
Journal of Algebraic Systems

ISSN:(2345-5128)(2345-511X)
Journal Homepage: www.jas.shahroodut.ac.ir

A study on tri reversible rings

H. M. Imdadul Hoque∗ and H. K. Saikia

To cite this article: H. M. Imdadul Hoque∗ and H. K. Saikia (15 October
2024): A study on tri reversible rings, Journal of Algebraic Systems,
DOI: 10.22044/jas.2023.12871.1697

To link to this article: https://doi.org/10.22044/jas.2023.12871.
1697

Published online: 15 October 2024

www.jas.shahroodut.ac.ir
https://doi.org/10.22044/jas.2023.12871.1697
https://doi.org/10.22044/jas.2023.12871.1697


Journal of Algebraic Systems, vol. xx, no. xx, (202x), pp xx-xx
https://doi.org/10.22044/jas.2023.12871.1697

A STUDY ON TRI REVERSIBLE RINGS

H. M. IMDADUL HOQUE∗ AND H. K. SAIKIA

Abstract. This article embodies a ring theoretic property which, preserves the re-
versibility of elements at non-zero tripotents. A ring R is defined as quasi tri reversible
if any non-zero tripotent element ab of R implies ba is also a tripotent element in R
for a, b ∈ R. We explore the quasi tri reversibility of 2 by 2 full and upper trian-
gular matrix rings over various kinds of reversible rings, deducing that the quasi tri
reversibility is a proper generalization of reversible rings. It is proved that the poly-
nomial rings are not quasi tri reversible rings. The relation of symmetric rings, IFP
and Abelian rings with reversibility and quasi tri reversibility are studied. It is also
observed that the structure of weakly tri normal rings and quasi tri reversible rings
are independent of each other.

1. Introduction
Throughout this paper, all rings are associative with identity unless

otherwise stated. Let R be a ring, T (R) denotes the set of all tripotents
of R and T (R)

′
= {t ∈ T (R)|t ̸= 0}. Also N ∗(R), J(R), and N(R), repre-

sent the nilradical, the Jacobson radical and the set of all nilpotent elements
of R, respectively. Further, Matn(R) and Mn(R) denote the n by n full
matrix ring and the upper triangular matrix ring over R respectively. Also,
Dn(R) = {(aij) ∈ Mn(R)|a11 = a22 = ... = ann} and Tij for the matrix
with (i, j)-entry 1 and zeros elsewhere and In denotes the identity matrix in
Matn(R).
A ring is usually called reduced if it has no nilpotent elements other than

zero. Following Lambek [13], a ring R is called symmetric if abc = 0 implies
acb = 0 for all a, b, c ∈ R. Later on, Anderson and Camillo [1], used the
term ZC3 for symmetric. Clearly commutative rings are symmetric. Also
reduced rings are symmetric by [1, Theorem I.3], but there are many types of
non-reduced rings which are commutative (e.g., the ring of the type Znm for
n, m ≥ 2). Cohn [3], in 1999 stated that a ring is said to be reversible on the
condition that for any a, b ∈ R, ab = 0 implies ba = 0. Anderson and Camillo
[1] used the term ZC2 for the reversibility, they proved that a semigroup with
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no non-zero nilpotent elements satisfy ZC2 and investigated rings that satisfy
ZC2. Clearly symmetric rings are reversible, but the converse is not true by
[1, Example I.5] or G. Marks [15, Examples 5 and 7]. According to Bell [2], a
ring R is said to satisfy the Insertion−of −Factors−Property (simply, an
IFP ring) on the condition that for any a, b ∈ R, ab = 0 implies aRb = 0. It
is proved that the reversible rings are IFP . A ring is called Abelian if every
idempotents are central. By [16, Lemma 2.7], the IFP rings are Abelian
rings. It is obvious that reversible rings are Abelian. A ring R is called
directly finite if ab = 1 implies ba = 1 for a, b ∈ R. It is clear that Abelian
rings are directly finite.
Following [9], a ring R is said to be quasi-reversible if for any a, b ∈ R,

0 ̸= ab ∈ I(R) implies ba ∈ I(R), where I(R) is the set of all idempotent
elements of R. They generalised the notion of reversibility into a quasi-
reversibility and they investigated the quasi-reversibility of 2 by 2, the full
and upper triangular matrix rings over various kinds of reversible rings.
An element t in a ring R is called tripotent if t3 = t, the set of all tripotent

elements are denoted by T (R). Clearly, every idempotents are tripotents but

the converse is not true. For example let R = Mat2(R), then
(
−1 0
0 0

)
∈ R

is tripotent but not idempotent.
In this study, we extend and generalize the structure of reversible rings using

the concept of non-zero tripotent elements. Secondly, our main objective is
to study and to define a new type of ring called quasi tri reversible ring using
tripotent elements. A ring R is called quasi tri reversible ring if 0 ̸= ab ∈ T (R)
implies that ba ∈ T (R). For example let R = M2(R) be an upper triangular
matrix ring over a real number field R. Then(

0 0
0 0

)
̸=

(
1 0
0 −1

) (
−1 1
0 0

)
=

(
−1 1
0 0

)
∈ T (R)

′

and (
−1 1
0 0

)(
1 0
0 −1

)
=

(
−1 −1
0 0

)
∈ T (R).

This exhibits that the quasi tri reversible ring need not be Abelian, while
reversible rings are Abelian.

2. Reversibility on Tripotents
In this section we study the structure of reversible rings related to tripotent

elements in a ring. We begin with the following equivalent conditions.
Theorem 2.1. For a ring R the following conditions are equivalent:
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(1) R is reversible
(2) ab ∈ T (R) implies ba ∈ T (R) for a, b ∈ R.

Proof. (1) =⇒ (2). Let R be a reversible ring. Let ab ∈ T (R) for a, b ∈ R.
So, ab = (ab)3 =⇒ ab(1− (ab)2) = 0. Since R is reversible, so

b(1− (ab)2)a = 0 =⇒ ba− b(ab)2a = 0

=⇒ ba− b(abab)a = 0

=⇒ ba− (bababa) = 0

=⇒ ba = (ba)3.

Thus, ba ∈ T (R) for a, b ∈ R.
(2) =⇒ (1). Let condition (2) holds. Suppose ab = 0 for any a, b ∈ R. By

condition (2), ba ∈ T (R) =⇒ ba = (ba)3 =⇒ ba = bababa = 0, as ab = 0.
Hence, ab = 0 implies ba = 0 for any a, b ∈ R. Thus R is a reversible ring.

