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HEMI-COMPLEMENTED LATTICES

A. P. P. KUMAR AND M. SAMBASIVA RAO∗

Abstract. The notion of hemi-complemented lattices is introduced and some of the
properties of these algebras are studied. Some characterization theorems of hemi-
complemented lattices are derived with the help of minimal prime D-filters, ideals,
and congruences. The notion of D-Stone lattices is introduced and then derived a set
of equivalent conditions for a hemi-complemented lattice to become a D-Stone lattice.
Hemi-complemented lattices and D-Stone lattices are characterized in topological
terms.

Introduction
In 1970, the theory of relative annihilators was introduced in lattices by

Mark Mandelker [9] and he characterized distributive lattices in terms of
their relative annihilators. Later, many authors introduced the concept of
annihilators in the structures of rings as well as lattices and characterized
several algebraic structures in terms of annihilators. T.P. Speed [13] and
W.H. Cornish [3] made an extensive study of annihilators in distributive
lattices. In [4], Cornish introduced and characterized the special class of
distributive lattices, known as normal lattices, with the help of annihilator
ideals and minimal prime ideals. In [5], some properties of dense elements
of distributive lattice were studied in order to characterize another class of
distributive lattices called quasi-complemented lattices.

In the year 2015, M. Sambasiva Rao [10] introduced the class of disjunctive
ideals in terms of annihilator ideals of distributive lattices. He characterized
the class of normal lattices with the help of disjunctive ideals and annihilator
ideals. In 2016, Rao and Badawy [12] introduced the notion of co-annihilator
filters of distributive lattices. In this paper, the authors introduced the con-
cept of µ-filters of distributive lattices and studied some topological proper-
ties of the space of all prime µ-filters. In the year 2013, M. Sambasiva Rao
[11] studied the properties of dense elements and D-filters of MS-algebras.
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Recently in 2020, M.S. Rao et.all studied the properties of D-filters of dis-
tributive lattices. The authors derived a set of equivalent conditions, in terms
of D-filters, for a quasi-complemented lattice to become a Boolean algebra.
Later, they investigated the properties of prime D-filters[8] of distributive
lattices and derived some topological properties of the space of all prime D-
filters of distributive lattices.

In this paper, the notion of condensed elements is introduced in distributive
lattices and investigated certain properties of these condensed elements. The
notion of hemi-complemented lattices is introduced, and a set of equivalent
conditions is derived for a hemi-complemented lattice to become a quasi-
complemented lattice. A necessary and sufficient condition is derived for
a hemi-complemented lattice to become a Boolean algebra. A character-
ization theorem of hemi-complemented lattices is proved with the help of
D-filters and minimal prime D-filters of distributive lattices. This class of
hemi-complemented lattices is also characterized with the help of ideals and
congruences.

The notion of D-Stone lattices is introduced and its properties are in-
vestigated in lattices. It is observed that every D-Stone lattice is hemi-
complemented but not the converse. A set of equivalent conditions is estab-
lished for every hemi-complemented lattice to become a D-Stone lattice. A
necessary and sufficient condition is derived for the space of all minimal prime
D-filters to become a compact space. Some topological characterizations of
hemi-complemented lattices and D-Stone lattices are given in terms of the
space of all minimal prime D-filters and the prime spectrum of D-filters of
distributive lattices.

1. Preliminaries
The reader is referred to [1] and [2] for the elementary notions and notations

of distributive lattices. However some of the preliminary definitions and
results of [4], [3], [5], [11], [7], [8] and [13] are presented for the ready reference
of the reader.

Definition 1.1. [1] An algebra (L,∧,∨) of type (2, 2) is called a distributive
lattice if for all x, y, z ∈ L, it satisfies the following properties (1), (2), (3), (4)
along with (5) or (5′),
(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
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(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
Throughout this article, all lattices are bounded distributive lattices unless

otherwise mentioned. A non-empty subset A of L is called an ideal(filter) of
L if a ∨ b ∈ A(a ∧ b ∈ A) and a ∧ x ∈ A(a ∨ x ∈ A) whenever a, b ∈ A and
x ∈ L. The set I(L) of all ideals of (L,∨,∧, 0) forms a complete distributive
lattice as well as the set F(L) of all filters of (L,∨,∧, 1) forms a complete
distributive lattice. A proper ideal (filter) M of a lattice is called maximal if
there exists no proper ideal(filter) N such that M ⊂ N .
Definition 1.2. [2] Let (L,∧,∨) be a lattice. A partial ordering relation ≤
is defined on L by x ≤ y if and only if x ∧ y = x and x ∨ y = y. In this case,
the pair (L,≤) is called a partially ordered set.

The set (a] = {x ∈ L | x ≤ a} is called principal ideal generated by a
and the set of all principal ideals is a sublattice of I(L). Dually, the set
[a) = {x ∈ L | a ≤ x} is called principal filter generated by a and the set of
all principal filters is a sublattice of F(L). A proper ideal (proper filter) P of
a lattice L is called prime if for all a, b ∈ L, a∧ b ∈ P (a∨ b ∈ P ) then a ∈ P
or b ∈ P . Every maximal ideal (maximal filter) is prime. A prime ideal P of
L is called minimal [6] if there exists no prime ideal Q of L such that Q ⊂ P .
Theorem 1.3. [1] Let F be a filter and I an ideal of a distributive lattice L
such that F ∩ I = ∅, then there exists a prime filter P of L such that F ⊆ P
and P ∩ I = ∅.

For any element a of a distributive lattice (L,∨,∧, 0), the annihilator of a
is defined as (a)∗ = {x ∈ L | x ∧ a = 0}. Properties of these annihilators are
extensively studied by Cornish [3, 4], and T. P. Speed [13]. Normal lattices
are characterized in terms of annihilators in [4].
Lemma 1.4. [13] For any two elements a, b of a distributive lattice L with
0, we have
(1) a ≤ b implies (b)∗ ⊆ (a)∗,
(2) (a ∨ b)∗ = (a)∗ ∩ (b)∗,
(3) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗,
(4) (a)∗ = L if and only if a = 0.
An element a of a lattice L is called dense if (a)∗ = {0}. The set D of

all dense elements of a lattice L forms a filter of L. A lattice L with 0 is
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called quasi-complemented [5] if for each x ∈ L, there exists y ∈ L such that
x∧y = 0 and x∨y ∈ D. A lattice L is called dense if every non-zero element
of L is dense.

Definition 1.5. [7] A filter F of a lattice L is called a D-filter if D ⊆ F .

Clearly D is the smallest D-filter of the distributive lattice. For any a ∈ L,
the set ⟨a⟩D = [a) ∨ D is the smallest D-filter containing a which is called
the principal D-filter [7]. For any ∅ ̸= A ⊆ L, define

A◦ = {x ∈ L | a ∨ x ∈ D for all a ∈ A}.
Then A◦ is a filter of L. Clearly L◦ = D, D◦ = L and D ⊆ A◦ for any subset
A of L. For any a ∈ L, we simply denote ({a})◦ by (a)◦.

Lemma 1.6. [8] For any two subsets A,B of a lattice L, we have:
(1) A ⊆ B implies B◦ ⊆ A◦,
(2) A ⊆ A◦◦,
(3) A◦◦◦ = A◦,
(4) A◦ = L if and only if A ⊆ D.

In case of filters, we have the following result.

Proposition 1.7. [8] For any filters F,G and H of a distributive lattice L,
we have:
(1) F ◦ ∩ F ◦◦ = D,
(2) F ∩G ⊆ D implies F ⊆ G◦,
(3) (F ∨G)◦ = F ◦ ∩G◦,
(4) (F ∩G)◦◦ = F ◦◦ ∩G◦◦.

For any element x of a distributive lattice, it is clear that ([x))◦ = (x)◦. Then
clearly (0)◦ = D. The following corollary is a direct consequence of the above
results.

