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FUZZY NEUTROSOPHIC PRIME IDEALS OF BCK-ALGEBRAS

B. SATYANARAYANA, SH. BAJI∗ AND D. DEVANANDAM

Abstract. In this research paper, we introduce and analyse the notion of fuzzy
neutrosophic prime ideals (FNPIs) in a commutative BCK-algebra K. It represents a
further extension of prime ideals in the context of fuzzy neutrosophic sets. We provide
an example that shows that not every fuzzy neutrosophic ideal of a commutative
BCK-algebra K is a FNPI of K. We also prove that a fuzzy neutrosophic set of K is
a FNPI of K if, for all a, b, c ∈ [0, 1], the upper (a,b)-level cut and lower c-level cut
are prime ideals of K.

1. Introduction
L. A. Zadeh [14], a professor of computer science at the University of Cal-

ifornia introduced the concept of fuzzy sets (FSs) in 1965. Fuzzy sets ana-
lyzed the degree of membership of members of the set, and Xi [13] applied
this concept to the ideals of BCK/BCI algebras. In 1986 Atanassove [3]
generalized a fuzzy set to an intuitionistic fuzzy set (IFS) by including an-
other function called a non-membership function, and Jun and Kim [8] in-
troduced intuitionistic fuzzy ideals of BCK-algebras. In 1995, Smarandache
([11], [12]) introduced the neutrosophic set (NS), which discusses the de-
gree of uncertainty. In [2], Arockiarani et al. introduced the concept of fuzzy
neutrosophic sets (FNSs). In [9] Y. B. Jun et al. introduced fuzzy prime ideals
in commutative BCK-algebras. Later in 2014, Saleem Abdullah [1] had given
the notion of intuitionistic fuzzy prime ideals of commutative BCK-algebras.
In this paper, we give a notion of FNPIs of commutative BCK-algebras and
investigate some of their properties.

2. Preliminaries
Definition 2.1. ([5] , [6]) Let K be a non-empty set with a binary operation
“⋄” and a constant “0”. Then, (K, ⋄, 0) is called a BCK-algebra if it follows
the following axioms for all p0, r0, u0 ∈ K:
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((p0 ⋄ r0) ⋄ (p0 ⋄ u0)) ⋄ (u0 ⋄ r0) = 0 (2.1)

(p0 ⋄ (p0 ⋄ r0)) ⋄ r0 = 0 (2.2)

p0 ⋄ p0 = 0 (2.3)

0 ⋄ p0 = 0 (2.4)

p0 ⋄ r0 = 0 and r0 ⋄ p0 = 0 ⇒ p0 = r0 (2.5)

Definition 2.2. [6] A non-empty subset I of a BCK/BCI-algebra K is
called an ideal, if it satisfies
(I-1) 0 ∈ I.
(I-2) p0 ⋄ r0 ∈ I and r0 ∈ I ⇒ p0 ∈ I for all p0, r0 ∈ K.

Definition 2.3. [6] An ideal I of a BCI-algebra K is called a closed ideal,
if it satisfies 0 ⋄ p0 ∈ I, for all p0 ∈ I.

Definition 2.4. [4] An ideal of a commutative BCK-algebra K is said to be
prime, if it satisfies p0 ∧ r0 ∈ I implies p0 ∈ I or r0 ∈ I.

Proposition 2.5. [4] Every prime ideal of a BCK-algebra K is an ideal of
K.

Definition 2.6. [14] Let K be a non-empty set. A fuzzy set in the set K is
a mapping NT : K → [0, 1].

Definition 2.7. [14] The complement of a fuzzy set NT is denoted by (NT )
c

and is also a fuzzy set defined as (NT )
c = 1−NT . Also, (NT

c)c = NT .

Definition 2.8. [9] A fuzzy ideal NT of a commutative BCK-algebra is
said to be a fuzzy prime ideal if NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)} for all
p0, r0 ∈ K.

Definition 2.9. [7] A fuzzy ideal NT of a commutative BCK-algebra K is
called an anti-fuzzy prime ideal of K if NT (p0 ∧ r0) ≥ min{NT (p0),NT (r0)}
for all p0, r0 ∈ K.

Definition 2.10. [3] An intuitionistic fuzzy set N in a non-empty set K is
an object having the form N = {(p0,NT (p0),NF (p0))/p0 ∈ K} where the
functions NT : K → [0, 1] and NF : K → [0, 1] denote the grade of member-
ship and non-membership of each element p0 ∈ K to the set N respectively,
and 0 ≤ NT (p0) +NF (p0) ≤ 1 for all p0 ∈ K.
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Definition 2.11. [8] An IFS N = (K,NT ,NF ) of a BCK-algebra K is an
IFI of K if it follows the conditions:
(IFI-1) NT (0) ≥ NT (p0) and NF (0) ≤ NF (p0).
(IFI-2) NT (p0) ≥ min{NT (p0 ⋄ r0),NT (r0)}.
(IFI-3) NF (p0) ≤ max{NF (p0 ⋄ r0),NF (r0)} for all p0, r0 ∈ K.

