FAULT-TOLERANT METRIC DIMENSION OF ANNIHILATOR GRAPHS OF COMMUTATIVE RINGS

Document Type : Original Manuscript

Authors

Department of Mathematics, University College, University of Kerala, Thiruvananthapuram, India.

Abstract

Let R be a commutative ring with identity. The annihilator graph AG (R) is a simple graph with vertex set as the set of all non-zero zero-divisors of R, and two distinct vertices a and b are adjacent if and only if annR (a) ∪ annR (b) ̸= annR (a · b). We depicted the relationship between the fault-tolerant metric dimension of AG (R) and some graph parameters. Furthermore, we computed the fault-tolerant metric dimension of the annihilator graph of reduced and non-reduced rings.

Keywords


1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
2. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Reading, MA, 1969.
3. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42(1) (2014), 108–121.
4. I. Beck, Coloring of Commutative Rings, J. Algebra, 116(1) (1988), 208–226.
5. M. A. Chaudhry, I. Javaid and M. Salman, Fault-tolerant metric and partition dimension of graphs, Util. Math., 83 (2010), 187–199.
6. SH. Ebrahimi, R. Nikandish, A. Tehranian and H. Rasouli, Metric dimension of complement of annihilator graphs associated with commutative rings, Appl. Algebra Engrg. Comm. Comput., (2021).
7. Sh. Ebrahimi, R. Nikandish, A. Tehranian and H. Rasouli, On the strong metric dimension of annihilator graphs of commutative rings, Bull. Malays. Math. Sci. Soc., 44 (2021), 2507–2517.
8. F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2(1) (1976), 191–195.
9. C. Hernando, M. Mora, P. J. Slater and D. R. Wood, Fault-tolerant metric dimension of graphs, Convexity in discrete structures, 5 (2008), 81–85.
10. I. Javaid, M. Salman, M. A. Chaudhry and S. Shokat, Fault-tolerance in resolvability, Util. Math., 80 (2009), 263–275.
11. I. Kaplansky, Commutative rings, University of Chicago Press, Chicago, 1974.
12. R. Nikandish, M. J. Nikmehr and M. Bakhtyiari, Coloring of the annihilator graph of a commutative ring, J. Algebra Appl., 15(7) (2016), Article ID: 1650124 .
13. R. Nikandish, M. J. Nikmehr and M. Bakhtyiari, Strong resolving graph of a zero-divisor graph, Revista de la Real Academia de Ciencias Exacotas, Fisicas y Naturales. Serie A. Matematicas, 116(3) (2022), 116.
14. M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, More on the annihilator graph of a commutative ring, Hokkaido Math. J., 46(1) (2017), 107–118.
15. S. Pirzada and R. Raja, On the metric dimension of a zero-divisor graph, Comm. Algebra, 45(4) (2017), 1399–1408.
16. S. Pirzada, R. Raja and S. Redmond, Locating sets and numbers of graphs associated to commutative rings, J. Algebra Appl., 13(7) (2014), Article ID: 1450047.
17. R. Raja, S. Pirzada and S. Redmond, On locating numbers and codes of zero divisor graphs associated with commutative rings, J. Algebra Appl., 15(1) (2016), Article ID: 1650014.
18. V. Soleymanivarniab, A. Tehranian and R. Nikandish, The metric dimension of annihilator graphs of commutative rings, J. Algebra Appl. 19(5) (2020), Article ID: 2050089.
19. D. B. West et al., Introduction to graph theory, vol. 2, Prentice hall Upper Saddle River, 2001.