□

Corollary 2.2. Let R be a reversible ring. If ab ∈ T (R) for a, b ∈ R, then
ab = ba.

Proof. Let R be a reversible ring and ab ∈ T (R) for a, b ∈ R, then by Theorem
2.1, we get ba ∈ T (R). Now

ba = (ba)3 = bababa = b(ab)(ab)a = (ab)b(ab)a

= abab(ba)

= aba(ba)b

= ababab

= (ab)3

= ab,

as R is Abelian. So, ab = ba for a, b ∈ R.
If ab and ba are not idempotent elements of the Abelian ring R, then the

above relation is not true in general. As ab ∈ T (R), then (ab)2 is idempotent
but ab may not be an idempotent element of R.

□
The following Theorem 2.3 exhibits a relation between tripotent elements

and zero-divisors in reduced rings.

Theorem 2.3. For a ring R the following conditions are equivalent:
(1) R is reduced
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(2) a2 ∈ T (R) implies a = a5, where a is unit in R.
Proof. (1) =⇒ (2). Let R be a reduced ring and a2 ∈ T (R). Then

(a2)3 = a2 =⇒ a2(1− a4) = 0.

Since
(1− a4)2 = 1− 2a4 + (a4)2

= 1− 2a4 + a4a4

= 1− 2a4 + a4a6a−2

= 1− 2a4 + a4a2a−2,

as a6 = a2 and a is unit inR. So, (1−a4)2 = 1−2a4+a4 =⇒ (1−a4)2 = 1−a4.
Now, a2(1 − a4) = 0 =⇒ (a(1 − a4))2 = 0. Since R is a reduced ring.
Therefore a(1− a4) = 0 =⇒ a− a5 = 0 =⇒ a = a5 for a ∈ R.
(2) =⇒ (1). Let condition (2) holds. Suppose a2 = 0 for any a ∈ R. So

by condition (2), we get a = a5 = (a2)2a = 0. Thus a2 = 0 implies a = 0 for
any a ∈ R. This shows that R is a reduced ring.

□
Remark 2.4. In the above proof of the Theorem 2.3, it is observed that,
1− 2a4 + a4a4 = 1− 2a4 + a4a6a−2 is not true in general, since every element
of a ring is not necessarily invertible, even in reversible rings. For example,
we consider the reduced ring R = Z10. Let a = 2, then a2 ∈ T (R), but a
is not a unit element of R = Z10, and so it can not be written in the form
a4 = a6a−2.
Theorem 2.5. Let R be a ring. If R is reduced ring of characteristics 2,
then a2 ∈ T (R) implies a ∈ T (R) for a ∈ R.
Proof. Let R be a reduced ring of characteristics 2. So for any a ∈ R, we get
2a = 0. Also, let a2 ∈ T (R), then

a2 = (a2)3 =⇒ a2(1− a4) = 0

=⇒ a2(1− a2)(1 + a2) = 0

=⇒ a2(1− a2)(1− a2 + 2a2) = 0

=⇒ a2(1− a2)(1− a2 + 2a.a) = 0

=⇒ a2(1− a2)(1− a2 + 0) = 0,

as Cha(R) = 2. =⇒ a2(1 − a2)2 = 0 =⇒ (a(1 − a2))2 = 0. Since R is a
reduced ring, therefore a(1− a2) = 0 =⇒ a = a3. Thus a ∈ T (R).

□
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Theorem 2.6. For a ring R the following conditions are equivalent:
(1) R is symmetric
(2) abc ∈ T (R) implies acb = acb(cab)2

(3) abc ∈ T (R) implies acb = acb(bca)2

(4) abc ∈ T (R) implies acb = acb(abc)2; for a, b, c ∈ R.

Proof. (1) =⇒ (2). LetR be a symmetric ring and abc ∈ T (R) for a, b, c ∈ R.
Then

abc = (abc)3 =⇒ abc− (abcabcabc) = 0

=⇒ ab(c− (cabcabc)) = 0

=⇒ ab(1− cabcab)c = 0.

Since R is symmetric,
acb(1− cabcab) = 0 =⇒ acb− acbcabcab = 0

=⇒ acb = acb(cabcab)

=⇒ acb = acb(cab)2.

(2) =⇒ (1). Let condition (2) holds. First of all we show R is a reversible
ring. Let de = 0 for d, e ∈ R. Then ed = 1ed, since 1 ∈ R. Thus by
condition (2), we get ed = 1ed(e1d)2 = 1ed(e1de1d) = 0, as de = 0. Thus
de = 0 =⇒ ed = 0 for d, e ∈ R. So R is a reversible ring.
Now we show that R is a symmetric ring. Suppose abc = 0 for a, b, c ∈ R.

Then
acb = acb(cab)2 = acb(cabcab) =⇒ acb = acb(c(abc)ab) = 0,

as abc = 0. Thus R is a symmetric ring.
Similarly, the equivalences of the conditions (2), (3) and (4) are easily shown

by using Corollary 2.2, i.e, abc = bca = cab, whenever abc ∈ T (R). □
According to [8], a ring R satisfies the condition that abc ∈ I(R) implies

acb ∈ I(R) for a, b, c ∈ R, then R is symmetric by a similar method to the
proof of Theorem 2.6., in case of idempotent element. Whether symmetric
rings always satisfy this condition.
The following problem given by Jung et al. [8] has been verified with a

suitable example in the next part.

Question. Does a symmetric ring R satisfy the condition that abc ∈ I(R)
implies acb ∈ I(R) for any a, b, c ∈ R?
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Solution: If R is a reduced ring then R is symmetric by [1, Theorem I.3]
and satisfies the condition if abc ∈ I(R) implies acb ∈ I(R) for a, b, c ∈ R.
For example, consider Z6 = {0, 1, 2, 3, 4, 5}, then Z6 is a reduced ring and
hence symmetric, and satisfies 1.2.5 = 10 ∼= 4 ∈ Z6. This implies

(1.2.5)2 ∼= 42 = 16 ∼= 4 ∈ I(R)

and (1.5.2)2 ∼= 42 = 16 ∼= 4 ∈ I(R). Thus 1.2.5 ∈ I(R) implies that
1.5.2 ∈ I(R), where I(R) stands for set of all idempotent elements of R.

