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FIXED POINTS AND CUT-HOMOMORPHISMS GENERATED BY
ACTIONS OF A BE-ALGEBRA ON ITS SUBALGEBRA

M. Sambasiva Rao

Abstract. The concept of actions of a BE-algebra on its subalgebra is introduced
and certain properties of these actions are derived. The notion of cut-homomorphisms
is introduced and proved that the class of all cut-homomorphisms forms an ordered
BE-algebra. Properties of fixed points of cut-homomorphisms are investigated and a
set of equivalent conditions is given for any two cut-homomorphisms are equal in the
sense of mappings.

Introduction
The notion of BE-algebras was introduced and extensively studied by H.

S. Kim and Y. H. Kim in [4]. These classes of BE-algebras were introduced
as a generalization of the class of BCK-algebras of K. Iseki and S. Tanaka [3].
Some properties of filters of BE-algebras were studied by S. S. Ahn and Y. H.
Kim in [1] and by B. L. Meng in [5]. In [11], A. Walendziak discussed some
properties of commutative BE-algebras. He also investigated the relation-
ship between BE-algebras, implicative algebras and J-algebras. In 2012, A.
Rezaei, and A. Borumand Saeid [7], stated and proved the first, second and
third isomorphism theorems in self distributive BE-algebras. Later, these
authors [6] introduced the notion of commutative ideals in a BE-algebra. In
2013, A. Borumand Saeid, A. Rezaei and R. A. Borzooei [2] extensively stud-
ied the properties of some types of filters in BE-algebras and established re-
lations among them. In 2016, the authors [10] characterized self-distributive
BE-algebras, commutative BE-algebras and implicative BE-algebras with
the help of left and right self maps. In [9], the author investigated certain
significant properties of self-maps and endomorphisms.

In this article, the notion of an action of a BE-algebra on a given subal-
gebra is introduced. Certain properties of the actions generated by direct
products and endomorphisms of BE-algebras are investigated. The notion
of permutable actions is introduced in a BE-algebra and then proved that
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their composition is again an action of the BE-algebra. An ordering is
introduced on the set of all actions and then derived that this set is par-
tially ordered whenever the respective BE-algebra is commutative. It is also
proved that the collection of all actions of a BE-algebra on a given subalge-
bra forms a semi-lattice. The concept of subcuts of subalgebras and filters
of cuts are introduced. It is proved that the set of all subcuts of a given cut
forms a partially ordered semi-lattice. The notion of cut-homomorphisms
is introduced in BE-algebras and then it is proved that the collection of
all cut-homomorphisms forms a BE-algebra which is homomorphic to the
given BE-algebra. Further, it is proved that the set of all idempotent cut-
homomorphisms forms an upper semi-lattice.

In the final section, the notion of fixed points of a cut-endomorphism is
introduced in BE-algebras. A necessary and sufficient condition is given for
a cut-endomorphism to have a fixed point. A set of equivalent conditions is
given for any two cut-homomorphisms to be equal in the sense of mappings.
Finally, some properties of fixed points and images of a cut-endomorphism
are investigated.

1. Preliminaries
In this section, certain definitions and results are presented which are taken

mostly from [4], [5], and [8] for the ready reference.

Definition 1.1. [4] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra
if it satisfies the following properties:
(1) x ∗ x = 1,
(2) x ∗ 1 = 1,
(3) 1 ∗ x = x,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)
for all x, y, z ∈ X. A BE-algebra X is called transitive if

y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)
for all x, y, z ∈ X. Every self-distributive BE-algebra is transitive. A BE-
algebra (X, ∗, 1) is said to be commutative [8] if (x ∗ y) ∗ y = (y ∗ x) ∗ x for
all x, y ∈ X. In this case, we consider (y ∗ x) ∗ x as x ∨ y. In a commutative
BE-algebra X, it is clear that x∨ y = y ∨ x for all x, y ∈ X. We introduce a
relation ≤ on X by x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X.

Theorem 1.2. [5] Let X be a transitive BE-algebra and x, y, z ∈ X. Then
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(1) 1 ≤ x implies x = 1,
(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 1.3. [4] A non-empty subset F of a BE-algebra X is called a
filter of X if, for all x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,
(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

A subset S of a BE-algebra X is called a subalgebra of X if
x ∗ y ∈ S whenever x, y ∈ S. Clearly every subalgebra of a BE-algebra
contains the element 1. It is clear that every filter of a BE-algebra is a
subalgebra. A mapping f from a BE-algebra (X, ∗, 1) into a BE-algebra
(Y, ◦, 1′) is called a homomorphism if f(x ∗ y) = f(x) ◦ f(y) for all x, y ∈ X.
It is clear that f(1) = 1 whenever f is a homomorphism. A homomorphism
of BE-algebra into itself is called an endomorphism.

2. Actions of BE-algebras
In this section, the notions of an action and a permutable action of a BE-

algebra on a given subalgebra is introduced. Certain properties of these
actions and the cuts of the BE-algebras are investigated.

Definition 2.1. Let (X, ∗, 1) be a BE-algebra and S is a subalgebra of X.
A mapping σ : X × S → S is called an action of X on S if it satisfies the
following properties:

(C1) σ(a, 1) = 1 for all a ∈ X,
(C2) σ(1, x) = x for all x ∈ S,
(C3) σ(a, x ∗ y) = σ(a, x) ∗ σ(a, y) for all a ∈ X and x, y ∈ S,
(C4) σ(a, σ(b, x)) = σ(b, σ(a, x)) for all a, b ∈ X and x ∈ S.
An action σ of a BE-algebra X on its subalgebra S is called idempotent

if σ(a, σ(a, x)) = σ(a, x) for all a ∈ X and x ∈ S. Further, σ is called a
complete action if along with (C1)-(C4), it satisfies the following:

σ(a ∗ b, x) = σ(a, x) ∗ σ(b, x)
for all a, b ∈ X and x ∈ S. In all the cases, we call the pair (σ, S) an S-cut
of the BE-algebra X.