Corollary 1.8. [8] Let L be a distributive lattice and a, b, c ∈ L. Then
(1) a ≤ b implies (a)◦ ⊆ (b)◦,
(2) (a ∧ b)◦ = (a)◦ ∩ (b)◦,
(3) (a ∨ b)◦◦ = (a)◦◦ ∩ (b)◦◦,
(4) (a)◦ = L if and only if a ∈ D,
(5) (a)◦ = (b)◦ implies (a ∧ c)◦ = (b ∧ c)◦,
(6) (a)◦ = (b)◦ implies (a ∨ c)◦ = (b ∨ c)◦.
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A D-filter P of a distributive lattice L is called prime [8] if a ∨ b ∈ P then
either a ∈ P or b ∈ P for all a, b ∈ L. The intersection of all prime D-filters
of a lattice is equal to D. Let I be an ideal and F a D-filter of L such
that I ∩ F = ∅, then there exists a prime D-filter P such that F ⊆ P and
P ∩ I = ∅. A prime D-filter is minimal prime D-filter if and only if for each
x ∈ P , there exists y /∈ P such that x ∨ y ∈ D.

A collection τ of subsets of a set X is called a topology on X if (1) both
the empty set and X are elements of τ ; (2) any union of elements of τ is an
element of τ ; (3) any intersection of finitely many elements of τ is an element
of τ . If τ is a topology on X, then the pair (X, τ ) is called a topological
space. The members of τ are called open sets in X. A base or a basis for
the topology τ of a topological space (X, τ ) is a family B of open subsets
of X such that every open set of the topology is equal to the union of some
sub-family of B. The closure of a subset S of points in a topological space
consists of all points in S together with all limit points of S. The closure
of S may equivalently be defined as the union of S and its boundary, and
also as the intersection of all closed sets containing S. A topological space
(X, τ ) is said to be compact if every open cover of X has a finite subcover.
A topological space X is called a Hausdorff space if for each x, y ∈ X with
x ̸= y there are disjoint open subsets A,B such that x ∈ A and y ∈ B.

2. Hemi-complemented lattices
In this section, the notion of hemi-complemented lattices is introduced

and these special classes of lattices are then characterized in terms of ideals,
D-filters, congruences, and minimal prime D-filters. A set of equivalent
conditions is derived for a hemi-complemented lattice to become a quasi-
complemented lattice.

Definition 2.1. An elements x of a lattice L is called condensed if (x)◦ = D.

Clearly 0 is a condensed element in the lattice L. Let us denote the set of
all condensed elements of L by D∞.

Proposition 2.2. The following properties hold in a lattice L;
(1) D ∩D∞ = ∅,
(2) D∞ is an ideal of L.

Proof. (1) Let x ∈ D∩D∞. Then, we get x ∈ D and (x)◦ = D. Since x ∈ D,
we get that L = (x)◦ = D. Hence 0 ∈ D, which is a contradiction. Therefore
D ∩D∞ = ∅.
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(2) Clearly 0 ∈ D∞. Let x, y ∈ D∞. Then (x)◦◦ = (y)◦◦ = D◦ = L. Hence
(x ∨ y)◦◦ = (x)◦◦ ∩ (y)◦◦ = L. Thus (x ∨ y)◦ = L◦ = D. Hence x ∨ y ∈ D∞.
Again, let x ∈ D∞ and y ≤ x. Then (y)◦ ⊆ (x)◦ = D. Since D ⊆ (y)◦, we
get that (y)◦ = D. Hence y ∈ D∞. Therefore D∞ is an ideal of L. □
Proposition 2.3. Every dense lattice contains a unique condensed element,
precisely 0.
Proof. Let L be dense lattice. Then every non-zero element of L is a dense
element. Let x be a condensed element of L. Then (x)◦ = D. Suppose x ̸= 0.
Since L is dense, we get x ∈ D. By Corollary 1.8(4), we get (x)◦ = L which
is a contradiction. Hence x = 0 is the unique condensed element of L, which
is equilently to say that D∞ = {0}. □

The converse of Proposition 2.3 is not true. That is a lattice containing
unique condensed element 0 need not be a dense lattice. It can be seen the
following example:
Example 2.4. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given by:

�
��

@
@@

@
@@

�
��

c
c c

c
c

0

a b

c
1

For the elements a and b of the lattice, it can be easily observed that
(a)◦ = {b, c, 1} and (b)◦ = {a, c, 1}. It is easy to see that D = {c, 1},
therefore, D = {c, 1} = (a)◦ ∩ (b)◦ = (a ∧ b)◦ = {0}◦. Hence 0 is the only
condensed element in L, but the lattice is not dense since a, b are not dense
elements.
Proposition 2.5. Define a binary relation θ on a lattice L as follows:

(a, b) ∈ θ if and only if (a)◦ = (b)◦

for all a, b ∈ L. Then θ is a congruence on L where D∞ is the smallest
congruence class with respect to θ and the unit congruence class is D.
Proof. Clearly θ is an equivalence relation on L. From (5) and (6) of Corollary
1.8, θ is a congruence on L. Let x, y ∈ D∞. Clearly (x, y) ∈ θ. Hence D∞

is a congruence class modulo θ. Let a ∈ D∞. Since D∞ is an ideal, we get
that a ∧ x ∈ D∞ for all x ∈ L. Hence [a]θ ∩ [y]θ = [a ∧ y]θ = [a]θ because of
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a, x ∧ a ∈ D∞. Therefore [a]θ = D∞ is the smallest congruence class modulo
θ. Since D is a filter, dually we get that D is the unit congruence class
modulo θ. □

Definition 2.6. A lattice L is called a hemi-complemented lattice if to each
x ∈ L, there exists y ∈ L such that x ∧ y ∈ D∞ and x ∨ y ∈ D.

Every pseudo-complemented lattice is a hemi-complemented lattice. For,
consider a pseudo-complemented lattice L. Then, for each x ∈ L, there
exists x∗ ∈ L such that x ∧ x∗ = 0 ∈ D∞. It is obvious that x ∨ x∗ ∈ D.
Hence L is a hemi-complemented lattice. Similarly, we can see that every
quasi-complemented lattice is hemi-complemented. However, in the following
theorem, we establish a set of equivalent conditions for a hemi-complemented
lattice to become a quasi-complemented lattice.

Theorem 2.7. Let L be a hemi-complemented lattice. Then the following
assertions are equivalent:
(1) L is quasi-complemented;
(2) for any x, y ∈ L−D, (x)◦ = (y)◦ implies x = y;
(3) L has a unique condensed element.

Proof. (1) ⇒ (2): Assume that L is quasi-complemented. Let x, y ∈ L − D
be such that (x)◦ = (y)◦. Suppose x ̸= y. Clearly, either (x] ∩ ⟨y⟩D = ∅ or
(y]∩ ⟨x⟩D = ∅. Then there exists a prime D-filter P such that ⟨x⟩D ⊆ P and
(y]∩P = ∅. Hence x ∈ ⟨x⟩D ⊆ P and y /∈ P . Since L is quasi-complemented,
there exists x′ ∈ L such that x∧x′ = 0 and x∨x′ ∈ D. Hence x′ ∈ (x)◦ = (y)◦.
Hence x′ ∨ y ∈ D ⊆ P . Since y /∈ P and P is prime, we must have x′ ∈ P ,
i.e., 0 = x ∧ x′ ∈ P , which is a contradiction. Therefore x = y.
(2) ⇒ (3): Assume condition (2). Suppose L has two distinct condensed

elements, say x and y. Then (x)◦ = D = (y)◦. By condition (2), we get
x = y. Hence L possesses a unique condensed element.
(3) ⇒ (1): Assume that L has a unique condensed element, precisely 0.