Remark 2.7. For a non reduced ring the question is still open.

Remark 2.8. The above problem also satisfies for T (R), the set of tripotent
elements. Thus, if R is a reduced ring, then R is symmetric and satisfies the
condition that abc ∈ T (R) implies that acb ∈ T (R). So, in Z6, 1.2.5 ∈ T (R)
implies 1.5.2 ∈ T (R).

Theorem 2.9. For a ring R the following conditions are equivalent:
(1) R is IFP .
(2) For a, b ∈ R, ab ∈ T (R) implies arb = arb(ab)2 for all r ∈ R.

Proof. (1) =⇒ (2). Let R be a IFP ring. Suppose ab ∈ T (R) for
a, b ∈ R. Then ab(1 − (ab)2) = 0. Since R is IFP so for all r ∈ R, we
get arb(1− (ab)2) = 0 =⇒ arb = arb(ab)2 for all r ∈ R.
(2) =⇒ (1). Let ab = 0 for a, b ∈ R. Then for all r ∈ R,

arb = arb(ab)2 = 0.
Thus ab = 0 implies arb = 0 for all r ∈ R. Hence R is a IFP ring.

□
Theorem 2.10. Let R be a ring for any a, b ∈ R such that ab ∈ T (R) implies
arb ∈ T (R) for all r ∈ R. Then R is IFP .

Proof. Let ab = 0 for any a, b ∈ R and arb ∈ T (R) for all r ∈ R. Now,
(barbar)3 = (barbar.barbar.barbar)

= b(arb.arb.arb.arb.arb).ar

= b((arb)3arbarb)ar

= b(arb)3ar

= barbar,

as (arb)3 = arb. Thus, (barbar)3 = barbar. So, barbar ∈ T (R). Also
(barbar)2 = barbarbarbar = b(arb)3ar = barbar is an idempotent and so,
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barbar is central in R. Since arb ∈ T (R) for all r ∈ R, so

arb = (arb)3 = arb.arb.arb

= (arb)3.(arb)3.(arb)3

= (arb.arb.arb)(arb.arb.arb)(arb.arb.arb)

= ar(barbar.barbar.barbar).b(arb.arb)

= ar(barbar)3.b(arb.arb)

= ar(barbar)b(arb.arb)

Hence arb = a(barbar)rb(arb.arb) = (ab)arbarrb(arb.arb) = 0, as ab = 0 and
R is Abelian. Thus ab = 0 =⇒ arb = 0, for all r ∈ R. Hence R is IFP . □

Remark 2.11. It is noticed that barbar ∈ T (R) is central if it is an idempotent
element of R. Otherwise, the relation

arb = ar(barbar)b(arb.arb) =⇒ arb = a(barbar)rb(arb.arb)

is not true.

Corollary 2.12. The converse of the Theorem 2.10 does not hold in general.

Proof. Let R be a reduced ring. Then by [11, Proposition 1.2], D3(R) is
IFP . Now we verify for tripotent element which is not idempotent. Let

a = (−t11−t22−t33) =

−1 0 0
0 −1 0
0 0 −1

 and b = (t11+t22+t33) =

1 0 0
0 1 0
0 0 1

.

Then

ab =

−1 0 0
0 −1 0
0 0 −1

1 0 0
0 1 0
0 0 1

 =

−1 0 0
0 −1 0
0 0 −1

.

Clearly (ab)3 = ab. Thus ab ∈ T (D3(R)). But, for r =

0 0 1
0 0 0
0 0 0

, we have

arb =

−1 0 0
0 −1 0
0 0 −1

0 0 1
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

 =

0 0 −1
0 0 0
0 0 0

 /∈ T (D3(R)).

□
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3. Quasi Tri reversible rings
In this section we introduce quasi tri reversible ring and study some of its

properties using the concept of tripotent elements of a ring. We begin with
the following lemmas.

Lemma 3.1. Let R be a reversible ring and suppose that AB ∈ T (M2(R))
′ for

A =

(
a1 a3
0 a2

)
, B =

(
b1 b3
0 b2

)
∈ M2×2(R). Then (b1a3+b3a2)(b1a1+b2a2) = 0

and (
b1a1 (b1a3 + b3a2)(b1a1 + b2a2)
0 b2a2

)
,

(
b1a1 (b1a3 + b3a2)b1a1
0 b2a2

)
,(

b1a1 (b1a3 + b3a2)b2a2
0 b2a2

)
,

(
b1a1 −(b1a3 + b3a2)b1a1
0 b2a2

)
,(

b1a1 −(b1a3 + b3a2)b2a2
0 b2a2

)
∈ T (M2(R))

′
.

Proof. Since AB ∈ T (M2(R))
′, so 0 ̸= AB ∈ T (M2(R)), we have that 0 ̸=

a1b1 ∈ T (R) or 0 ̸= a2b2 ∈ T (R). By Corollary 2.2, we get a1b1 = b1a1 and
a2b2 = b2a2, and let a1b1 = t and a2b2 = s. From (AB)3 = AB yields(
(a1b1)

3 (a1b1)
2(a1b3 + a3b2) + {a1b1(a1b3 + a3b2) + (a1b3 + a3b2)a2b2}a2b2

0 (a2b2)
3

)
=

(
a1b1 a1b3 + a3b2
0 a2b2

)
.

Thus we get
(a1b1)

3 = a1b1 =⇒ t3 = t =⇒ t(1− t2) = 0 =⇒ 1− t2 = 0,
as t ̸= 0 so we consider t = 1 or t = −1, since both 1 and −1 are tripotents.
Similarly, (a2b2)

3 = a2b2 and hence 1 − s2 = 0, as s ̸= 0 and s = 1 or
s = −1, (*). Also, from

(a1b1)
2(a1b3 + a3b2) + {a1b1(a1b3 + a3b2) + (a1b3 + a3b2)a2b2}a2b2

= a1b3 + a3b2

yields
t2(a1b3 + a3b2) + t(a1b3 + a3b2)s+ (a1b3 + a3b2)s

2 = a1b3 + a3b2

=⇒ t(a1b3 + a3b2)s+ (a1b3 + a3b2) = (a1b3 + a3b2)(1− s2)

=⇒ +a1b1a3b2a2b2 + a1b3 + a3b2 = 0, (∗∗).
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Multiplying b1 on the left and a2 on the right of equality (**) we get

b1a1b1a1b3a2b2a2 + b1a1b1a3b2a2b2a2 + b1a1b3a2 + b1a3b2a2 = 0

=⇒ (b1a1)
2b3a2b2a2 + b1a1b1a3(b2a2)

2 + b1a1b3a2 + b1a3b2a2 = 0

=⇒ b3a2b2a2 + b1a1b1a3 + b1a1b3a2 + b1a3b2a2 = 0

=⇒ (b1a3 + b3a2)(b1a1 + b2a2) = 0

=⇒ (b1a3 + b3a2)(t+ s) = 0.