Example 2.2. (1) Let X be a self-distributive BE-algebra and S be a sub-
algebra of X. For any a ∈ X and x ∈ S, define a mapping σ : X ×S → S by
σ(a, x) = a ∗ x. Then σ is an action of X on S. Therefore (σ, S) is an S-cut
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of the BE-algebra X.
(2) Let X be a BE-algebra and S be a subalgebra of X. For any a ∈ X

and x ∈ S, define a mapping σ : X × S → S by σ(a, x) = x. It can be
routinely verified that σ is an action of X on S. Hence (σ, S) is an S-cut
of X. Further, we see that σ is not complete. For consider a, b ∈ X and
1 ̸= c ∈ S be such that a ∗ b = 1. Then

σ(a ∗ b, c) = c and σ(a, c) ∗ σ(b, c) = c ∗ c = 1

Therefore σ is an action of X on S which is not complete.

Proposition 2.3. Let X be a BE-algebra and S be a subalgebra of X. Let
µ : X → S be a homomorphism satisfying the following:
(1) µ(a) ∗ (x ∗ y) = (µ(a) ∗ x) ∗ (µ(a) ∗ y) for all a ∈ X and x, y ∈ S,
(2) µ(a ∗ b) ∗ x = (µ(a) ∗ x) ∗ (µ(b) ∗ x) for all a, b ∈ X and x ∈ S.

For any a ∈ X and x ∈ S, define a mapping σµ : X × S → S by
σµ(a, x) = µ(a) ∗ x. Then σµ is a complete action of X on S.

Proof. Since S is a subalgebra of X, we get σµ is well-defined. Then
(C1) For any a ∈ X, we get σµ(a, 1) = µ(a) ∗ 1 = 1.
(C2) For any x ∈ S, we have σµ(1, x) = µ(1) ∗ x = 1 ∗ x = x.
(C3) Let a ∈ X and x, y ∈ S. Then, we get

σµ(a, x ∗ y) = µ(a) ∗ (x ∗ y)
= (µ(a) ∗ x) ∗ (µ(a) ∗ y)
= σµ(a, x) ∗ σµ(a, y).

(C4) Let a, b ∈ X and x ∈ S. Then, we get
σµ(a, σµ(b, x)) = σµ(a, µ(b) ∗ x)

= µ(a) ∗ (µ(b) ∗ x)
= µ(b) ∗ (µ(a) ∗ x)
= µ(b) ∗ σµ(a, x)
= σµ(b, σµ(a, x)).

Thus σµ is an action of X on S. Hence (σµ, S) is an S-cut of X. Further,
assume that µ satisfies the condition. Let a, b ∈ X and x ∈ S. Then

σµ(a ∗ b, x) = µ(a ∗ b) ∗ x
= (µ(a) ∗ x) ∗ (µ(b) ∗ x)
= σµ(a, x) ∗ σµ(b, x)
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Therefore σµ is a complete action of X on S. □

Proposition 2.4. Let S1 and S2 be the subalgebras of the BE-algebras X1

and X2 respectively. Suppose σ1 and σ2 are the actions of X1 on S1 and X2

on S2 respectively. For all (a, b) ∈ X1 × X2 and (x, y) ∈ S1 × S2, define a
mapping σ1 × σ2 : (X1 ×X2)× (S1 × S2) → S1 × S2 by

(σ1 × σ2)((a, b), (x, y)) = (σ1(a, x), σ2(b, y)).

Then σ1 × σ2 is an action of the product algebra X1 ×X2 on the subalgebra
S1 × S2. Therefore (σ1 × σ2, S1 × S2) is a cut of X1 ×X2.

Proof. Clearly σ1 × σ2 is well-defined. Note that S1 × S2 is a subalgebra of
X1×X2 with element (1, 1). Now, the properties (C1)-(C4) can be routinely
verified by using point-wise operations. □

Proposition 2.5. Let S be a subalgebra of a BE-algebra X. Suppose µ :
X × S → S is a mapping. For all a, b ∈ X and x, y ∈ S, define a mapping
σµ : X2 → S2 (where X2 = X ×X and S2 = S × S) by

σµ((a, b), (x, y)) = (µ(a, x), µ(b, y))

Then µ is an action of X on S if and only if σµ is an action of X2 on S2.
Moreover, (µ, S) is a cut of X if and only if (σµ, S2) is a cut of X2.

Proof. Clearly σµ is well-defined. Note that S2 is a subalgebra of X2 with
element (1, 1). Assume that µ is an action of X on S. Then (C1) Let
(a, b) ∈ X2. Then σµ((a, b), (1, 1)) = (µ(a, 1), µ(b, 1)) = (1, 1). (C2) Let
(x, y) ∈ S2. Then, we get

σµ((1, 1), (x, y)) = (µ(1, x), µ(1, y)) = (x, y).