Let x ∈ L. Since L is hemi-complemented, there exists x′ ∈ L such that
x ∧ x′ ∈ D∞ and x ∨ x′ ∈ D. Since D∞ = {0}, we get x ∧ x′ = 0. Therefore
L is quasi-complemented. □

Corollary 2.8. A hemi-complemented lattice L is a Boolean algebra if and
only if it contains a unique condensed element as well as a unique dense
element.
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In the presence of Corollary 1.8, it can be easily verified that the class
D◦(L) of all filters of the form (x)◦, x ∈ L forms a distributive lattice with
respect to the operations

(x)◦ ∩ (y)◦ = (x ∧ y)◦ and (x)◦ ⊔ (y)◦ = (x ∨ y)◦

for all x, y ∈ L. In the following theorem, a set of equivalent conditions is
derived for the lattice (D◦(L),⊔,∩) to become a Boolean algebra which leads
to a characterization of hemi-complemented lattices.

Theorem 2.9. The following assertions are equivalent in a lattice L:
(1) L is hemi-complemented;
(2) (D◦(L),⊔,∩) is a Boolean algebra;
(3) L/θ is a Boolean algebra;
(4) for each x ∈ L, there exists y ∈ L such that (x)◦◦ = (y)◦;
(5) For any D-filter F of L with F ∩D∞ = ∅, there exists a minimal prime

D-filter P of L such that F ⊆ P .

Proof. (1) ⇒ (2): Assume that L is hemi-complemented. Let (x)◦ ∈ D◦(L).
Then there exists y ∈ L such that x ∧ y ∈ D∞ and x ∨ y ∈ D. Hence
(x)◦ ∩ (y)◦ = (x ∧ y)◦ = D and (x)◦ ⊔ (y)◦ = (x ∨ y)◦ = L. Therefore
(D◦(L),⊔,∩) is a Boolean algebra.
(2) ⇒ (3): Assume that (D◦(L),⊔,∩) is a Boolean algebra. Let [x]θ ∈ L/θ.

Since D◦(L) is a Boolean algebra, there exists y ∈ L such that
(x∧ y)◦ = (x)◦ ∩ (y)◦ = D and (x∨ y)◦ = (x)◦ ⊔ (y)◦ = L. Hence x∧ y ∈ D∞

and x∨y ∈ D. Thus [x]θ∩ [y]θ = [x∧y]θ = D∞ and [x]θ∨ [y]θ = [x∨y]θ = D.
Therefore L/θ is a Boolean algebra.
(3) ⇒ (4): Assume that L/θ is a Boolean algebra. Let x ∈ L. Then there

exists [y]θ ∈ L/θ such that [x ∧ y]θ = [x]θ ∩ [y]θ = D∞ and
[x ∨ y]θ = [x]θ ∨ [y]θ = D.

Hence x ∧ y ∈ D∞ and x ∨ y ∈ D. Now
x ∧ y ∈ D∞ ⇒ (x ∧ y)◦ = D

⇒ (x)◦ ∩ (y)◦ = D (by Proposition 1.7(2))

⇒ (y)◦ ⊆ (x)◦◦

x ∨ y ∈ D ⇒ x ∈ (y)◦

⇒ [x) ⊆ (y)◦ (since (y)◦ is a filter)
⇒ (x)◦◦ ⊆ (y)◦
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Hence, to each x ∈ L, there exists y ∈ L such that (x)◦◦ = (y)◦.
(4) ⇒ (5): Assume condition (4). Let F be a D-filter of L such that

F ∩ D∞ = ∅. Then there exists a prime filter P such that F ⊆ P and
P ∩D∞ = ∅. Clearly P is a D-filter. We now show that P is minimal. Let
x ∈ P . By the condition (4), there exists y ∈ L such that (x)◦◦ = (y)◦.
Hence x ∈ (x)◦◦ = (y)◦, which implies that x ∨ y ∈ D. Again, we get
(x ∧ y)◦ = (x)◦ ∩ (y)◦ = (x)◦ ∩ (x)◦◦ = D. Hence x ∧ y ∈ D∞. Since
P ∩D∞ = ∅, we get x ∧ y /∈ P . Suppose y ∈ P . Then x ∧ y ∈ P , which is a
contradiction. Therefore P is the minimal prime D-filter.
(5) ⇒ (1): Assume condition (5). Let x ∈ L. Then clearly (x)◦ ∨ (x)◦◦

is a D-filter in L. Suppose there exists a minimal prime D-filter P such
that (x)◦ ∨ (x)◦◦ ⊆ P . Then x ∈ (x)◦◦ ⊆ P . Since (x)◦ ⊆ P and P is
minimal, we get x /∈ P , which is a contradiction. Hence (x)◦ ∨ (x)◦◦ is not
contained in any minimal prime D-filter. Thus by hypothesis (5), we get
{(x)◦ ∨ (x)◦◦} ∩ D∞ ̸= ∅. Choose c ∈ {(x)◦ ∨ (x)◦◦} ∩ D∞. Then (c)◦ = D
and c = a ∧ b for some a ∈ (x)◦ and b ∈ (x)◦◦. Since a ∈ (x)◦, it is clear that
a ∨ x ∈ D. Since b ∈ (x)◦◦, we get (x)◦ ⊆ (b)◦. Now we get the following
consequence:

c = a ∧ b ⇒ (a ∧ b)◦ = (c)◦ = D

⇒ (a)◦ ∩ (b)◦ = D

⇒ (a)◦ ∩ (x)◦ = D (since (x)◦ ⊆ (b)◦)

⇒ (a ∧ x)◦ = D

⇒ a ∧ x ∈ D∞

Therefore L is hemi-complemented. Hence the proof is completed. □
In the following, another characterization is given for the congruence θ in

hemicomplemented lattice. For this, we observe another congruence defined
in terms of D∞.
Definition 2.10. Let L be a lattice. For any a ∈ L, defined

⟨a,D∞⟩ = {x ∈ L | x ∧ a ∈ D∞}.
Lemma 2.11. Let L be a lattice. For any a, b ∈ L, the following properties
hold:
(1) ⟨a,D∞⟩ is an ideal in L,
(2) D∞ ⊆ ⟨a,D∞⟩,
(3) a ≤ b implies ⟨b,D∞⟩ ⊆ ⟨a,D∞⟩,
(4) ⟨a ∨ b,D∞⟩ = ⟨a,D∞⟩ ∩ ⟨b,D∞⟩,



10 KUMAR AND SAMBASIVA RAO

(5) a ∈ D∞ if and only if ⟨a,D∞⟩ = L.

Proof. (1) Clearly 0 ∈ ⟨a,D∞⟩. Let x, y ∈ ⟨a,D∞⟩. Then a ∧ x ∈ D∞ and
a ∧ y ∈ D∞. Hence

(a ∧ (x ∨ y))◦◦ = ((a ∧ x) ∨ (a ∧ y))◦◦ = (a ∧ x)◦◦ ∩ (a ∧ y)◦◦ = L ∩ L = L.

Hence (a ∧ (x ∨ y))◦ = L◦ = D, which implies a ∧ (x ∨ y) ∈ D∞.
Thus x ∨ y ∈ ⟨a,D∞⟩. Again, let x ∈ ⟨a,D∞⟩ and y ≤ x. Then
y ∧ a ≤ x ∧ a ∈ D∞. Hence y ∈ ⟨a,D∞⟩, which yields that ⟨a,D∞⟩ is
an ideal in L.
(2) and (3) are trivial.
(4) Clearly ⟨a ∨ b,D∞⟩ ⊆ ⟨a,D∞⟩ ∩ ⟨b,D∞⟩. Conversely, let

x ∈ ⟨a,D∞⟩ ∩ ⟨b,D∞⟩.