This result gives us(
b1a1 (b1a3 + b3a2)(b1a1 + b2a2)
0 b2a2

)
,

(
b1a1 (b1a3 + b3a2)b1a1
0 b2a2

)
,(

b1a1 (b1a3 + b3a2)b2a2
0 b2a2

)
,

(
b1a1 −(b1a3 + b3a2)b1a1
0 b2a2

)
,(

b1a1 −(b1a3 + b3a2)b2a2
0 b2a2

)
∈ T (M2(R))

′
.

□

Remark 3.2. It is noticed that from (*) i.e., 1 − t2 = 0 or, (1 − s2 = 0) are
also hold other than t = 1,−1 or, (s = 1,−1). For example, 3 ∈ T (Z8) and
1− 32 = 0 but 3 ̸= 1,−1.

Lemma 3.3. Let R be a ring with T (R) = {0, 1,−1}. If AB ∈ T (D2(R))
′

for A,B ∈ D2(R), then AB = I2 = BA or AB = −I2 = BA.

Proof. (1) Since A,B ∈ D2(R), so let A =

(
a 0
0 a

)
and B =

(
b 0
0 b

)
. Suppose

AB ∈ T (D2(R))
′ and let AB = I2. This implies that,

(
ab 0
0 ab

)
=

(
1 0
0 1

)
.

This gives ab = 1. So either, a = 1, b = 1 or a = −1, b = −1. Thus in each
case, BA =

(
ba 0
0 ba

)
=

(
1 0
0 1

)
= I2. Hence AB = I2 = BA.

(Another proof) LetR be a ring with T (R) = {0, 1,−1}. ThenR is Abelian.
So by the help of [6, Lemma 2], we get T (D2(R)) = {0, I2,−I2}. HenceD2(R)
is also Abelian. Suppose AB ∈ T (D2(R))

′ for A,B ∈ D2(R) and if AB = I2,
then BA = I2, as D2(R) is directly finite. Thus AB = I2 = BA.

(2) Since A,B ∈ D2(R), so let A =

(
a 0
0 a

)
and B =

(
b 0
0 b

)
. Suppose

AB ∈ T (D2(R))
′ and let AB = −I2. This implies that
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ab 0
0 ab

)
=

(
−1 0
0 −1

)
.

This gives ab = −1. So either a = 1, b = −1 or a = −1, b = 1. Thus in each
case, BA =

(
ba 0
0 ba

)
=

(
−1 0
0 −1

)
= −I2. Hence AB = −I2 = BA. □

Here we introduce the quasi tri reversible ring using non-zero tripotent
elements of a ring as follows.

Definition 3.4. A ring R is a quasi tri reversible if ab ∈ T (R)
′ for a, b ∈ R

implies that ba ∈ T (R), where T (R)
′ is the set of all non-zero tripotent

elements of R.

Example 3.5. (1) Let R = M2(Z3) be an upper triangular matrix ring over
field Z3. Then R is a quasi tri reversible ring.
(2) The upper triangular matrix ring, M2(R) is a quasi tri reversible ring

by Theorem 3.8 to follow.

Remark 3.6. By Lemma 3.3, every ring with T (R) = {0, 1,−1} is quasi tri
reversible. Reversible rings are quasi tri reversible by Theorem 2.1, but not
conversely by Theorem 3.8 to follow. Also we recall that reversible rings are
Abelian. But quasi tri reversible rings need not be Abelian by Theorem 3.8
to follow.

Lemma 3.7. (1) A ring R is quasi tri reversible if and only if ab ∈ T (R)
′

for a, b ∈ R implies ba ∈ T (R)
′.

(2) The class of quasi tri reversible rings are closed under subrings (with
or without identity).

Proof. (1) Let R be a quasi tri reversible ring and suppose that ab ∈ T (R)
′

for a, b ∈ R. Then by definition, ba ∈ T (R). If possible let ba = 0. Since
ab ∈ T (R)

′, then (ab)3 = ab, and so ab = a(ba)bab = 0, which contradicts
that ab ̸= 0. Thus ba ∈ T (R)

′.
(2) Let R be a quasi tri reversible ring and S be a subring (possibly

without identity) of R. Suppose ab ∈ T (S)
′ for a, b ∈ S. We have noted that

T (S) = T (R) ∩ S and T (S)
′
= T (R)

′ ∩ S. Since R is quasi tri reversible,
ba ∈ T (R). But ba ∈ S, and ba ∈ T (S) follows. □
Following G. Marks [14], a ring R is called NI if N ∗(R) = N(R). It is

obvious that a ring R is NI if and only if N(R) forms an ideal of R if and
only if R/N ∗(R) is a reduced ring. By [9, Proposition 2.7(1)], a ring R is
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NI, then R is directly finite. We use freely the fact that reversible rings are
easily shown to be NI.

Theorem 3.8. A ring R is a reversible with T (R) = {0, 1,−1} if and only
if M2(R) is a quasi tri reversible ring.

Proof. Let R be a reversible ring with T (R) = {0, 1,−1}. Through a simple
computation, we get

T (M2(R)) =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 r
0 0

)
,

(
0 s
0 1

)
,

(
−1 0
0 −1

)
,(

−1 u
0 0

)
,

(
0 v
0 −1

)
|r, s, u, v ∈ R

}
,

since T (R) = {0, 1,−1}. Suppose that AB ∈ T (M2(R))
′ for

A =

(
a1 a3
0 a2

)
, B =

(
b1 b3
0 b2

)
∈ M2(R).