(C3) Let (a, b) ∈ X2 and (x, y), (z, w) ∈ S2. Since µ is an action of X on S,
we get the following consequence:

σµ((a, b), (x, y) ∗ (z, w)) = σµ((a, b), (x ∗ z, y ∗ w))
= (µ(a, x ∗ z), µ(b, y ∗ w))
= (µ(a, x) ∗ µ(a, z), µ(b, y) ∗ µ(b, w))
= (µ(a, x), µ(b, y)) ∗ (µ(a, z), µ(b, w))
= σµ((a, b), (x, y)) ∗ σµ((a, b), (z, w))
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(C4) Let (a, b), (c, d) ∈ X2 and (x, y) ∈ S2. Since µ is an action of X on S,
we get the following consequence:

σµ((a, b), σµ((c, d), (x, y)) = σµ((a, b), (µ(c, x), µ(d, y)))

= (µ(a, µ(c, x)), µ(b, µ(d, y)))

= (µ(c, µ(a, x)), µ(d, µ(b, y)))

= σµ((c, d), (µ(a, x), µ(b, y)))

= σµ((c, d), σµ((a, b), (x, y))

Hence σµ is an action of X2 on S2. Therefore (σµ, S
2) is a cut of X2.

Conversely, assume that σµ is an action of X2 on S2. (C1) Let a ∈ X. Then
(µ(a, 1), µ(1, 1)) = σµ((a, 1), (1, 1)) = (1, 1). Hence µ(a, 1) = 1. (C2) Let
x ∈ S. Then (µ(1, x), µ(1, 1)) = σµ((1, 1), (1, x)) = (1, 1). Hence µ(1, x) = 1.
(C3) Let a ∈ X and x, y ∈ S. Since σµ is an action of X2 on S2, we get that

(µ(a, x ∗ y), µ(1, 1)) = σµ((a, 1), (x ∗ y, 1))
= σµ((a, 1), (x, 1) ∗ (y, 1))
= σµ((a, 1), (x, 1)) ∗ σµ((a, 1), (y, 1))
= (µ(a, x), µ(1, 1)) ∗ (µ(a, y), µ(1, 1))
= (µ(a, x) ∗ µ(a, y), µ(1, 1))

Hence µ(a, x ∗ y) = µ(a, x) ∗ µ(a, y). (C4) Let a, b ∈ X and x ∈ S. Since σµ
is an action of X2 on S2. Then

(µ(a, µ(b, x)), 1) = (µ(a, µ(b, x)), µ(1, 1))

= σµ((a, 1), (µ(b, x), 1))

= σµ((a, 1), (µ(b, x), µ(1, 1)))

= σµ((a, 1), σµ((b, 1), (x, 1)))

= σµ((b, 1), σµ((a, 1), (x, 1)))

= σµ((b, 1), (µ(a, x), µ(1, 1)))

= σµ((b, 1), (µ(a, x), 1))

= (µ(b, µ(a, x)), µ(1, 1))

= (µ(b, µ(a, x)), 1)

Hence µ(a, µ(b, x)) = µ(b, µ(a, x)). Thus µ is an action of X on S. □

Proposition 2.6. Let X be a BE-algebra and S be a subalgebra of X.
Suppose µ : X → X is an endomorphism and σ : X × S → S is a
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mapping. For a ∈ X and x ∈ S, define a mapping σµ : X × S → S
by

σµ(a, x) = σ(µ(a), x)

If σ is a complete action of X on S, then σµ is a complete action of X on S.
Further, the converse is also true whenever µ is surjective.

Proof. Assume that σ is a complete action of X on S. Then, we get
(C1) For any a ∈ X, we get that σµ(a, 1) = σ(µ(a), 1) = 1.
(C2) For any x ∈ S, we get σµ(1, x) = σ(µ(1), x) = σ(1, x) = x.
(C3) Let a ∈ X and x, y ∈ S. Since σ is an action of X on S and µ is an

endomorphism, we get that

σµ(a, x ∗ y) = σ(µ(a), x ∗ y)
= σ(µ(a), x) ∗ σ(µ(a), y)
= σµ(a, x) ∗ σµ(a, y)

(C4) Let a, b ∈ X and x ∈ S. Since σ is an action of X on S, we get

σµ(a, σµ(b, x)) = σµ(a, σ(µ(b), x))

= σ(µ(a), σ(µ(b), x))

= σ(µ(b), σ(µ(a), x))

= σµ(b, σ(µ(a), x))

= σµ(b, σµ(a, x))

(C5) Let a, b ∈ X and x ∈ S. Since σ is a complete action, we get

σµ(a ∗ b, x) = σ(µ(a ∗ b), x)
= σ(µ(a) ∗ µ(b), x)
= σ(µ(a), x) ∗ σ(µ(b), x)
= σµ(a, x) ∗ σµ(b, x)

Therefore σµ is a complete action of X on S. To prove the converse, let us
suppose that µ is a surjective mapping. Assume that σµ is a complete action
of X on S. Then, we get

(C1) Let a ∈ X. Since µ is surjective, there exists b ∈ X such that µ(b) = a.
Now, σ(a, 1) = σ(µ(b), 1)) = σµ(b, 1) = 1.

(C2) For any x ∈ S, we get σ(1, x) = σ(µ(1), x) = σµ(1, x) = x.
(C3) Let a ∈ X and x, y ∈ S. Since µ is surjective, there exist b ∈ X such
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that µ(b) = a. Since σµ is an action of X on S, we get

σ(a, x ∗ y) = σ(µ(b), x ∗ y)
= σµ(b, x ∗ y)
= σµ(b, x) ∗ σµ(b, y)
= σ(µ(b), x) ∗ σ(µ(b), y)
= σ(a, x) ∗ σ(a, y)

(C4) Let a, b ∈ X and x ∈ S. Since µ is surjective, there exist a0, b0 ∈ X
such that µ(a0) = a and µ(b0) = b. Since σµ is an action,

σ(a, σ(b, x)) = σ(µ(a0), σ(µ(b0), x)

= σ(µ(a0), σµ(b0, x))

= σµ(a0, σµ(b0, x))

= σµ(b0, σµ(a0, x))

= σµ(b0, σ(µ(a0), x))

= σ(µ(b0), σ(µ(a0), x))

= σ(b, σ(a, x))