Then, we get a ∧ x ∈ D∞ and b ∧ x ∈ D∞. Since D∞ is an ideal, we get
(a ∨ b) ∧ x = (a ∧ x) ∨ (b ∧ x) ∈ D∞. Therefore x ∈ ⟨a ∨ b,D∞⟩.
(5) Assume that a ∈ D∞. Since D∞ is an ideal, we get a ∧ x ∈ D∞ for all

x ∈ L. Hence ⟨a,D∞⟩ = L. Conversely, assume that ⟨a,D∞⟩ = L. Then, we
get 1 ∈ ⟨a,D∞⟩. Hence a = 1 ∧ a ∈ D∞. □

Proposition 2.12. Let L be a lattice. Define a relation ΨD∞ on L as
(a, b) ∈ ΨD∞ if and only if ⟨a,D∞⟩ = ⟨b,D∞⟩

for all a, b ∈ L. Then ΨD∞ is a congruence on L.

Proof. Clearly ΨD∞ is an equivalence relation on L. Let (x, y) ∈ ΨD∞. For
any c ∈ L, we get

⟨x ∨ c,D∞⟩ = ⟨x,D∞⟩ ∩ ⟨c,D∞⟩ = ⟨y,D∞⟩ ∩ ⟨c,D∞⟩ = ⟨y ∨ c,D∞⟩.

Hence (x ∨ c, y ∨ c) ∈ ΨD∞. Again, for any t ∈ L, we get

t ∈ ⟨x ∧ c,D∞⟩ ⇔ t ∧ x ∧ c ∈ D∞

⇔ t ∧ c ∈ ⟨x,D∞⟩ = ⟨y,D∞⟩
⇔ t ∧ c ∧ y ∈ D∞

⇔ t ∈ ⟨y ∧ c,D∞⟩.

Thus ⟨x ∧ c,D∞⟩ = ⟨y ∧ c,D∞⟩. Hence (x ∧ c, y ∧ c) ∈ ΨD∞. Thus ΨD∞ is a
congruence. □

Theorem 2.13. In a hemi-complemented lattice L, θ = ΨD∞.
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Proof. Let (x, y) ∈ θ. Then (x)◦ = (y)◦. For any t ∈ L, we get
t ∈ ⟨x,D∞⟩ ⇔ x ∧ t ∈ D∞

⇔ (x)◦ ∩ (t)◦ = (x ∧ t)◦ = D

⇔ (y ∧ t)◦ = (y)◦ ∩ (t)◦ = D

⇔ y ∧ t ∈ D∞

⇔ t ∈ ⟨y,D∞⟩
Hence ⟨x,D∞⟩ = ⟨y,D∞⟩. Thus (x, y) ∈ ΨD∞. Therefore θ ⊆ ΨD∞.

Conversely, let (x, y) ∈ ΨD∞ for x, y ∈ L. Then ⟨x,D∞⟩ = ⟨y,D∞⟩. Since
L is hemi-complemented, there exists x′ ∈ L such that x ∧ x′ ∈ D∞ and
x ∨ x′ ∈ D. Hence x′ ∈ ⟨x,D∞⟩ = ⟨y,D∞⟩. Hence x′ ∧ y ∈ D∞. Hence
(x′)◦ ∩ (y)◦ = (x′ ∧ y)◦ = D. Let t ∈ (y)◦. Since (y)◦ is a filter, we get
t ∨ x ∈ (y)◦. Since x ∨ x′ ∈ D, we get x ∈ (x′)◦. Hence t ∨ x ∈ (x′)◦. Thus
t ∨ x ∈ (x′)◦ ∩ (y)◦ = D. Hence t ∈ (x)◦. Therefore (y)◦ ⊆ (x)◦. By a
similar argument, we can obtain (x)◦ ⊆ (y)◦. Hence (x, y) ∈ θ. Therefore
ψD∞ ⊆ θ. □
Lemma 2.14. For any ideal J of a lattice L, the set

D(J) = {x ∈ L | x ∨ a ∈ D for some a ∈ J}
is a filter of L.
Proof. Clearly D ⊆ D(J). Let x, y ∈ D(J). Then x ∨ a ∈ D and y ∨ b ∈ D
for some a, b ∈ J . Hence (x∧ y)∨ (a∨ b) = (x∨a∨ b)∧ (y∨a∨ b) ∈ D. Since
J is an ideal, we get that x ∧ y ∈ D(J). Again, let x ∈ D(J) and x ≤ y.
Then x ∨ a ∈ D for some a ∈ J . Hence we get y ∨ a ∈ D, which shows that
y ∈ D(J). Therefore D(J) is a filter of L. □
Theorem 2.15. The following assertions are equivalent in a lattice L:
(1) L is hemi-complemented;
(2) For each filter F , there exists an ideal J such that F ◦◦ = D(J);
(3) For each filter F , F ◦◦ = D(J(F ◦◦)) where J(F ◦◦) is the ideal as

J(F ◦◦) = {x ∈ L | (a)◦ ⊆ (x)◦◦ for some a ∈ F ◦◦ }.
Proof. (1) ⇒ (3): Assume that L is hemi-complemented. Consider the set
J(F ◦◦) = {x ∈ L | (a)◦ ⊆ (x)◦◦ for some a ∈ F ◦◦}. Clearly 0 ∈ J(F ◦◦). Let
x, y ∈ J(F ◦◦). Then (a)◦ ⊆ (x)◦◦ and (b)◦ ⊆ (y)◦◦ for some a, b ∈ F ◦◦. Now
(a ∧ b)◦ = (a)◦ ∩ (b)◦ ⊆ (x)◦◦ ∩ (y)◦◦ = (x ∨ y)◦◦ and a ∧ b ∈ F ◦◦. Hence
x ∨ y ∈ J(F ◦◦). Again let x ∈ J(F ◦◦) and r ∈ L. Then (a)◦ ⊆ (x)◦◦ for some
a ∈ F ◦◦. Now (a)◦ ⊆ (x)◦◦ ⊆ (x ∧ r)◦◦. Thus x ∧ r ∈ J(F ◦◦). Therefore
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J(F ◦◦) is an ideal of L. We now prove that F ◦◦ = D(J(F ◦◦)). Let x ∈ F ◦◦.
Since L is hemi-complemented, by Theorem 2.9, there exists y ∈ L such that
(x)◦◦ = (y)◦. Since x ∈ F ◦◦, we get that y ∈ J(F ◦◦). Now x ∈ (x)◦◦ = (y)◦

implies that x ∨ y ∈ D for some y ∈ J(F ◦◦). Therefore F ◦◦ ⊆ D(J(F ◦◦)).
Conversely, let x ∈ D(J(F ◦◦)). Then x ∨ f ∈ D for some f ∈ J(F ◦◦). Hence
x ∈ (f)◦ for some f ∈ J(F ◦◦). Now, we get

f ∈ J(F ◦◦) ⇒ (a)◦ ⊆ (f)◦◦ for some a ∈ F ◦◦

⇒ (f)◦ ⊆ (a)◦◦ for some a ∈ F ◦◦

⇒ x ∈ (a)◦◦ ⊆ F ◦◦

Hence D(J(F ◦◦)) ⊆ F ◦◦. Therefore F ◦◦ = D(J(F ◦◦)).
(3) ⇒ (2): It is obvious.
(2) ⇒ (1): Assume condition (2). Let x ∈ L. Hence by condition (2), there

exists an ideal J such that (x)◦◦ = D(J). Therefore,

x ∈ D(J) ⇒ x ∨ i ∈ D for some i ∈ J

⇒ [x) ⊆ (i)◦

⇒ (x)◦◦ ⊆ (i)◦◦◦ = (i)◦

Again let a ∈ (i)◦. Then a∨ i ∈ D and i ∈ J . Thus a ∈ D(J) = (x)◦◦. Hence
(i)◦ ⊆ (x)◦◦. Thus (x)◦◦ = (i)◦. Therefore L is hemi-complemented. □

3. D-Stone lattices
In this section, the notion of D-Stone lattices is introduced. A set of equiv-

alent conditions is derived for a hemi-complemented lattice to become a D-
Stone lattice. It is proved that every hemi-complemented lattice is D-Stone
if and only if D◦(L) is a Boolean algebra.