Definition 2.12. [1] An intuitionistic fuzzy ideal N = (K,NT ,NF ) of a
commutative BCK-algebra K is an intuitionistic fuzzy prime ideal of K if it
follows the conditions:
(IFPI-1) NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}.
(IFPI-2) NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)} for all p0, r0 ∈ K.

Definition 2.13. [2] A Fuzzy Neutrosophic Set (FNS) in a non-empty set K
is a structure of the form

N = {⟨p0,NT (p0),NI(p0),NF (p0)⟩ /p0 ∈ K}.
Where NT : K → [0, 1],NI : K → [0, 1] and NF : K → [0, 1] represents grade
of belongingness, grade of indeterminacy and grade of non- belongingness of
each element p0 ∈ K to the set N respectively and

0 ≤ NT (p0) +NI(p0) +NF (p0) ≤ 3.
We shall use the symbol N = (NT ,NI ,NF ) for the FNS

N = {⟨p0,NT (p0),NI(p0),NF (p0)⟩ /p0 ∈ K}.
Definition 2.14. [10] A FNS N = (NT ,NI ,NF ) in K) is a fuzzy neutrosophic
sub–algebra (FNSA) of K if it follows the conditions:
(FNSA-1) NT (p0 ⋄ r0) ≥ min{NT (p0),NT (r0)}.
(FNSA-2) NI(p0 ⋄ r0) ≥ min{NI(p0),NI(r0)}.
(FNSA-3) NF (p0 ⋄ r0) ≤ max{NF (p0),NF (r0)} for all p0, r0 ∈ K.

Definition 2.15. [10] A FNS N = (NT ,NI ,NF ) ∈ K is a fuzzy neutrosophic
ideal (FNI) of K if it follows the conditions:
(FNI-1) NT (0) ≥ NT (p0),NI(0) ≥ NI(p0) and NF (0) ≤ NF (p0).
(FNI-2) NT (p0) ≥ min{NT (p0 ⋄ r0),NT (r0)}.
(FNI-3) NI(p0) ≥ min{NI(p0 ⋄ r0),NI(r0)}.
(FNI-4) NF (p0) ≤ max{NF (p0 ⋄ r0),NF (r0)} for all p0, r0 ∈ K.

Definition 2.16. [10] Every FNI of a BCK-algebra K is a fuzzy neutrosophic
subalgebra of a BCK-algebra K.

3. Main results
For the purpose of this article, we will use the notation K to refer to a

commutative BCK-algebra.
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Definition 3.1. A fuzzy neutrosophic ideal N = (NT ,NI ,NF ) of K is called
a fuzzy neutrosophic prime ideal (FNPI) of K if it satisfies:
(FNPI-1) NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}.
(FNPI-2) NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}.
(FNPI-3) NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)} for all p0, r0 ∈ K.

Example 3.2. Let K = {0, 1, 2, 3} with the Cayley table as defined in Table
1.

Table 1. Commutative BCK-algebra

⋄ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 1 0

It is easy to verify that (K, ⋄, 0) is a commutative BCK-algebra. Now, let’s
define a fuzzy neutrosophic set (FNS) N = (NT ,NI ,NF ) as shown in Table
2. By routine calculations, we can conclude that N = (NT ,NI ,NF ) is an

Table 2. Fuzzy Neutrosophic Set

K NT NI NF

0 0.9 0.9 0
1 0.8 0.7 0.2
2 0.4 0.3 0.6
3 0 0 0.9

FNPI of K.

Theorem 3.3. If N = (NT ,NI ,NF ) is a FNPI of a K, then the sets
K1 = {p0 ∈ K : NT (p0) = NT (0)}, K2 = {p0 ∈ K : NI(p0) = NI(0)},

and K3 = {p0 ∈ K : NF (p0) = NF (0)} are prime ideals of K.

Proof. Straightforward. □
Corollary 3.4. If N = (NT ,NI ,NF ) is a FNPI of a K, then the sets
M1 = {p0 ∈ K : NT (p0) = 0}, M2 = {p0 ∈ K : NI(p0) = 0}, and
M3 = {p0 ∈ K : NF (p0) = 0} are either empty or prime ideals of K.

Proposition 3.5. Every FNPI of a K is a FNI of a K.

Remark 3.6. A FNI of a commutative BCK-algebra K need not be a FNPI
of K as shown in the following Example 3.7.
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Table 3. Commutative BCK-algebra

⋄ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

Example 3.7. Let K = {0, 1, 2, 3} be a BCK-algebra with the Cayley table
as following Table 3. Then the BCK-algebra K is commutative. Define a
fuzzy neutrosophic set N = (NT ,NI ,NF ) as shown in Table 4.

Table 4. Fuzzy Neutrosophic Set

K NT NI NF

0 0.97 1 0
1 0.45 0.67 0.53
2 0.45 0.67 0.53
3 0 0 0.93

N = (NT ,NI ,NF ) is a FNI of K but is not a FNPI of K because
NT (2 ∧ 3) = NT (0) = 0.97 > 0.45 = max{NT (2),NT (3)},
NI(2 ∧ 3) = NI(0) = 1 > 0.67 = max{NI(2),NI(3)},
NF (2 ∧ 3) = NF (0) = 0 < 0.53 = min{NF (2),NF (3)}.