(C5) Let a, b ∈ X and x ∈ S. Since µ is a surjective mapping, there exist
a0, b0 ∈ X such that µ(a0) = a and µ(b0) = b. Since σµ is an action of X on
S, we get

σ(a ∗ b, x) = σ(µ(a0) ∗ µ(b0), x)
= σ(µ(a0 ∗ b0), x)
= σµ(a0 ∗ b0, x)
= σµ(a0, x) ∗ σµ(b0, x)
= σ(µ(a0), x) ∗ σ(µ(b0), x)
= σ(a, x) ∗ σ(b, x)

Therefore σ is a complete action of X on S. □

Definition 2.7. Let (X, ∗, 1) be a BE-algebra and S be a subalgebra of X.
Two actions σi and σj of X on S are said to be permutable if for all a, b ∈ X
and x ∈ S, the following property holds:

σi(a, σj(b, x)) = σi(b, σj(a, x)).
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Example 2.8. Let X = {1, a, b, c} be the given set. Define a binary operation
∗ on X as given in the following table:

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 a 1 c
c 1 a 1 1

Clearly (X, ∗, 1) is a BE-algebra. Consider the subalgebra S = {b, 1}. Define
two mappings σ1 and σ2 from X × S into S as given by

σ1(x, y) = x ∗ y σ2(x, y) = y

for all x ∈ X and y ∈ S. Clearly σ1 and σ2 are actions of X on S. It can be
easily verified that σ1 and σ2 are permutable actions of X on S.

Proposition 2.9. Let X be a BE-algebra and S is a subalgebra of X. Let
σ1 and σ2 be two permutable actions of X on S. Define the composition of
the actions σ1 and σ2 as

(σ1 ◦ σ2)(a, x) = σ1(a, σ2(a, x))

for all a ∈ X and x ∈ S. Then σ1 ◦ σ2 is an action of X on S.

Proof. (C1) and (C2) are clear. To prove (C3), let a ∈ X and x, y ∈ S. Then,
we get the following:

(σ1 ◦ σ2)(a, x ∗ y) = σ1(a, σ2(a, x ∗ y))
= σ1(a, σ2(a, x) ∗ σ2(a, y))
= σ1(a, σ2(a, x)) ∗ σ1(a, σ2(a, y))
= (σ1 ◦ σ2)(a, x) ∗ (σ1 ◦ σ2)(a, y)

(C4). Let a, b ∈ X and x ∈ S. Since σ1 and σ2 are permutable, we get
(σ1 ◦ σ2)(a, (σ1 ◦ σ2)(b, x)) = (σ1 ◦ σ2)(a, σ1(b, σ2(b, x)))

= σ1(a, σ2(a, σ1(b, σ2(b, x))))

= σ1(a, σ2(b, σ1(a, σ2(b, x))))

= σ1(b, σ2(a, σ1(a, σ2(b, x))))

= σ1(b, σ2(a, σ1(b, σ2(a, x))))

= σ1(b, σ2(b, σ1(a, σ2(a, x))))

= σ1(b, σ2(b, (σ1 ◦ σ2)(a, x)))
= (σ1 ◦ σ2)(b, (σ1 ◦ σ2)(a, x))
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Therefore σ1 ◦ σ2 is an action of X on S. □

Theorem 2.10. Let X be a BE-algebra with given ordering ≤.
Suppose that S is a subalgebra of X and Σ(X) denotes the set of all ac-
tions of X on S. For any σ1, σ2 ∈ Σ(X), define an ordering ≤σ on the set of
all actions of X on S as given by

σ1 ≤σ σ2 if and only if σ1(a, x) ≤ σ2(a, x)

for all a ∈ X and x ∈ S. Then ≤σ is a BE-ordering on Σ(X). Further, if
X is commutative, then ≤σ is a partial ordering on Σ(X).

Proof. Since S is a subalgebra of X and ≤ is a BE-ordering on X, it is
clear that ≤σ is reflexive. Further, if X is commutative, then it is transitive.
Hence ≤σ is transitive on Σ(X). Since X is commutative, we get that ≤ is
anti-symmetric and hence ≤σ is anti-symmetric on Σ(X). Therefore ≤σ is a
partial ordering on Σ(X). □

Suppose that X is a commutative BE-algebra and S is a subalgebra of X.
Let σ1 and σ2 be two actions of X on S. Due to the commutativity of the
subalgebra S, we get

σ1(a, x) ∨ σ2(a, x) = (σ2(a, x) ∗ σ1(a, x)) ∗ σ1(a, x)

for any a ∈ X and x ∈ S. Further, we have
σ1(a, x) ∨ σ2(a, x) = σ2(a, x) ∨ σ1(a, x).

Lemma 2.11. Let X be a BE-algebra and S a commutative subalgebra of
X. If σ is an action of X on S, then σ(a, x ∨ y) = σ(a, x) ∨ σ(a, y) for any
a ∈ X and x, y ∈ S.

Proof. Routine verification. □

Proposition 2.12. Suppose X is a BE-algebra and S a commutative subal-
gebra of X. Let σ1 and σ2 be two permutable actions of X on S. Define the
supremum of the actions σ1 and σ2 as given under

(σ1 ⊔ σ2)(a, x) = σ1(a, x) ∨ σ2(a, x)

for all a ∈ X and x ∈ S. Then σ1 ⊔ σ2 is an action of X on S. Further
σ1⊔σ2 is a complete action of X on S whenever both σ1 and σ2 are complete
actions of X on S.