Lemma 3.1. Let L be a lattice. For any a, b ∈ L, the following assertions
are equivalent:
(1) a ∨ b ∈ D;
(2) (a)◦◦ ∩ [b) ⊆ D;
(3) (a)◦◦ ∩ (b)◦◦ ⊆ D.

Proof. (1) ⇒ (2): Assume condition (1). Let a, b ∈ L. Suppose a ∨ b ∈ D.
Then b ∈ (a)◦, which gives [b) ⊆ (a)◦. Hence (a)◦◦ ∩ [b) ⊆ (a)◦◦ ∩ (a)◦ = D.
(2) ⇒ (3): Assume that (a)◦◦ ∩ [b) ⊆ D for any a, b ∈ L. By Proposition

1.7(2), we get (a)◦◦ ⊆ (b)◦. Therefore (a)◦◦ ∩ (b)◦◦ ⊆ (b)◦ ∩ (b)◦◦ ⊆ D.
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(3) ⇒ (1): Assume that (a)◦◦ ∩ (b)◦◦ ⊆ D for any a, b ∈ L. By Proposition
1.7(2), we get (a)◦◦ ⊆ (b)◦◦◦ = (b)◦. Hence a ∈ (a)◦◦ ∩ (b)◦, which means
a ∨ b ∈ D. □
Proposition 3.2. The intersection of all minimal prime D-filters is D.

Proof. Clearly D ⊆
∩
{P | P is a minimal prime D-filter}. Let x /∈ D. Then

there exists an ideal I such that x ∈ I and I is maximal with respect to
the property of not meeting D. Clearly L − I is a minimal prime D-filter
and x /∈ L − I. Hence x /∈ ∩{P | P is a minimal prime D-filter }. Thus∩
{P | P is a minimal prime D-filter } ⊆ D. Therefore

D =
∩
{P | P is a minimal prime D-filter }.

□
Corollary 3.3. Let L be a lattice Then for any x ∈ L, we have

(x)◦ =
∩
{P | P is a minimal prime D-filter such that x /∈ P}

Proof. Let a ∈ (x)◦ and P a minimal prime D-filter such that x /∈ P . Then
x ∨ a ∈ D ⊆ P . Since x /∈ P , we get a ∈ P for all minimal prime D-filters
with x /∈ P . Hence

(x)◦ ⊆ ∩{P | P is a minimal prime D-filter, x /∈ P}. (3.1)
Conversely, suppose that t /∈ (x)◦. Then t ∨ x /∈ D. By Proposition
3.2, there exists a minimal prime D-filter P such that t ∨ x /∈ P . Hence
t /∈

∩
{P | P is a minimal prime D-filter such that x /∈ P}. Therefore∩

{P | P is a minimal prime D-filter such that x /∈ P} ⊆ (x)◦.
□

Definition 3.4. A lattice L is called a D-Stone lattice if (x)◦ ∨ (x)◦◦ = L for
all x ∈ L.

The bounded distributive lattice L = {0, a, b, c, 1} given in Example 2.4
is a D-Stone lattice. Clearly (a)◦ ∨ (a)◦◦ = {1, c, b} ∨ {1, c, a} = L and
(b)◦ ∨ (b)◦◦ = {1, c, a} ∨ {1, c, b} = L. Also (c)◦ ∨ (c)◦◦ = D ∨ L = L.

Proposition 3.5. If every prime D-filter of a lattice L is minimal, then L
is a D-Stone lattice.

Proof. Assume that every prime D-filter of L is minimal. Let x ∈ L.
Suppose (x)◦ ∨ (x)◦◦ ̸= L. Then there exists a prime D-filter P such that
(x)◦ ∨ (x)◦◦ ⊆ P . Hence (x)◦ ⊆ P and (x)◦◦ ⊆ P . Since (x)◦ ⊆ P , we get
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that x /∈ P because of Corollary 3.3. Clearly x ∈ (x)◦◦ ⊆ P . Hence x ∈ P ,
which is a contradiction. Thus (x)◦ ∨ (x)◦◦ = L. □
Proposition 3.6. Every D-Stone lattice is hemi-complemented.
Proof. Suppose L is a D-Stone lattice. Let x ∈ L. Then (x)◦ ∨ (x)◦◦ = L.
Hence 0 ∈ (x)◦ ∨ (x)◦◦, which implies 0 = a ∧ b for some a ∈ (x)◦ and
b ∈ (x)◦◦. Thus (a)◦∩ (b)◦ = (a∧ b)◦ = (0)◦ = D. Hence (a)◦ ⊆ (b)◦◦ ⊆ (x)◦◦.
Since a ∈ (x)◦, we get (x)◦◦ ⊆ (a)◦. Thus (x)◦◦ = (a)◦. Therefore L is
hemi-complemented. □

In the following, a set of equivalent conditions is derived for every hemi-
complemented lattice to become a D-Stone lattice. Let us call that a D-filter
F of a lattice L is called a D-factor of L if there exists a proper D-filter G
such that F ∩G = D and F ∨G = L.
Theorem 3.7. Let L be a hemi-complemented lattice. Then the following
assertions are equivalent;
(1) L is a D-Stone lattice;
(2) each (x)◦ is a D-factor of L;
(3) for each x ∈ L, there exists x′ ∈ L such that (x)◦ ∨ (x′)◦ = L;
(4) for x, y ∈ L, (x)◦ ∨ (y)◦ = (x ∨ y)◦;
(5) D◦◦(L) = {(x)◦◦ | x ∈ L} is a sublattice of F(L), where F(L) is the

lattice of all filters of L.
Proof. (1) ⇒ (2): Assume that L is a D-Stone lattice. Let x ∈ L. By
Proposition 1.7(1), (x)◦ ∩ (x)◦◦ = D. By (1), we get (x)◦ ∨ (x)◦◦ = L.
Therefore (x)◦ is a D-factor of L.
(2) ⇒ (3): Assume condition (2). Let x ∈ L. Since L is hemi-complemented,

there exists x′ ∈ L such that (x)◦◦ = (x′)◦. Since (x)◦ is a D-factor of L,
there exists a D-filter G such that (x)◦ ∩ G = D and (x)◦ ∨ G = L. Since
(x)◦∩G = D, we get G ⊆ (x)◦◦ = (x′)◦. Therefore L = (x)◦∨G ⊆ (x)◦∨(x′)◦.
Therefore (x)◦ ∨ (x′)◦ = L.
(3) ⇒ (4): Assume condition (3). Let x, y ∈ L. By (3), there exists x′ ∈ L

such that (x)◦ ∨ (x′)◦ = L. Clearly (x)◦ ∨ (y)◦ ⊆ (x ∨ y)◦. Conversely, let
a ∈ (x ∨ y)◦. Then a ∨ x ∨ y ∈ D, which gives a ∨ y ∈ (x)◦. By Proposition
1.7(2) and Lemma 3.1, we get

a ∨ y ∈ (x)◦ ⇒ (x)◦◦ ⊆ (a ∨ y)◦

⇒ (x)◦◦ ∩ [a ∨ y) ⊆ D

⇒ (x)◦◦ ∩ {[a) ∩ [y)} ⊆ D
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⇒ {(x)◦◦ ∩ [a)} ∩ [y) ⊆ D

⇒ {(x)◦◦ ∩ [a)} ⊆ (y)◦

⇒ {(x′)◦ ∩ [a)} ⊆ (y)◦

Clearly (x)◦ ∩ [a) ⊆ (x)◦. Hence
a ∈ [a) = L ∩ [a) = {(x)◦ ∨ (x′)◦} ∩ [a)

= {(x)◦ ∩ [a)} ∩ {(x′)◦ ∩ [a)}
⊆ (x)◦ ∨ (y)◦.