Then AB =

(
a1b1 a1b3 + a3b2
0 a2b2

)
. Now consider the following four cases:

Case 1: Let a1b1 = 1 and a2b2 = 1. So by Corollary 2.2., we get b1a1 = 1
and b2a2 = 1. If AB = I2, then a1b3 + a3b2 = 0. Thus BA = I2, as M2(R) is
NI and so directly finite. Otherwise,

BA =

(
b1a1 b1a3 + b3a2
0 b2a2

)
=

(
b1a1 (b1a3 + b3a2)1
0 b2a2

)
=

(
b1a1 (b1a3 + b3a2)b1a1
0 b2a2

)
∈ T (M2(R))

′
,

by Lemma 3.1. Thus M2(R) is a quasi tri reversible ring.
Case 2: Let a1b1 = −1 and a2b2 = −1, then b1a1 = −1 and b2a2 = −1, by

Corollary 2.2. This implies

BA =

(
−1 b1a3 + b3a2
0 −1

)
=

(
b1a1 (−1)(b1a3 + b3a2)(−1)
0 b2a2

)
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=

(
b1a1 −(b1a3 + b3a2)b1a1
0 b2a2

)
∈ T (M2(R))

′
,

by Lemma 3.1. Thus M2(R) is a quasi tri reversible ring.
Case 3: Firstly let a1b1 = 1 and a2b2 = 0, then b1a1 = 1 and b2a2 = 0, by

Corollary 2.2. This gives,

BA =

(
1 b1a3 + b3a2
0 0

)
=

(
b1a1 (b1a3 + b3a2)b1a1
0 b2a2

)
∈ T (M2(R))

′,

by Lemma 3.1. Secondly let a1b1 = 0 and a2b2 = 1, then b1a1 = 0 and
b2a2 = 1, by Corollary 2.2. This gives

BA =

(
0 b1a3 + b3a2
0 1

)
=

(
b1a1 (b1a3 + b3a2)b2a2
0 b2a2

)
∈ T (M2(R))

′,

by Lemma 3.1. Thus M2(R) is a quasi tri reversible ring.
Case 4: Firstly let a1b1 = −1 and a2b2 = 0, then b1a1 = −1 and b2a2 = 0,

by Corollary 2.2. This gives

BA =

(
−1 b1a3 + b3a2
0 0

)
=

(
b1a1 −(b1a3 + b3a2)b1a1
0 b2a2

)
∈ T (M2(R))

′,

by Lemma 3.1. Secondly let a1b1 = 0 and a2b2 = −1, then b1a1 = 0 and
b2a2 = −1, by Corollary 2.2. This gives

BA =

(
0 b1a3 + b3a2
0 −1

)
=

(
b1a1 −(b1a3 + b3a2)b2a2
0 b2a2

)
∈ T (M2(R))

′,

by Lemma 3.1. Finally, if AB ∈ T (M2(R))
′, then BA ∈ T (M2(R))

′. This
shows that M2(R) is a quasi tri reversible ring.
Conversely, let M2(R) be a quasi tri reversible ring. We have to show that

R is a reversible ring. Let ab = 0 for a, b ∈ R. We consider two matrices
A =

(
a 0
0 −1

)
and B =

(
b 0
0 1

)
of M2(R). Then

0 ̸= AB =

(
ab 0
0 −1

)
=

(
0 0
0 −1

)
∈ T (M2(R)).

Since M2(R) is a quasi tri reversible ring, so BA =

(
ba 0
0 −1

)
∈ T (M2(R))

′.

This implies that (ba)3 = ba =⇒ b(ab)aba = ba =⇒ 0 = ba, as ab = 0.
Therefore R is a reversible ring.
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Next we assume on the contrary that there exists t3 = t with t /∈ {0, 1,−1}.

Let us consider two matrices C =

(
t 1
0 0

)
and D =

(
1 0
0 t

)
of M2(R). Then

0 ̸= CD =

(
t t
0 0

)
∈ T (M2(R)). But DC =

(
t 1
0 0

)
/∈ T (M2(R)), as(

t 1
0 0

)3

=

(
t t2

0 0

)
̸=

(
t 1
0 0

)
, which contradicts that M2(R) is a quasi tri

reversible ring. Thus T (R) = {0, 1,−1}. □
Remark 3.9. The existence of reversible ring R, such that T (R) = {0, 1,−1}
and R is not reduced, which is evident by Theorem 3.8. For this, let R be a
domain and D2(R) be the diagonal matrix. Then by [14, Proposition 1.6], we
have observed that D2(R) is a reversible ring and T (D2(R)) = {0, I2,−I2},
but D2(R) is not reduced, because it does not have a non-zero nilpotent
element.
As a consequence of Theorem 3.8, we get the following results.

Corollary 3.10. (1) If R is a domain, then M2(R) is a quasi tri reversible
ring.

(2) Let R be a (quasi tri) reversible ring such that T (R) contains {0, 1,−1}
properly, and n ≥ 2. Then Matn(R) and Mn(R) need not be quasi tri
reversible rings.

Proof. (1) is an instant result of Theorem 3.8.
(2) By Theorem 3.8, we have M2(R) is not a quasi tri reversible ring and

thus Matn(R) and Mn(R) need not be quasi tri reversible for n ≥ 2, by
Lemma 3.7(2). □
Considering Theorem 3.8 and Corollary 3.10, it is natural to raise a ques-

tion. Whether M2(R) is a quasi tri reversible ring over a reduced ring R. The
following Example 3.11 illuminates that the answer is negative.
Example 3.11. Let R = Z × Z and Z be a domain. Then R is a reduced
ring but not a domain, and
T (R) = {(0, 0), (1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), (1,−1), (−1, 1), (−1,−1)}.
Then M2(R) is not quasi tri reversible, by Theorem 3.8. Because, for

A =

(
(−1, 0) (1, 1)
(0, 0) (1, 0)

)
, B =

(
(1, 1) (−1, 1)
(0, 0) (−1, 0)

)
∈ M2(R),

we have AB ∈ T (M2(R)) but BA /∈ T (M2(R)). This shows that M2(R) is
not quasi tri reversible. We have noted that the ring R = Z×Z is reversible.
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The justification in the following Corollary 3.12, clarify Theorem 3.8.

Corollary 3.12. Theorem 3.8 is not valid for Mn(R), whenever n ≥ 3.

Proof. Let R be any ring and we consider for n = 3. Let

A =

0 1 0
0 −1 0
0 0 1

 , B =

−1 1 1
0 1 1
0 0 0

 ∈ M3(R).