Proof. (C1), (C2) and (C3) can be routinely verified. To prove (C4), let
a ∈ X and x ∈ S. For simplicity of the representation, in the following, we
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use the notation σi(ax) = σi(a, x) and σi(bx) = σi(b, x) for i = 1, 2. Since σ1
and σ2 are permutable, we get
(σ1 ⊔ σ2)(a, (σ1 ⊔ σ2)(bx)) = (σ1 ⊔ σ2)(a, σ1(bx) ∨ σ2(bx))

= σ1(a, σ1(bx) ∨ σ2(bx))

∨σ2(a, σ1(bx) ∨ σ2(bx))

= σ1(a, σ1(bx)) ∨ σ1(a, σ2(bx)))

∨σ2(a, σ1(bx)) ∨ σ2(a, σ2(bx))

= σ1(b, σ1(ax)) ∨ σ1(b, σ2(ax)))

∨σ2(b, σ1(ax)) ∨ σ2(b, σ2(ax))

= σ1(b, σ1(ax) ∨ σ2(ax)) ∨ σ2(b, σ1(ax) ∨ σ2(ax))

= σ1(b, (σ1 ⊔ σ2)(ax)) ∨ σ2(b, (σ1 ⊔ σ2)(ax))

= (σ1 ⊔ σ2)(b, (σ1 ⊔ σ2)(ax))

Hence σ1⊔σ2 is an action of X on S. Further, suppose that σ1, σ2 are complete
actions of X on S. It can be routinely verified that σ1 ⊔ σ2 is a complete
action of X on S. □

The following theorem is a direct consequence of the above results.

Theorem 2.13. Suppose (X, ∗, 1) is a BE-algebra and S a commutative
subalgebra of X. Let Σ(X) be the set of all permutable actions of X on
S. Then (Σ(X),⊔) is a semi-lattice with partial ordering ≤σ. Therefore
(Σ(X),≤σ) is a partially order set.

3. Cut-homomorphisms
In this section, the concept of subcuts of subalgebras of a BE-algebra is

introduced. The notion of cut-homomorphisms is introduced in BE-algebras.
It is proved that the collection of all idempotent cut-homomorphism forms
an upper semi-lattice.

Definition 3.1. Let S be a subalgebra of a BE-algebra X. Suppose (σ, S)
is a cut of a BE-algebra X. A subalgebra S ′ of S is said to a subcut of S if S ′

is closed under action by elements of X. In this case, we simply call (σ, S ′) a
subcut of (σ, S).

Definition 3.2. Suppose that S is a subalgebra of a BE-algebra X and (σ, S)
is a cut of X. A subcut (σ, F ) of the cut (σ, S) is called a filter of (σ, S) if it
satisfies the following properties:
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(1) F is a filter of S,
(2) σ(x, y) ≤ x for all x ∈ S and 1 ̸= y ∈ F .

In this case, we simply call that F is a filter of the cut (σ, S). For any
subalgebra S of X, it is clear that {1} is a filter of any cut (σ, S). A filter F
of a cut (σ, S) is called proper if F ̸= S.

Example 3.3. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on
X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

It can be routinely seen that (X, ∗, 1) is a BE-algebra. Consider the sub-
algebra S = {a, b, 1}. Define a mapping σ : X × S −→ S by σ(a, 1) = 1,
σ(1, x) = x for all a ∈ X, x ∈ S, and

σ(c, a) = a, σ(c, b) = b and σ(c, c) = 1

Note that σ is an action of X on S. Consider the set F = {1, a}. Then, it
can be easily verified that F is a filter of the cut (σ, S).

Proposition 3.4. Let S be a subalgebra of a BE-algebra (X, ∗, 1) and σ is
an action of X on S. Then the set-intersection of any two filters of the cut
(σ, S) is again a filter of (σ, S).

Proof. Given that σ an action of X on S. Let (σ, F1) and (σ, F2) be two filters
of the cut (σ, S). Clearly F1 ∩ F2 is a filter of S. Therefore the intersection
of F1 and F2 is a filter of the cut (σ, S). □

The following corollaries are direct consequences of Proposition 3.4.

Corollary 3.5. Let S be a subalgebra of a BE-algebra X and σ is an action
of X on S. Suppose {Fα}α∈∆ is an indexed family of filters of the cut (σ, S).
Then the set intersection

∩
α∈∆

Fα is a filter of (σ, S).

Corollary 3.6. Let S be a subalgebra of a BE-algebra X. If σ is an action
of X on S, then the intersection of all filters of (σ, S) is {1}.

Proposition 3.7. Let S be a commutative subalgebra of a BE-algebra X.
Suppose σ1 and σ2 are two actions of X on S. If F is filter of both the cuts
(σ1, S) and (σ2, S), then F is a filter of (σ1 ⊔ σ2, S).
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Proof. By Proposition 2.12, σ1 ⊔ σ2 is an action of X on S. Let x ∈ S and
1 ̸= y ∈ F . Since F is filter of (σ1, S) and (σ2, S), we get

σ1(x, y) ≤ x and σ2(x, y) ≤ x.

Hence (σ1 ⊔ σ2)(x, y) = σ1(x, y) ∨ σ2(x, y) ≤ x for all x ∈ S and 1 ̸= y ∈ F .
Therefore F is a filter of the cut (σ1 ⊔ σ2, S). □
Theorem 3.8. Let S be a commutative subalgebra of a BE-algebra X.
Suppose {σi}i∈∆ is an indexed family of actions of X on S. For any filter F
of S, the set {(σi, F )}i∈∆ of all subcuts forms a partially ordered semi-lattice
with respect to the operation ⊔.
Proof. By Proposition 3.7 and Theorem 2.10, it follows. □
Definition 3.9. Let F and G be two filters of a BE-algebra X. Suppose
σ and µ are actions of X on F and G respectively. For the cuts (σ, F ) and
(µ,G) of X, the mapping f : (σ, F ) −→ (µ,G) is called a cut-homomorphism
if it satisfies the following properties:

(H1) f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ F ,
(H2) f(σ(a, x)) = µ(a, f(x)) for all a ∈ X and x ∈ F .
A bijective cut-homomorphism is called a cut-isomorphism. A cut-

homomorphism from a cut (σ, F ) into itself is called a cut-endomorphism.
Proposition 3.10. The composition of any two cut-homomorphisms of a
BE-algebra is again a cut-homomorphism.
Proof. Let F,G and H be three filters of a BE-algebra X. Suppose σ, µ
and δ be three actions of X on F,G and H respectively. Let
f : (σ, F ) −→ (µ,G) and g : (µ,G) −→ (δ,H) be two cut-homomorphisms.
Clearly g ◦ f : (σ, F ) −→ (δ,H) is a cut-homomorphism. □
Definition 3.11. Let (σ, F ) be a cut of a BE-algebra X. For any a ∈ X,
define a self-map σa : (σ, F ) −→ (σ, F ) by σa(x) = σ(a, x) for all x ∈ F .
Proposition 3.12. Let (σ, F ) be a cut of a BE-algebra X. For any a ∈ X,
the mapping σa : (σ, F ) −→ (σ, F ) defined above is a cut-endomorphism.
Proof. Let a ∈ X. For any x, y ∈ F , we get

σa(x ∗ y) = σ(a, x ∗ y) = σ(a, x) ∗ σ(a, y) = σa(x) ∗ σa(y).
For any b ∈ X and x ∈ F , we get

σa(σ(b, x)) = σ(a, σ(b, x)) = σ(b, σ(a, x)) = σ(b, σa(x)).

Therefore σa is a cut-endomorphism. □
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Lemma 3.13. Let (σ, S) be a cut of a BE-algebra X. For any a ∈ X,
(1) for any x ∈ (σ, S), σa(x) = x ∗ σa(x),
(2) for any x ∈ (σ, S), x = σa(x) ∗ x whenever σ is complete,
(3) if F is a filter of (σ, S), then (σ, σa(F )) is a subcut of (σ, S).

Proof. (1) Let a ∈ X. For any x ∈ (σ, S), we get

σa(x) = σ(a, x) = σ(1 ∗ a, x) = σ(1, x) ∗ σ(a, x) = x ∗ σa(x)

(2) Let a ∈ X and σ is complete. For any x ∈ (σ, S), we get

x = σ(1, x) = σ(a ∗ 1, x) = σ(a, x) ∗ σ(1, x) = σa(x) ∗ x

(3) Let F be a filter of (σ, S). Let σa(x), σa(y) ∈ σa(F ) where x, y ∈ F .
Then

σa(x) ∗ σa(y) = σ(a, x) ∗ σ(a, y) = σ(a, x ∗ y) = σa(x ∗ y) ∈ σa(F )

because of x ∗ y ∈ F . Therefore σa(F ) is a subalgebra of X, for any b ∈ X
and σa(x) ∈ σa(F ). Then x ∈ F and

σ(b, σa(x)) = σ(b, σ(a, x)) = σ(a, σ(b, x)) = σa(σ(b, x)) ∈ σa(F )

since σ(b, x) ∈ F . Hence σ : X × σa(F ) −→ σa(F ) is an action of X on
σa(F ). Therefore (σ, σa(F )) is a subcut of (σ, S). □

Lemma 3.14. Let (σ, S) be a cut of a BE-algebra X. For any a, b ∈ X,
(1) σ1 is the identity map on (σ, S),
(2) σa is order preserving on (σ, S),
(3) σa ◦ σb = σb ◦ σa.

Proof. (1) For any x ∈ S, we get that σ1(x) = σ(1, x) = x.
(2) Let x, y ∈ S and x ≤ y. Then

σa(x) ∗ σa(y) = σa(x ∗ y) = σa(1) = σ(a, 1) = 1.

Hence σa(x) ≤ σa(y). Therefore σa is order preserving.
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(3) For any x ∈ S, we have
(σa ◦ σb)(x) = σa(σb(x))

= σa(σ(b, x))

= σ(a, σ(b, x))

= σ(b, σ(a, x))

= σ(b, σa(x))

= σb(σa(x))

= (σb ◦ σa)(x).

Therefore σa ◦ σb = σa ◦ σb. □

Theorem 3.15. Let (σ, S) be a cut of a BE-algebra X. Then the collection
M = {σa | a ∈ X} is a BE-algebra and there is an onto homomorphism
from X into M.

Proof. For any a, b ∈ X, define a binary operation ⊙ on M as
(σa ⊙ σb)(x) = σa∗b(x) for all x ∈ S. For any a ∈ X, we have

(σa ⊙ σ1)(x) = σa∗1(x) = σ1(x)

for all x ∈ S. Hence σa ⊙ σ1 = σ1. Again, we have
(σ1 ⊙ σa)(x) = σ1∗a(x) = σa(x)

for all x ∈ S. Hence σ1⊙σa = σa. Also (σa⊙σa)(x) = σa∗a(x) = σ1(x). Hence
σa ⊙ σa = σ1. Similarly, we can prove that σa ⊙ (σb ⊙ σc) = σb ⊙ (σa ⊙ σc)
for any σa, σb, σc ∈ M. Therefore (M,⊙, σ1) is a BE-algebra where σ1 is the
top element.

Since (M,⊙, σ1) is a BE-algebra, define a mapping Ω : X −→ M as
Ω(a) = σa for all a ∈ X. Clearly Ω is well-defined. For any a, b ∈ X, we get
Ω(a ∗ b) = σa∗b = σa ⊙ σb = Ω(a) ⊙ Ω(b). Therefore Ω is a homomorphism.
Let σa ∈ M. For this a ∈ X, it is clear that Ω(a) = σa. Therefore Ω is an
onto homomorphism. □

In a self-distributive BE-algebra X with subalgebra S, the action
σ : X × S −→ S defined by σ(a, x) = a ∗ x for all a ∈ X and x ∈ S is
observed as the idempotent action.