Hence (x ∨ y)◦ ⊆ (x)◦ ∨ (y)◦.
(4) ⇒ (5): For any x, y ∈ L, by Corollary 1.8(3), (x)◦◦ ∩ (y)◦◦ = (x ∨ y)◦◦.

Since L is hemi-complemented, there exist x′, y′ ∈ L such that (x)◦◦ = (x′)◦

and (y)◦◦ = (y′)◦. Hence (x)◦◦ ∨ (y)◦◦ = (x′)◦ ∨ (y′)◦ = (x′ ∨ y′)◦ = (c)◦◦ for
some c ∈ L, as L is hemi-complemented. Therefore D◦◦(L) is a sublattice of
F(L).
(5) ⇒ (1): Assume condition (5). Let x ∈ L. Since L is hemi-complemented,

by Theorem 2.9(4), there exists y ∈ L such that (x)◦◦ = (y)◦. Since D◦◦(L)
is a sublattice of F(L), we get (x)◦◦ ∨ (y)◦◦ = (t)◦◦ for some t ∈ L. Thus
x ∧ y ∈ (x)◦◦ ∨ (y)◦◦ = (t)◦◦. Therefore

(t)◦ = (t)◦◦◦ ⊆ (x ∧ y)◦ = (x)◦ ∩ (y)◦ = (x)◦ ∩ (x)◦◦ = D

which implies that (t)◦◦ = D◦ = L. Hence
(x)◦ ∨ (x)◦◦ = (y)◦◦ ∨ (x)◦◦ = (t)◦◦ = L.

Therefore L is a D-stone lattice. □
Corollary 3.8. If L is a D-Stone lattice, then D◦(L) is a sublattice of F(L).

The following corollary states a property of D-Stone lattices in terms of
minimal prime D-filters. Two D-filters F and G of a lattice L are called
comaximal if F ∨G = L.

Corollary 3.9. If L is a D-Stone lattice, then any two distinct minimal
prime D-filters of L are comaximal.

Proof. Assume that L is a D-Stone lattice. By condition (2) of Theorem 3.7,
each (x)◦ is a D-factor of L. Let P and Q be two distinct minimal prime
D-filters of L. Choose a ∈ P − Q. Hence (a)◦ ⊆ Q. Since P is minimal,
we get that (a)◦◦ ⊆ P . Since (a)◦ is a D-factor of L, there exists a D-filter
G such that (a)◦ ∩ G = D and (a)◦ ∨ G = L. Hence G ⊆ (a)◦◦ ⊆ P . Thus
L = (a)◦ ∨G ⊆ Q ∨ P . Therefore P and Q are comaximal. □
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Theorem 3.10. Let L be a hemi-complemented lattice. Then L is a D-Stone
lattice if and only if D◦(L) is a Boolean algebra.
Proof. Assume that L is a D-Stone lattice. Let (x)◦, (y)◦ ∈ D◦(L). Clearly
(x)◦ ∩ (y)◦ = (x∧ y)◦. Since L is D-Stone lattice, by Theorem 3.7(4), we get
(x)◦ ∨ (y)◦ = (x ∨ y)◦. Hence (D◦(L),∨,∩) is a lattice. Since (x)◦ = D for
all x ∈ D∞, we get that D is the smallest element of D◦(L). Since (d)◦ = L
for each d ∈ D, we get that L is the greatest element in D◦(L). It can be
routinely verified that (D◦(L),∨,∩, D, L) is a bounded distributive lattice.
Now, let (x)◦ ∈ D◦(L) where x ∈ L. Since L is hemi-complemented, there
exists x′ ∈ L such that (x)◦◦ = (x′)◦. Hence (x)◦ ∩ (x′)◦ = (x)◦ ∩ (x)◦◦ = D.
Since L is D-Stone, we get (x)◦∨(x)◦◦ = L. Hence (x)◦∨(x′)◦ = L. Thus (x′)◦
is the complement of (x)◦ in D◦(L). Therefore D◦(L) is a Boolean algebra.

Conversely, assume that D◦(L) is a Boolean algebra. Let x ∈ L. Then
(x)◦ ∈ D◦(L). Since D◦(L) is a Boolean algebra, there exists (x′)◦ ∈ D◦(L)
such that (x)◦ ∩ (x′)◦ = D and (x)◦ ∨ (x′)◦ = L. Since (x)◦ ∩ (x′)◦ = D,
we get (x′)◦ ⊆ (x)◦◦. Hence L = (x)◦ ∨ (x′)◦ ⊆ (x)◦ ∨ (x)◦◦, which gives
(x)◦ ∨ (x)◦◦ = L. Therefore L is a D-Stone lattice. □

4. Topological characterizations
In this section, the classes of hemi-complemented lattices and D-Stone

lattices are characterized in topological terms. Let us denote the set of all
minimal prime D-filters of L by SpecDMF (L). For any subset S of L, define
Km(S) = {P ∈ SpecDMF (L) | S ⊈ P}. In case of S = {x}, we write Km(x)
for Km({x}) = {P ∈ SpecDMF (L) | x /∈ P}. Then it can be easily seen that
Km(S) =

∪
x∈S

Km(x).

Lemma 4.1. For any x, y of a lattice L, the following properties hold:
(1) Km(x) ∩ Km(y) = Km(x ∨ y),
(2) Km(x ∧ y) ⊆ Km(x) ∪ Km(y),
(3) Km(x) = Km((x)

◦◦),
(4) (x)◦ ⊆ (y)◦ if and only if Km(y) ⊆ Km(x),
(5) Km(x) = ∅ if and only if x ∈ D,
(6) Km(x) = SpecDMF (L) if and only if x is condensed.

Proof. The proofs of (1) and (2) are trivial.
(3) Let P ∈ Km(x). Then x /∈ P . Since P is minimal, we get

(x)◦◦ ⊈ P . Hence P ∈ Km((x)
◦◦). Therefore Km(x) ⊆ Km((x)

◦◦). Con-
versely, let P ∈ Km((x)

◦◦). Then (x)◦◦ ⊈ P . Suppose x ∈ P . Since P is
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minimal, we get (x)◦◦ ⊆ P , which is a contradiction. Hence P ∈ Km(x).
Thus Km((x)

◦◦) ⊆ Km(x). Therefore Km(x) = Km((x)
◦◦).

(4) Assume that (x)◦ ⊆ (y)◦. Let P ∈ Km(y). Then y /∈ P . Hence
(x)◦ ⊆ (y)◦ ⊆ P . Since P is minimal, we get x /∈ P . Hence P ∈ Km(x).
Therefore Km(y) ⊆ Km(x). Conversely, assume that Km(y) ⊆ Km(x). Let
a /∈ (y)◦. Then a ∨ y /∈ D. Then by Proposition 3.2, there exists a minimal
prime D-filter P0 such that a ∨ y /∈ P0. Hence a /∈ P0 and y /∈ P0. Thus
a /∈ P0 and P0 ∈ Km(y) ⊆ Km(x). Hence a /∈ P0 and x /∈ P0. Thus a∨x /∈ P0,
which implies that a ∨ x /∈ D. Hence a /∈ (x)◦. Therefore (x)◦ ⊆ (y)◦.

(5) It is obvious by Proposition 3.2.
(6) Assume that Km(x) = SpecDMF (L). Then

(x)◦ =
∩

P∈Km(x)

P =
∩

P∈SpecDMF (L)

P = D.

Hence x is condensed. Conversely, assume that x is condensed. Then
(x)◦ = D ⊆ P for all P ∈ SpecDMF (L). Hence x /∈ P for all P ∈ SpecDMF (L).
Therefore Km(x) = SpecDMF (L). □

From Lemma 4.1, we conclude that {Km(x) | x ∈ L} is the class of all
subsets of SpecDMF (L) which is closed under finite intersections. Also, since
every minimal prime D-filter is proper, we get that

∪
x∈L

Km(x) = SpecDMF (L).