Then

AB =

0 1 1
0 −1 −1
0 0 0

 ∈ T (M3(R)),

as (AB)3 = AB. But BA =

0 2 1
0 −1 −1
0 0 0

 /∈ T (M3(R)), as (BA)3 ̸= BA.

This argument can also be applicable for n ≥ 4. Thus Mn(R) cannot be quasi
tri reversible, whenever n ≥ 3. □
Next we extend [9, Theorem 1.8] by using tripotent elements, since every

idempotents are also tripotents, so in the following Theorem 3.13, we observe
another kind of quasi tri reversible rings in the class of simple Artinian rings.

Theorem 3.13. The full matrix ring Mat2(Z2) is a quasi tri reversible ring,
where Z2 is the ring of integers modulo 2.

Proof. Let R = Mat2(Z2). So we have

T (R) =

{
0, I2, T11, T22,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)}
,

by the help of [12, Lemma 2.3]. Let AB ∈ T (R)
′ for

A =

(
a1 a2
a3 a4

)
, B =

(
b1 b2
b3 b4

)
∈ R.

We proceed our justification case by case. Suppose AB = I2. Since R
is Artinian, so R is directly finite. Thus AB = I2 implies BA = I2. So
BA ∈ T (R). Hence R is quasi tri reversible ring.
Let us assume that AB = T11. Now proceeding by the same argument in
[9, Theorem 1.8]. We have(

a1b1 + a2b3 a1b2 + a2b4
a3b1 + a4b3 a3b2 + a4b4

)
=

(
1 0
0 0

)
.
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Then, a1b1 + a2b3 = 1, a1b2 + a2b4 = 0, a3b1 + a4b3 = 0 and a3b2 + a4b4 = 0.
From a1b1 + a2b3 = 1, we have the cases of (a1b1 = 1, a2b3 = 0) and
(a1b1 = 0, a2b3 = 1). We consider the case of a1b1 = 1, a2b3 = 0. Then
a1 = 1, b1 = 1 and a2 = 0 or b3 = 0. Let a2 = 0. Then from a1b2 + a2b4 = 0
we get b2 = 0. So, a3b2 + a4b4 = 0 =⇒ a4b4 = 0. These results give us

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0

b3 + b4a3 0

)
∈ T (R),

as (
1 0

b3 + b4a3 0

)3

=

(
1 0

b3 + b4a3 0

)
.

Let b3 = 0. Then from a3b1 + a4b3 = 0 we get a3 = 0. Since a3b2 + a4b4 = 0,
we have a4b4 = 0. These results give us

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 a2 + b2a4
0 0

)
∈ T (R).

Now we consider the case of a1b1 = 0, a2b3 = 1. Then a2 = 1, b3 = 1 and
a1 = 0 or b1 = 0. Let a1 = 0. Then from a1b2 + a2b4 = 0 we get b4 = 0. So
a3b2 + a4b4 = 0 =⇒ a3b2 = 0. These results provide us

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 b1 + b2a4
0 1

)
∈ T (R).

Let b1 = 0. Then from a3b1 + a4b3 = 0, we get a4 = 0. So a3b2 + a4b4 = 0
implies a3b2 = 0. These results give us

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 0

a1 + b4a3 1

)
∈ T (R).

Thus BA ∈ T (R) in any case when AB = T11. This implies R is a quasi tri
reversible ring.
Thus, by similar justification for AB = T22,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
1 0

)
and(

0 1
0 1

)
, respectively, we have BA ∈ T (R). Hence, R = Mat2(Z2) is a quasi

tri reversible ring. □
Remark 3.14. Let Z3 = {0, 1,−1}. Following Theorem 3.13, if we consider
R = Mat2(Z3), then

T (R) =

{
0, I2,−I2, T11,−T11, T22,−T22,

(
1 1
0 0

)
,

(
−1 1
0 0

)
,
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−1 −1
0 0

)
,

(
0 0
1 1

)
,

(
0 0
−1 1

)
,

(
0 0
−1 −1

)
,

(
1 0
1 0

)
,(

−1 0
1 0

)
,

(
−1 0
−1 0

)
,

(
0 1
0 1

)
,

(
0 −1
0 1

)
,

(
0 −1
0 −1

)}
.

But R is not quasi tri reversible ring, where Z3 is the ring of integers modulo
3. Let A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
with AB =

(
−1 1
0 0

)
∈ T (R)

′. Then
a1b1 + a2b3 = −1, a1b2 + a2b4 = 1, a3b1 + a4b3 = 0 and a3b2 + a4b4 = 0. From
a1b1 + a2b3 = −1, a1b2 + a2b4 = 1, we have the cases of

(a1b1 = −1, a2b3 = 0, a1b2 = 1, a2b4 = 0),

(a1b1 = −1, a2b3 = 0, a1b2 = 0, a2b4 = 1),

(a1b1 = 0, a2b3 = −1, a1b2 = 1, a2b4 = 0),

(a1b1 = 0, a2b3 = −1, a1b2 = 0, a2b4 = 1).

We consider the case, a1b1 = −1, a2b3 = 0, a1b2 = 1, a2b4 = 0. Then
a1 = b2 = 1 and b = −1 or a1 = b2 = −1 and b = 1. From a2b3 = 0
and a2b4 = 0 we have the cases, a2 = 0 or b3 = 0 and a2 = 0 or b4 = 0.
Let a1 = b2 = 1, b = −1 and a2 = 0. From a3b1+a4b3 = 0 and a3b2+a4b4 = 0
we get −a3 + a4b3 = 0 and a3 + a4b4 = 0. If a3 = −1, then a4 = −1, b3 = 1
and b4 = −1 (or, a4 = 1, b3 = −1 and b4 = 1). These results give us

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
(−1)(1) + (1)(−1) (1)(−1)
1(1) + (−1)(−1) (−1)(−1)

)
=

(
−2 −1
2 1

)
=

(
1 −1
−1 1

)
/∈ T (R).

So, R is not quasi tri reversible ring.

We have noted that, Mat2(Z2) is simple Artinian. So, we considering
Theorem 3.13, one may ask naturally whether semisimple Artinian rings are
quasi tri reversible. The following Example shows that the answer is negative.
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Example 3.15. (1) Let F be a division ring and R = F × F . Since
Mat2(R) is isomorphic to Mat2(F ) × Mat2(F ), Mat2(R) is semisim-
ple Artinian. Also we consider M2(R), then M2(R) is not quasi tri
reversible (see Example 3.11). So, Mat2(R) is not quasi tri reversible
by Lemma 3.7(2).