Theorem 3.16. Let σ be an idempotent action of a BE-algebra X on its
subalgebra S. Then the collection K ′ = {σa | a ∈ X} is an upper semi-lattice
with top element σ1.
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Proof. For any a, b ∈ X, define a binary operation ∧ on K ′ as σa∧σb = σa◦σb.
For any a ∈ X, we have

(σa ∧ σa)(x) = (σa ◦ σa)(x)
= σa(σa(x))

= σa(σ(a, x))

= σ(a, σ(a, x))

= σ(a, x)

= σa(x)

for all x ∈ S. Hence σa ∧ σa = σa. Let a, b ∈ X. By Lemma 3.14(3), we get
σa ∧ σb = σa ◦ σb = σb ◦ σa = σb ∧ σa. Since the composition of self mappings
is associative, it is concluded that (K ′,∧) is a semi-lattice. For any a ∈ X
and x ∈ S, we get

(σa ∧ σ1)(x) = (σa ◦ σ1)(x) = σa(σ1(x)) = σa(x).

Hence σa∧σ1 = σa. Similarly, σ1∧σa = σa. Therefore (K ′,∧) is a semi-lattice
where σ1 as the top element. □

4. Fixed points of cut-endomorphisms
In this section, the concept of fixed points of a cut-endomorphism is

introduced in BE-algebras. A necessary and sufficient condition is given
for a cut-endomorphism to have a fixed point. Properties of fixed points and
images of a cut-endomorphism are investigated.

Definition 4.1. Let S be a subalgebra of a BE-algebra X. Suppose (σ, S)
be a cut of X and f : (σ, S) −→ (σ, S) is a cut-endomorphism. An element
x ∈ S is called a fixed point of f if f(x) = x.

Example 4.2. Consider the subalgebra S = {a, b, 1} of the BE-algebra X
which is given in Example 3.3. Define a self-mapping f : S −→ S as given
by

f(x) =

{
1 if x = 1

a otherwise
It can be easily noticed that f is a cut-endomorphism on S. Under this self
mapping f , the elements 1 and a of the subalgebra S are fixed points but not
the element b because of f(b) = a.
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Theorem 4.3. Let S be a subalgebra of BE-algebra X and (σ, S) be a
cut of X. For any a ∈ X, the cut-endomorphism σa has a fixed point in
S if and only if there exists a constant mapping g : S −→ S such that
g(σ(a, x)) = σ(a, g(x)) for all x ∈ S.

Proof. Assume that σa has a fixed point, say c. For this c ∈ S, define
a constant map g : S −→ S by g(x) = c for all x ∈ S. Then, we get
g(σ(a, x)) = c and σ(a, g(x)) = σ(a, c) = σa(c) = c for all x ∈ S. Therefore
g(σ(a, x)) = σ(a, g(x)) for all x ∈ S.

Conversely, assume that there exists c ∈ S and a constant mapping
h : S −→ S such that h(x) = c and h(σ(a, x)) = σ(a, h(x)) for all x ∈ S.
Hence σa(c) = σ(a, c) = σ(a, h(x)) = h(σ(a, x)) = c. Therefore c is a fixed
point of σa. □

Proposition 4.4. Let (σ, S) be a cut of a BE-algebra X. For any a ∈ X,
the class of all fixed points of σa given by

Fix(σa) = {x ∈ S | σa(x) = x}
is a subcut of (σ, S).

Proof. Let a ∈ X. Since σa(1) = 1, we get 1 ∈ Fix(σa). Let x, y ∈ Fix(σa).
Then, we get σa(x) = x and σa(y) = y. Hence

σa(x ∗ y) = σ(a, x ∗ y) = σ(a, x) ∗ σ(a, y) = σa(x) ∗ σa(y) = x ∗ y.

Thus x ∗ y ∈ Fix(σa). Therefore Fix(σa) is a uni-subalgebra of (σ, S). For
any b ∈ X and x ∈ Fix(σa). Then σ(a, x) = σa(x) = x. Hence

σa(σ(b, x)) = σ(a, σ(b, x)) = σ(b, σ(a, x)) = σ(b, x).

Hence σ(b, x) ∈ Fix(σa). Thus σ : X × Fix(σa) −→ Fix(σa) is an action of
X on Fix(σa). Therefore (σ, F ix(σa)) is a subcut of (σ, S). □

Let (σ, S) be a cut of a BE-algebra X where S is a subalgebra of X. For
any cut-homomorphism σa, its image is given as

Im(σa) = {σa(x) | x ∈ S}.

Proposition 4.5. Let (σ, S) be a cut of a BE-algebra X. For any a ∈ X,
Im(σa) is a subalgebra of S.

Proof. Clearly Im(σa) is a subsets of S and 1 ∈ Im(σa). Let x, y ∈ Im(σa).
Then x = σa(x

′) and y = σa(y
′) for some x′, y′ ∈ S. Now

x ∗ y = σa(x
′) ∗ σa(y′) = σa(x

′ ∗ y′).
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Since x′ ∗ y′ ∈ S, we get x ∗ y ∈ Im(σa). Therefore Im(σa) is a subalgebra of
S. □

Lemma 4.6. Let (σ, S) be a cut of a BE-algebra X. Then Fix(σ1) = S. Let
a ∈ X. If σ is idempotent, then we have
(1) σa(x) ∈ Fix(σa) for all x ∈ S,
(2) σa(x) ∈ Im(σa) for all x ∈ S.