Therefore {Km(x) | x ∈ L} forms a base for a topology on SpecDMF (L). For
any subset S of a lattice L, define

Hm(S) = {P ∈ SpecDMF (L) | S ⊆ P}.
In case of S = {x}, we write Hm(x) for

Hm({x}) = {P ∈ SpecDMF (L) | x ∈ P}.
Keeping in view of the above facts, we can have the following:
Lemma 4.2. For any two D-filters F and G of a lattice L, the following
properties hold:
(1) Hm(F ) ∩Hm(G) = Hm(F ∨G),
(2) Hm(F ) = SpecDMF (L) if and only if F = D,
(3) Km(x) = Hm((x)

◦) for all x ∈ L,
(4) Hm(x) = Km((x)

◦).
Proof. (1) It is obvious.

(2) Assume that Hm(F ) = SpecDMF (L). Then F ⊆ P for all
P ∈ SpecDMF (L). Let x ∈ F . Suppose x /∈ D. Then by Proposition 3.2,
there exists P ∈ SpecDMF (L) such that x /∈ P . Hence we get F ⊈ P , which is
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a contradiction. Thus x ∈ D and hence we get F ⊆ D. Since F is a D-filter,
we get F = D. Converse is clear.

(3) Let P ∈ SpecDMF (L). Then
P ∈ Km(x) ⇔ x /∈ P ⇔ (x)◦ ⊆ P ⇔ P ∈ Hm((x)

◦).
(4) Similarly, it can be obtained. □
In the following two theorems, some topological properties of the space

SpecDMF (L) of all minimal prime D-filters of a lattice L can be observed.

Theorem 4.3. For any lattice L, the space SpecDMF (L) is compact if and
only if Hm(F ) = ∅ implies F ∩D∞ ̸= ∅ for any filter F of L.

Proof. Assume that SpecDMF (L) is compact. Let F be a D-filter of L such
that Hm(F ) = ∅. Then F ⊈ P for all P ∈ SpecDMF (L). Hence
SpecDMF (L) = Km(F ) =

∪
x∈F

Km(x). Since SpecDMF (L) is compact, we get

that SpecDMF (L) =
n∪

i=1

Km(xi) for some x1, x2, . . . , xn ∈ F . But by Lemma
4.2, we get

n∪
i=1

Km(xi) =
n∪

i=1

Hm(xi)
◦ = Hm

( n∩
i=1

(xi)
◦) = Hm

( n∧
i=1

(xi)
◦) = Km

( n∧
i=1

(xi)
◦).

Now by the fact that F is a filter and each xi ∈ F , we conclude,
n∧

i=1

xi ∈ F .

Therefore there exists a ∈
n∧

i=1

xi ∈ F such that SpecDMF (L) = Km(a). Hence

by Lemma 4.1(6), we get a ∈ D∞. Therefore F ∩D∞ ̸= ∅.
Conversely, assume that Hm(F ) = ∅ implies F ∩ D∞ ̸= ∅ for any D-filter

F of L. Let S ⊆ L be such that SpecDMF (L) =
∪
a∈S

Km(a) = Km(S) = Km(F ),

where F is the D-filter generated by S. Now choose c ∈ F ∩D∞. Then we
can write c =

n∧
i=1

ai for some a1, a2, . . . , an ∈ S and n ∈ N . Hence by Lemma

4.1(6), we get SpecDMF (L) = Km(c) = Km

( n∧
i=1

ai
)
⊆

n∪
i=1

Km(ai). This shows

that SpecDMF (L) is compact. □
Theorem 4.4. For any lattice L, SpecDMF (L) is a Hausdorff space.

Proof. Let P and Q be two distinct elements of SpecDMF (L). Choose x ∈ L
such that x ∈ P and x /∈ Q. Then we get Q ∈ Km(x). Since x ∈ P and P
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is minimal, there exists y /∈ P such that x ∨ y ∈ D. Hence P ∈ Km(y) and
also Km(x) ∩ Km(y) = Km(x ∨ y) = ∅ because of Lemma 4.1(5). Therefore
SpecDMF (L) is a Hausdorff space. □

In the following theorem, some equivalent conditions are derived for a lattice
to become hemi-complemented, which leads to a topological characterization.

Theorem 4.5. The following assertion are equivalent in a lattice L:
(1) L is hemi-complemented;
(2) for each x ∈ L, there exists y ∈ L such that Hm(x) = Km(y);
(3) for each x ∈ L, there exists y ∈ L such that Km(x) = Km((y)

◦).

Proof. (1) ⇒ (2): Assume that L is hemi-complemented. Let x ∈ L. Then
there exists y ∈ L such that (x)◦ = (y)◦◦. Then by Lemma 4.1(6) and Lemma
4.2(4), we can obtain that Hm(x) = Km((x)

◦) = Km((y)
◦◦) = Km(y).

(2) ⇒ (3): Assume condition (2). Let x ∈ L. Then there exists y ∈ L
such that Km(x) = Hm(y). Then by Lemma 3.2, we get Hm(y) = Km((y)

◦).
Therefore Km(x) = Km((y)

◦).
(3) ⇒ (1): Assume condition (3). Let x ∈ L. Then by (3), there exists

y ∈ L such that Km(x) = Km((y)
◦). Let a /∈ (y)◦. Then a∨y /∈ D. This means

that there exists a minimal prime D-filter P such that a∨y /∈ P . Hence a /∈ P
and y /∈ P . Since y /∈ P , we get (y)◦ ⊆ P and hence P /∈ Km((y)

◦) = Km(x).
Thus x ∈ P . Since P is minimal, we get (x)◦◦ ⊆ P . Since a /∈ P , we
get a /∈ (x)◦◦. Hence (x)◦◦ ⊆ (y)◦. Similarly, we can obtain (y)◦ ⊆ (x)◦◦.
Therefore L is hemi-complemented. □

It can be easily observed that the class K(L) = {Km(x) | x ∈ L} forms a
distributive lattice with respect to the set theoretic operations ∩ and ∪. In
the following theorem, a necessary and sufficient condition is derived for the
above set to become a Boolean algebra.

Theorem 4.6. A lattice L is hemi-complemented if and only if
K(L) = ⟨{Km(x) | x ∈ L},∩,∪⟩ is a Boolean algebra.

Proof. Assume that L is a hemi-complemented lattice. Let Km(x) ∈ K(L).
Then there exists y ∈ L such that x ∨ y ∈ D and (x)◦ ∩ (y)◦ = (x ∧ y)◦ = D.
Hence Km(x) ∩ Km(y) = Km(x ∨ y) = ∅. Also Km(x) ∪ Km(y) = Hm((x)

◦) ∪
Hm((y)

◦) = Hm((x)
◦ ∩ (y)◦) = Hm(D) = SpecDMF (L). Hence Km(y) is the

complement of Km(x) in K(L). Therefore K(L) is a Boolean algebra.
Conversely, assume that K(L) is a Boolean algebra. Let x ∈ L.

Then Km(x) ∈ K(L). Then there exists Km(y) ∈ K(L) such that
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Km(x ∧ y) = Km(x) ∩ Km(y) = ∅ and Km(x) ∪ Km(y) = SpecDMF (L). Hence
x ∨ y ∈ D. Also

Km(x) ∪ Km(y) = SpecDMF (L) ⇒ Hm((x)
◦) ∪Hm((y)

◦) = SpecDMF (L)

⇒ Hm((x)
◦ ∩ (y)◦) = SpecDMF (L)

⇒ (x)◦ ∩ (y)◦ = D by Lemma 4.2(2)

Therefore L is a hemi-complemented lattice. □

We now present a topological characterization of D-Stone lattices. Let
SpecDF (L) be the set of all prime D-filters of a lattice L. For any subset A of
L, define K(A) = {P ∈ SpecDF (L) | A ⊈ P} and

H(A) = {P ∈ SpecDF (L) | A ⊆ P}.
For A = {x}, we simply represent K(x) = {P ∈ SpecDF (L) | x /∈ P} and
H(x) = {P ∈ SpecDF (L) | x ∈ P}. Then there are no hidden difficulties to
prove the following properties hence the proof can be omitted.

