1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26(7) (1998), 2265–2272.
2. E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18 (1974), 470–473.
3. V. Camillo, T. K. Kwak and Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra, 41 (2013), 4504–4519.
4. W. Chen and S. Cui, On weakly semicommutative rings, Comm. Math. Res., 27(2) (2011), 179–192.
5. J. Chen, X. Yang and Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra, 34 (2006), 3659–3674.
6. P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(6) (1999), 641–648.
7. M. Habibi and A. Moussavi, Annihilator properties of skew monoid rings, Comm. Algebra, 42(2) (2014), 842–852.
8. M. Habibi, A. Moussavi and S. Mokhtari, On skew Armendariz of Laurent series type rings, Comm. Algebra, 40(11) (2012), 3999–4018.
9. M. Habibi, K. Paykan and H. Arianpoor, On generalized qausi Baer skew monoid rings, J. Algebra Appl., (2024), Article ID: 2450112.
10. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207–224.
11. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477–488.
12. J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289–300.
13. T. K. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra, 40 (2012), 1576– 1594.
14. Z. K. Liu and R. Y. Zhao, A generalization of PP-rings and p.q.-Baer rings, Glasg. Math. J., 48(2) (2006), 217–229.
15. G. Marks, On 2-primal Öre extensions, Comm. Algebra, 29(5) (2001), 2113–2123.
16. G. Mason, Reflexive ideals, Comm. Algebra, 9 (1981), 1709–1724.
17. A. R. Nasr-Isfahani and A. Moussavi, On weakly rigid rings, Glasg. Math. J., 51(3) (2009), 425–440.
18. K. Paykan and M. Habibi, Further results on skew monoid rings of a certain free monoid, Cogent Math. Stat., 5 (2018).
19. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73(3) (1997), 14–17.
20. G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric rings, Trans. Amer. Math. Soc., 184 (1973), 43–60.