Proof. Let a ∈ X. Clearly Fix(σ1) ⊆ S. For any x ∈ S, we get that
σ1(x) = σ(1, x) = x. Hence x ∈ Fix(σ1). Therefore S ⊆ Fix(σ1). The
remaining part is clear. □

Theorem 4.7. Let σ be an idempotent action of a BE-algebra X on its
subalgebra S. For any a, b ∈ X, the following are equivalent:
(1) σa = σb;
(2) Im(σa) = Im(σb);
(3) Fix(σa) = Fix(σb).

Proof. (1) ⇒ (2): It is obvious.
(2) ⇒ (3): Assume that Im(σa) = Im(σb). Let x ∈ Fix(σa). Then, we get

x = σa(x) ∈ Im(σa) = Im(σb). Hence x = σb(y) for some
y ∈ S. Since σ is idempotent, we get σb(x) = σb(σb(y)) = σb(y) = x. Thus
x ∈ Fix(σb). Therefore Fix(σa) ⊆ Fix(σb). Similarly, we can obtain that
Fix(σb) ⊆ Fix(σa). Therefore Fix(σa) = Fix(σb).
(3) ⇒ (1): Assume that Fix(σa) = Fix(σb). Let x ∈ S be an arbitrary

element. Since σa(x) ∈ Fix(σa) = Fix(σb), we get

σb(σa(x)) = σa(x).

Also we have σb(x) ∈ Fix(σb) = Fix(σa). Hence σa(σb(x)) = σb(x). Thus, it
yields

σa(x) = σb(σa(x)) = (σb ◦ σa)(x) = (σa ◦ σb)(x) = σa(σb(x)) = σb(x).

Hence σa and σb are equal in the sense of mappings. Thus σa = σb. □

Theorem 4.8. Let σ and µ be two idempotent actions of a BE-algebra X
on its subalgebra S. For any a ∈ X, the following are equivalent:
(1) σa = µa;
(2) Im(σa) = Im(µa);
(3) Fix(σa) = Fix(µa).
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Proof. (1) ⇒ (2): It is obvious.
(2) ⇒ (3): Assume that Im(σa) = Im(µa). Let x ∈ Fix(σa). Then, we get

x = σa(x) ∈ Im(σa) = Im(µa).
Hence x = µa(y) for some y ∈ S. Now µa(x) = µa(µa(y)) = µa(y) = x. Thus
x ∈ Fix(µa). Therefore Fix(σa) ⊆ Fix(µa). Similarly, we can obtain that
Fix(µa) ⊆ Fix(σa). Therefore Fix(σa) = Fix(µa).
(3) ⇒ (1): Assume that Fix(σa) = Fix(µa). Let x ∈ S. Since

σa(x) ∈ Fix(σa) = Fix(µa), we get µa(σa(x)) = σa(x). Also we have
µa(x) ∈ Fix(µa) = Fix(σa). Hence σa(µa(x)) = µa(x). Thus, it yields

σa(x) = µa(σa(x)) = (µa ◦ σa)(x) = (σa ◦ µa)(x) = σa(µa(x)) = µa(x).

Hence σa and µa are equal in the sense of mappings. Thus σa = µa. □
Theorem 4.9. Let σ be an action of a BE-algebra (X, ∗, 1) on its subalgebra
S. Then the collection K = {Fix(σa) | a ∈ X} forms a BE-algebra with top
element S. Hence there exists an onto homomorphism from M into K.
Proof. For any Fix(σa), F ix(σb) ∈ K where a, b ∈ X, define an
operation ⊛ on K by

Fix(σa)⊛ Fix(σb) = Fix(σa∗b)

By Lemma 4.6(1), we have Fix(σ1) = S. It can be routinely verified that
(K,⊛, F ix(σ1)) is a BE-algebra. For any a ∈ X, define

g : M −→ K
by g(σa) = Fix(σa). Clearly g is well-defined and onto. For any σa, σb ∈ M,
we get

g(σa ⊙ σb) = g(σa∗b) = Fix(σa∗b) = Fix(σa)⊛ Fix(σb) = g(σa)⊛ g(σb).
Therefore g is a homomorphism. □
Corollary 4.10. Let σ be an action of a BE-algebra X on its subalgebra S.
Then there exists an onto homomorphism from X into K.
Proof. By Theorem 3.15, Ω is a onto homomorphism from X into M. By
Theorem 4.9, we have g is an onto homomorphism from M into K. Hence
g ◦ Ω is the required onto homomorphism from X into K. □
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FIXED POINTS AND CUT-HOMOMORPHISMS GENERATED
BY ACTIONS OF A BE-ALGEBRA ON ITS SUBALGEBRA

M. SAMBASIVA RAO

آن زیرجبر روی BE-جبر یک اعمال توسط شده تولید برش-همومورفیسم های و ثابت نقاط

سامباسیوارائو موکامالا

هند آندراپرادش، ویزیاناگارام، ،MVGR مهندسی کالج ریاضی، گروه

آمده بدست اعمال، این از خاصی ویژگی های و شده معرفی آن زیرجبر روی BE-جبر یک اعمال مفهوم
برش-همومورفیسم ها همه ی کلاس که می شود ثابت و شده معرفی برش-همومورفیسم ها مفهوم است.
و می شود بررسی برش-همو مورفیسم ها ثابت نقاط ویژگی های می دهد. تشکیل را مرتب BE-جبر یک
می شود. ارائه هستند، برابر نگاشت عنوان به برش-همو مورفیسم دو هر برای معادل شرایط از مجموعه ای

ثابت. نقطه برش-همومورفیسم، BE-جبر، یک عمل زیرجبر، کلیدی: کلمات
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