Lemma 4.7. Let L be a lattice and x, y ∈ L. Then
(1)

∪
x∈L

K(x) = SpecDF (L),

(2) K(x) ∩ K(y) = K(x ∨ y),
(3) K(x) ∪ K(x) = K(x ∧ y),
(4) K(x) = ∅ if and only if x ∈ D,
(5) K(0) = SpecDF (L).

From the above result, it can be easily observed that the collection
{K(x) | x ∈ L} forms a base for a topology on SpecDF (L). For the topol-
ogy on SpecDMF (L), the open set corresponding to any x ∈ L will become
SpecDMF (L) ∩ K(x) and is denoted by Km(x). This topology on SpecDF (L) is
known as the hull-kernel topology for which {H(x) | x ∈ L} is the hull which
is the basis and the kernel is {K(x) | x ∈ L}.

Lemma 4.8. Let F,G be two D-filters of a lattice L. Then
(1) H(F ) = SpecDF (L) if and only if F = D,
(2) H(F ) = ∅ if and only if F = L,
(3) F ⊆ G implies H(G) ⊆ H(F ),
(4) H(F ) ∩H(G) = H(F ∨G),
(5) H(F ) ∪H(G) = H(F ∩G).
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Proof. (1) Since F is a D-filter, we get D ⊆ F . Suppose H(F ) = SpecDF (L).
Then F ⊆ P for all P ∈ SpecDF (L). Hence F ⊆

∩
SpecDF (L)

P = D. Hence F = D.

Conversely, suppose that F = D. Then F = D ⊆ P for all SpecDF (L). Hence
H(F ) = SpecDF (L).

(2) Assume that H(F ) = ∅. Suppose F ̸= L. Then there exists a prime
D-filter P such that F ⊆ P . Hence P ∈ H(F ) = ∅, which is a contradiction.
Therefore F = L. Conversely, let F = L. Since there is no prime D-filter
containing F , we get H(F ) = ∅.

(3) It is clear.
(4) and (5) follow immediately due to P is a prime D-filter of L. □
From Lemma 4.8, we observe that the collection {K(F ) | F ∈ FD(L)} forms

a base for a topology on SpecDF (L). In this hull-kernel topology, open sets
are of the form K(F ) where K(F ) = {P ∈ SpecDF (L) | F ⊈ P} and the closed
sets are of the form

H(F ) = SpecDF (L)− K(F )

For any subset A of SpecDF (L), the closure Ā of A in the hull-kernel topology
is given by

A = {Q ∈ SpecDF (L) |
∩
P∈A

P ⊆ Q}

Lemma 4.9. Let L be a lattice and x ∈ L. Then K(x) = H((x)◦).

Proof. Let x ∈ L. Then we have the following consequence:

K(x) = {Q ∈ SpecDF (L) |
∩

P∈K(x)

P ⊆ Q}

= {Q ∈ SpecDF (L) | (x)◦ ⊆ Q}
= H((x)◦).

□

Theorem 4.10. A lattice L is a D-Stone lattice if and only if for any
x ∈ L, the closure K(x) is open in the hull-kernel topology on SpecDF (L).

Proof. Assume that L is a D-Stone lattice. Let x ∈ L. Then

K(x) =
{
Q ∈ SpecDF (L) |

∩
P∈K(x)

P ⊆ Q
}

=
{
Q ∈ SpecDF (L) | (x)◦ ⊆ Q

}
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=
{
Q ∈ SpecDF (L) | (x)◦◦ ⊈ Q

}
since L is D-Stone

= K((x)◦◦)

Since K((x)◦◦) is open in SpecDF (L), we get K(x) is open in SpecDF (L).
Conversely, assume that K(x) is open in the hull-kernel topology on

SpecDF (L). Then SpecDF (L) − K(x) is closed in SpecDF (L). Then there ex-
ists a prime D-filter F of L such that SpecDF (L) − K(x) = H(F ). By the
above lemma, we have K(x) = H((x)◦). Hence H(F ) and H((x)◦) are com-
plements to each other in SpecDF (L). Therefore H((x)◦) ∪H(F ) = SpecDF (L)
and H((x)◦) ∩H(F ) = ∅. By Lemma 4.8(4) and (5). we get

H((x)◦ ∩ F ) = SpecDF (L) and H((x)◦ ∨ F ) = ∅

By Lema 4.8(1) and (2), we get (x)◦ ∩ F = D and (x)◦ ∨ F = L. Since
(x)◦ ∩ F = D, by Proposition 1.7(2), we get F ⊆ (x)◦◦. Hence

L = (x)◦ ∨ F ⊆ (x)◦ ∨ (x)◦◦.
Therefore L is a D-Stone lattice. □

5. Conclusion
In this article, an investigation is made to characterize the properties of

hemi-complemented lattices and D-Stone lattices. Certain relations between
hemi-complemented lattices and D-Stone lattices. A set of equivalent con-
ditions is established for every hemi-complemented lattice to become a D-
Stone lattices. Certain topological properties of hemi-complemented lattices
and D-Stone lattices are also investigated. In the future work, it is proposed
to instigate some properties of hemi-complemented lattices and D-Stone lat-
tices with the help congruences which may characterize several structures of
distributive lattices.

Acknowledgments
The authors would like to thank the referee for his valuable suggestions and
comments which improves the presentation.

References
1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV, Providence, U.S.A., 1967.
2. S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer Verlag, 1981.
3. W. H. Cornish, Annulets and α-ideals in distributive lattices, J. Aust. Math. Soc., 15

(1973), 70–77.
4. W. H. Cornish, Normal lattices, J. Aust. Math. Soc., 14 (1972), 200–215.



HEMI-COMPLEMENTED LATTICES 23

5. W. H. Cornish, Quasicomplemented lattices, Comment. Math. Univ. Carolin., 15(3)
(1974), 501–511.

6. J. Kist, Minimal prime ideals in commutative semigroups, Proc. Lond. Math. Soc., Sec.
B, 13 (1963), 31–50.

7. A. P. P. Kumar, M. Sambasiva Rao and K. S. Babu, Filters of distributive lattices gen-
erated by dense elements, Palest. J. Math., 11(2) (2022), 45–54.

8. A. P. P. Kumar, M. Sambasiva Rao and K. S. Babu, Generalized prime D-filters of
distributive lattices, Arch. Math., 57(3) (2021), 157–174.

9. M. Mandelker, Relative annihilators in lattices, Duke Math. J., 37 (1970), 377–386.
10. M. Sambasiva Rao, Disjunctive ideals of distributive lattices, Acta Math. Vietnam., 40(4)

(2015), 671–682.
11. M. Sambasiva Rao, e-filters of MS-algebras, Acta Math. Sci., 33B(3) (2013), 738–746.
12. M. Sambasiva Rao and A. Badawy, µ-filters of distributive lattices, Southeast Asian Bull.

Math., 40(2) (2016), 251–264.
13. T. P. Speed, Some remarks on a class of distributive lattices, J. Aust. Math. Soc., 9

(1969), 289–296.

Ananthapatnayakuni Phaneendra Kumar
Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India-535005.
Email: phaneendra.arjun@gmail.com

Mukkamala Sambasiva Rao
Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India-535005.
Email: mssraomaths35@rediffmail.com


	Introduction
	1. Preliminaries
	2. Hemi-complemented lattices
	3. D-Stone lattices
	4. Topological characterizations
	5. Conclusion
	References