(2) Let F = Z2 in (1). Then Mat2(Z2) is quasi tri reversible by Theorem
3.13. But Mat2(Z2)×Mat2(Z2) is not quasi tri reversible by the part
(1). Thus the class of quasi tri reversible rings is not closed under
direct products.

4. On a property of Abelian rings
In this section we study the structure of Abelian rings and NI rings with

the concept of tripotent elements. We begin with the following equivalent
conditions to the fact that in any ring R, ab ∈ T (R) for a, b ∈ R implies
(ba)3 ∈ T (R).

Theorem 4.1. For a ring R the following conditions are equivalent:
(1) R is Abelian.
(2) If ab ∈ T (R)

′ for a, b ∈ R, then (ba)3 = ab.
(3) If ab ∈ T (R) for a, b ∈ R, then (ba)3 = ab.

Proof. (1) =⇒ (2). Let R be an Abelian ring. We assume that ab ∈ T (R)
′

for a, b ∈ R. Then (ba)3 ∈ T (R). Since, ab ∈ T (R)
′, so (ab)2 is always

idempotent and hence it is central in R. Thus we have
(ba)3 = bababa = b(ab)(ab)a = b(ab)2a = (ab)2(ba) = (ab)3 = ab,

as R is Abelian.
(2) =⇒ (1). Let t ∈ T (R)

′, then t2 is always idempotent. To prove
R is Abelian, it is enough to show that t2 is semicentral in R. We assume
on the contrary that there exists a ∈ R such that t2a(1 − t2) ̸= 0. Then
t2 + t2a(1− t2) ∈ T (R)

′. Otherwise, if 0 = t2 + t2a(1− t2), then
0 = (t2 + t2a(1− t2))t2 = t4 + t2at2 − t2at4 = t2 + t2at2 − t2at2 = t2,

contradicts t ̸= 0. Thus t2 + t2a(1− t2) ∈ T (R)
′ and clearly

t2 + t2a(1− t2) ∈ T (R).
Now, t2 = t2 + at2 − at2 = t2 + at2 − at4 = (1 + a(1 − t2))t2. Since every
idempotent is also tripotent, then

t2 = (t2)3 = ((1 + a(1− t2))t2)3 = t2(1 + a(1− t2)),
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using condition (2) (i.e. (ba)3 = ab). This implies, t2 = t2 + t2a(1 − t2),
permitting t2a(1− t2) = 0, which contradicts t2a(1− t2) ̸= 0.
Therefore t2 is semicentral.
(2) ⇐⇒ (3) is obvious. □

Remark 4.2. In the proof of Theorem 4.1, it is observed that ab ∈ T (R)
′

implies ba ̸= 0. It is easy to prove the reversible rings are Abelian. This fact
is also obtained from Corollary 2.2 and Theorem 4.1. But Abelian ring need
not be reversible. For example let R = Dn(F ) for n ≥ 3 over any Abelian
ring F . Then R is Abelian by [6, Lemma 2]. But R is not reversible by
[11, Example 1.5]. Another example of Abelian ring that is not reversible,
the polynomial ring R2[x] in Example 4.5 to follow is an Abelian but not
reversible.
From Corollary 2.2 and Theorem 4.1, we can conclude the following

corollary.
Corollary 4.3. Let R be an Abelian ring but not reversible. Then there exists
a, b ∈ R such that ab ∈ T (R), (ba)3 = ab, and ba /∈ T (R).
It is easy to prove the class of Abelian rings is closed under subrings and

direct products. The notion of quasi tri reversible and Abelian rings are
independent of each other as shown in following example.
Example 4.4. (1) Let R1 be an Abelian and R2 also be an Abelian ring but
not reversible such that R = R1 ×R2. Let t ∈ T (R1)

′, then −t ∈ T (R1)
′ and

a, b ∈ R2 such that ab = 0 but ba ̸= 0. Suppose f = (t, a) and g = (−t, b) be
two elements in R. Then fg = (−t2, ab) = (−t2, 0) ∈ T (R)

′, as
(fg)3 = (−t6, 0) = (−t2, 0) = fg.

But gf = (−t2, ba) and
(gf)3 = (−t2, bababa) = (−t2, b(ab)aba) = (−t2, 0) ̸= gf .

This implies that gf /∈ T (R)
′. Thus R is not a quasi tri reversible ring but

R is Abelian.
(2) By Theorem 3.13, Mat2(Z2) is a quasi tri reversible ring but clearly it

is non-Abelian.
By the help of argument in Example 4.4(1), we can deduce that the

polynomial rings are not quasi tri reversible as shown in the following ex-
ample.
Example 4.5. Let R1 be a reduced ring and R2 be the reversible ring. Let
R3 = R1 × R2. Then R3 is clearly reversible and hence quasi tri reversible
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by Theorem 2.1. Let R3[x] be a polynomial ring. Since R2 is reversible
and hence based on the justification in [11, Example 2.1], we get R2[x] is
not reversible. Taking f(x) =

∑m
i=0 αix

i, g(x) =
∑n

j=0 βjx
j ∈ R2[x] such

that f(x)g(x) = 0 but g(x)f(x) ̸= 0, where we can let m = n by using
zero coefficients if necessary. Now, let a(x) = (−1, α0) +

∑m
i=0(0, αi)x

i and
b(x) = (1, β0) +

∑m
j=0(0, βj)x

j in R3[x]. Then

a(x)b(x) = ((−1, α0) +
m∑
i=0

(0, αi)x
i)((1, β0) +

m∑
j=0

(0, βj)x
j)

= (−1, α0β0) +
m∑
j=0

(0, α0βj)x
j +

m∑
i=0

(0, αiβ0)x
i +

m∑
i,j=0

(0, αjβj)x
i+j

= (−1, 0) ∈ T (R3[x])
′
,

as αiβj = 0, for all i, j. But

b(x)a(x) = ((1, β0) +
m∑
j=0

(0, βj)x
j)((−1, α0) +

m∑
i=0

(0, αi)x
i)

= (−1, 0) + c(x),

for some 0 ̸= c(x) =
∑l

k=1(0, γk)x
k ∈ R3[x], by the justification in [11,

Example 2.1]. If possible let b(x)a(x) ∈ T (R3[x]), then we get

(−1, 0) + c(x) = b(x)a(x) = b(x)a(x)b(x)a(x)b(x)a(x)

= b(x)[a(x)b(x)]2a(x)

= b(x)(1, 0)a(x)

= (1, 0)b(x)a(x)

= (1, 0)[(−1, 0) +
l∑

k=1

(0, γk)x
k]

= (−1, 0),

a contradiction. Thus, b(x)a(x) /∈ T (R3[x]). Hence, R3[x] is not a quasi tri
reversible ring.

