{Fix}\left(\sigma_{a}\right)$. Therefore Fix $\left(\sigma_{a}\right)=F i x\left(\sigma_{b}\right)$.
$(3) \Rightarrow(1)$: Assume that $\operatorname{Fix}\left(\sigma_{a}\right)=F i x\left(\sigma_{b}\right)$. Let $x \in S$ be an arbitrary element. Since $\sigma_{a}(x) \in \operatorname{Fix}\left(\sigma_{a}\right)=F i x\left(\sigma_{b}\right)$, we get

$$
\sigma_{b}\left(\sigma_{a}(x)\right)=\sigma_{a}(x)
$$

Also we have $\sigma_{b}(x) \in \operatorname{Fix}\left(\sigma_{b}\right)=\operatorname{Fix}\left(\sigma_{a}\right)$. Hence $\sigma_{a}\left(\sigma_{b}(x)\right)=\sigma_{b}(x)$. Thus, it yields

$$
\sigma_{a}(x)=\sigma_{b}\left(\sigma_{a}(x)\right)=\left(\sigma_{b} \circ \sigma_{a}\right)(x)=\left(\sigma_{a} \circ \sigma_{b}\right)(x)=\sigma_{a}\left(\sigma_{b}(x)\right)=\sigma_{b}(x)
$$

Hence σ_{a} and σ_{b} are equal in the sense of mappings. Thus $\sigma_{a}=\sigma_{b}$.
Theorem 4.8. Let σ and μ be two idempotent actions of a BE-algebra X on its subalgebra S. For any $a \in X$, the following are equivalent:
(1) $\sigma_{a}=\mu_{a}$;
(2) $\operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\mu_{a}\right)$;
(3) Fix $\left(\sigma_{a}\right)=\operatorname{Fix}\left(\mu_{a}\right)$.

Proof. (1) \Rightarrow (2): It is obvious.
$(2) \Rightarrow(3)$: Assume that $\operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\mu_{a}\right)$. Let $x \in \operatorname{Fix}\left(\sigma_{a}\right)$. Then, we get

$$
x=\sigma_{a}(x) \in \operatorname{Im}\left(\sigma_{a}\right)=\operatorname{Im}\left(\mu_{a}\right) .
$$

Hence $x=\mu_{a}(y)$ for some $y \in S$. Now $\mu_{a}(x)=\mu_{a}\left(\mu_{a}(y)\right)=\mu_{a}(y)=x$. Thus $x \in \operatorname{Fix}\left(\mu_{a}\right)$. Therefore Fix $\left(\sigma_{a}\right) \subseteq$ Fix $\left(\mu_{a}\right)$. Similarly, we can obtain that $\operatorname{Fix}\left(\mu_{a}\right) \subseteq \operatorname{Fix}\left(\sigma_{a}\right)$. Therefore $\operatorname{Fix}\left(\sigma_{a}\right)=\operatorname{Fix}\left(\mu_{a}\right)$.
(3) $\Rightarrow(1)$: Assume that $\operatorname{Fix}\left(\sigma_{a}\right)=\operatorname{Fix}\left(\mu_{a}\right)$. Let $x \in S$. Since $\sigma_{a}(x) \in \operatorname{Fix}\left(\sigma_{a}\right)=\operatorname{Fix}\left(\mu_{a}\right)$, we get $\mu_{a}\left(\sigma_{a}(x)\right)=\sigma_{a}(x)$. Also we have $\mu_{a}(x) \in \operatorname{Fix}\left(\mu_{a}\right)=\operatorname{Fix}\left(\sigma_{a}\right)$. Hence $\sigma_{a}\left(\mu_{a}(x)\right)=\mu_{a}(x)$. Thus, it yields

$$
\sigma_{a}(x)=\mu_{a}\left(\sigma_{a}(x)\right)=\left(\mu_{a} \circ \sigma_{a}\right)(x)=\left(\sigma_{a} \circ \mu_{a}\right)(x)=\sigma_{a}\left(\mu_{a}(x)\right)=\mu_{a}(x) .
$$

Hence σ_{a} and μ_{a} are equal in the sense of mappings. Thus $\sigma_{a}=\mu_{a}$.
Theorem 4.9. Let σ be an action of a BE-algebra $(X, *, 1)$ on its subalgebra S. Then the collection $\mathcal{K}=\left\{\operatorname{Fix}\left(\sigma_{a}\right) \mid a \in X\right\}$ forms a BE-algebra with top element S. Hence there exists an onto homomorphism from \mathcal{M} into \mathcal{K}.

Proof. For any $\operatorname{Fix}\left(\sigma_{a}\right)$, $\operatorname{Fix}\left(\sigma_{b}\right) \in \mathcal{K}$ where $a, b \in X$, define an operation \circledast on \mathcal{K} by

$$
\operatorname{Fix}\left(\sigma_{a}\right) \circledast \operatorname{Fix}\left(\sigma_{b}\right)=\operatorname{Fix}\left(\sigma_{a * b}\right)
$$

By Lemma 4.6(1), we have $\operatorname{Fix}\left(\sigma_{1}\right)=S$. It can be routinely verified that $\left(\mathcal{K}, \circledast, F i x\left(\sigma_{1}\right)\right)$ is a $B E$-algebra. For any $a \in X$, define

$$
g: \mathcal{M} \longrightarrow \mathcal{K}
$$

by $g\left(\sigma_{a}\right)=F i x\left(\sigma_{a}\right)$. Clearly g is well-defined and onto. For any $\sigma_{a}, \sigma_{b} \in \mathcal{M}$, we get

$$
g\left(\sigma_{a} \odot \sigma_{b}\right)=g\left(\sigma_{a * b}\right)=\operatorname{Fix}\left(\sigma_{a * b}\right)=\operatorname{Fix}\left(\sigma_{a}\right) \circledast \operatorname{Fix}\left(\sigma_{b}\right)=g\left(\sigma_{a}\right) \circledast g\left(\sigma_{b}\right) .
$$

Therefore g is a homomorphism.
Corollary 4.10. Let σ be an action of a BE-algebra X on its subalgebra S. Then there exists an onto homomorphism from X into \mathcal{K}.

Proof. By Theorem 3.15, Ω is a onto homomorphism from X into \mathcal{M}. By Theorem 4.9, we have g is an onto homomorphism from \mathcal{M} into \mathcal{K}. Hence $g \circ \Omega$ is the required onto homomorphism from X into \mathcal{K}.

Acknowledgments

The author wish to thank the referee for his valuable suggestions and comments which improves this presentation.

References

1. S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in commutative BE-algebras, Commun. Korean Math. Soc., 27(2) (2012), 233-242.
2. A. Borumand Saeid, A. Rezaei and R. A. Borzooei, Some types of filters in $B E$-algebras, Math. Comput. Sci., 7 (2013), 341-352.
3. K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23(1) (1979), 1-26.
4. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japon. Online, (2006), 1299-1302.
5. B. L. Meng, On filters in BE-algebras, Sci. Math. Jpn. Online, (2010), 105-111.
6. A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J., 52 (2012), 483-494.
7. A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX, (2012), 33-44.
8. A. Rezaei, A. Borumand Saeid and R. A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Appl. Math., 8(2) (2013), 573-584.
9. M. Sambasiva Rao, A Course in BE-algebras, Springer Nature, 2018.
10. M. Sambasiva Rao and V. V. Kumar, Left and right self maps on $B E$-algebras, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), (2016), 579-591.
11. A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn., (2008), 585-588.

Mukkamala Sambasiva Rao

Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India-535005.
Email: mssraomaths35@rediffmail.com