By the help of Theorem 4.1, we have the following results. Following Bell
[2], a ring R is called IFP if ab = 0 for a, b ∈ R implies aRb = 0. We have
noted that reversible rings are IFP and IFP rings are Abelian. We use this
fact comfortably.
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Theorem 4.6. (1) A ring R is reversible if and only if ab ∈ T (R) for
a, b ∈ R, then bra = bra(ab)2 for all r ∈ R.

(2) A ring R is IFP if and only if for a, b ∈ R, ab ∈ T (R) implies
arb = arb(ba)4 for all r ∈ R.

Proof. (1) Let R be a reversible ring and ab ∈ T (R) for a, b ∈ R. Then by
Theorem 2.1, ba ∈ T (R). So, ba = (ba)3, and thus ba(1 − (ba)2) = 0. By
Corollary 2.2, we get ba(1− (ab)2) = 0. Since reversible rings are IFP , so R
is IFP , then for all r ∈ R we have bra(1− (ab)2) = 0 =⇒ bra = bra(ab)2.
Conversely, let ab ∈ T (R) for a, b ∈ R and bra = bra(ab)2 for all

r ∈ R. For r = 1, we get ba = ba(ab)2. Now we assume that ab = 0, then
ba = ba(ab)2 = 0. This shows that R is a reversible ring.
(2) Let R be a IFP ring. Suppose ab ∈ T (R) for a, b ∈ R. Then by

Theorem 4.1, we get ab = (ba)3. Since R is Abelian, so
ab = bababa = b(ab)abababa = (ab)babababa = ab(ba)4

implies ab(1 − (ba)4) = 0. Since R is IFP , so for all r ∈ R we get
arb(1− (ba)4) = 0 =⇒ arb = arb(ba)4.
Conversely, let ab = 0 for a, b ∈ R. Then for all r ∈ R,

arb = arb(ba)4 = arbb(ab)a = 0.
Thus ab = 0 implies arb = 0 for all r ∈ R. Hence R is a IFP ring.

□
Remark 4.7. By the help of Theorem 4.6, we can show that reversible rings
are IFP , through tripotent elements. Let R be a ring for a, b ∈ R such that
ab ∈ T (R). Suppose R is reversible, then by Corollary 2.2, ab = ba; thus
arb = arb(ba)2 for all r ∈ R by Theorem 4.6(1). This can be written as,
arb = arb(ba)4, hence R is IFP by Theorem 4.6(2).
However the concepts of IFP and quasi tri reversible rings are independent

of each other as shown in the following example:
Example 4.8. (1) Let R1 be any IFP ring and R2 = D3(F ), then by [11,
Example 1.5] R2 is IFP but not reversible when F is a reduced ring. Now, let
R = R1 ×R2, then R is clearly IFP but not quasi tri reversible by Example
4.4(1).
(2) Let R = Mat2(Z2), then by Theorem 3.13, we have R is a quasi tri

reversible ring. But R is not IFP , as R is non-Abelian.
According to Von Neumann [18], a ring R is regular provided that for every

x ∈ R there exists y ∈ R such that xyx = x. We have noted that every regular
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ring R is semiprimitive (i.e. J(R) = 0). Next, we extend [4, Theorem 1.1]
as, a ring R is regular if and only if every principal right(left) ideal of R is
generated by a tripotent. Let R be a regular ring, then for any x ∈ R there
exists y ∈ R such that xyx = x. Then (xy)3 = xyxyxy = xyxy = xy. So
xy ∈ T (R) such that xyR = xR. Thus, every principal right(left) ideal of R is
generated by a tripotent element. Again, if x ∈ R there exists tripotent t ∈ R
such that tR = xR, then t = xy for some y ∈ R and x = tx = xyx. Moreover,
we have the following equivalences by [4, Theorem 3.2] fact of semiprime
NI rings being reduced. For a regular ring R the following conditions are
equivalent:
(1) R is reduced, (2) R is reversible, (3) R is IFP , (4) R is NI, (5) R is

Abelian.
However the quasi tri reversibility need not be equivalent to the reversibility

when given rings are regular as follows.

Example 4.9. The ring R = Mat2(Z2) is regular by [4, Theorem 1.7] and
quasi tri reversible by Theorem 3.13. But R is non-Abelian, hence not
reversible.

According to Hoque and Saikia [5], a ring R is called weakly tri normal if
for all a, r ∈ R and t ∈ R with at = 0, implies Rtra is a nil left ideal of R.
The weakly tri normal rings are directly finite. We have noted that, weakly
reversible ring and Abelian rings are weakly tri normal rings.
Here we observe that notion of quasi tri reversible rings and weakly tri

normal rings are independent of each other as shown in the following example:

Example 4.10. (1) The ring Mn(R) is not quasi tri reversible ring when
n ≥ 3, by Corollary 3.12. But Mn(R) is weakly tri normal ring for any n ≥ 1
by [5, Corollary 2.12].
(2) By Theorem 3.13, the ring R = Mat2(Z2) is a quasi tri reversible

ring. But R = Mat2(Z2) is not weakly tri normal ring as follows. Let

t =

(
−1 0
0 0

)
∈ T (R) and a =

(
0 0
0 1

)
be any matrix in R. Then

at =

(
0 0
0 1

)(
−1 0
0 0

)
=

(
0 0
0 0

)
.

Now for r =
(
0 1
1 0

)
∈ R, we get(

0 1
1 0

)(
−1 0
0 0

)(
0 1
1 0

)(
0 0
0 1

)
=

(
0 0
−1 0

)(
0 1
0 0

)
=

(
0 0
0 −1

)
̸=

(
0 0
0 0

)
.
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Therefore
(
0 1
1 0

)(
−1 0
0 0

)(
0 1
1 0

)(
0 0
0 1

)
/∈ N(R). This shows that R is

not a weakly tri normal ring.
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