Proposition 3.8. [10] A fuzzy neutrosophic set N = (NT ,NI ,NF ) in a K is
a FNI of K iff NT , NI and NF

c are fuzzy ideals of K.

Proposition 3.9. Let N = (NT ,NI ,NF ) is a fuzzy neutrosophic set of a K.
Then N = (NT ,NI ,NF ) is a FNPI of K iff NT , NI, and NF

c are fuzzy prime
ideals of K.

Proof. Let N = (NT ,NI ,NF ) be a FNPI of K. Then, by Proposition 3.5,
N = (NT ,NI ,NF ) is an FNI. So, by Proposition 3.8, NT , NI , and N c

F are
fuzzy ideals of K. Therefore, for any p0, r0 ∈ K, from Definition 3.1, we have

NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}
NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}
NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)}

Clearly NT and NI are fuzzy prime ideals of K. Now
1−NF (p0 ∧ r0) ≤ 1−min{NF (p0),NF (r0)}
[NF (p0 ∧ r0)]

c ≤ max{1−NF (p0), 1−NF (r0)}
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= max{[NF (p0)]
c, [NF (r0)]

c}.
Hence NF

c is a fuzzy prime ideal of K.
Conversely, assume that NT , NI , and NF

c are fuzzy prime ideals of K. Then
NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}
NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}

[NF (p0 ∧ r0)]
c ≤ max{[NF (p0)]

c, [NF (r0)]
c}.

Now 1− [NF (p0 ∧ r0)]
c ≥ 1−max{[NF (p0)]

c, [NF (r0)]
c}

{[NF (p0 ∧ r0)]
c}c ≥ min{1− [NF (p0)]

c, 1− [NF (r0)]
c}

= min{{[NF (p0)]
c}c, {[NF (r0)]

c}c}
⇒ NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)}.

Hence N = (NT ,NI ,NF ) is a FNPI of K. □
Proposition 3.10. Let N = (NT ,NI ,NF ) be a FNI of K. Then
N = (NT ,NI ,NF ) is a FNPI of K iff NT

c, NI
c, and NF are anti-fuzzy

prime ideals of K.

Proof. Let N = (NT ,NI ,NF ) be a FNPI of a K. Since, by Proposition 3.5,
N = (NT ,NI ,NF ) be a FNI. Then NT

c, NI
c, and NF are anti-fuzzy ideals of

K. Therefore, for any p0, r0 ∈ K, from Definition 3.1, we have
NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}
NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}
NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)}.

Clearly, NF is an anti-fuzzy prime ideal of K. Now
1−NT (p0 ∧ r0) ≥ 1−max{NT (p0),NT (r0)}
[NT (p0 ∧ r0)]

c ≥ min{1−NT (p0), 1−NT (r0)}
[NT (p0 ∧ r0)]

c ≥ min{[NT (p0)]
c, [NT (r0)]

c}
Also

1−NI(p0 ∧ r0) ≥ 1−max{NI(p0),NI(r0)}
[NI(p0 ∧ r0)]

c ≥ min{1−NI(p0), 1−NI(r0)}
[NI(p0 ∧ r0)]

c ≥ min{[NI(p0)]
c, [NI(r0)]

c}
Therefore, NT

c and NI
c are anti-fuzzy prime ideals of K. The proof of converse

part is easy and we omit it. □
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Theorem 3.11. [10] A fuzzy neutrosophic set N = (NT ,NI ,NF ) in K is a
FNI of a K if and only if ⊡N = (NT ,NI ,NT

c) and ⊙N = (NF
c,NI ,NF ) are

FNIs of K.

Proposition 3.12. Let N = (NT ,NI ,NF ) be a FNPI of K. Then
⊡N = (NT ,NI ,NT

c)

is a FNPI of K.

Proof. Let N = (NT ,NI ,NF ) be a FNPI of K. Then by Proposition 3.5
N = (NT ,NI ,NF ) be a FNI. So, by Theorem 3.11 ⊡N = (NT ,NI ,NT

c) is a
FNI of K. Therefore, for any p0, r0 ∈ K, from Definition 3.1, we have

NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}
NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}
NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)}.

Now
1−NT (p0 ∧ r0) ≥ 1−max{NT (p0),NT (r0)}
[NT (p0 ∧ r0)]

c ≥ min{1−NT (p0), 1−NT (r0)}
[NT (p0 ∧ r0)]

c ≥ min{[NT (p0)]
c, [NT (r0)]

c}

Hence ⊡N = (NT ,NI ,NT
c) is a FNPI of K. □

Proposition 3.13. Let N = (NT ,NI ,NF ) be a FNPI of K. Then
⊙N = (NF

c,NI ,NF ) is a FNPI of K.

Proof. Let N = (NT ,NI ,NF ) be a FNPI of K. Then by Proposition 3.5
N = (NT ,NI ,NF ) be a FNI. So, by Theorem 3.11 ⊙N = (NF

c,NI ,NF ) is a
FNI of K. Therefore, for any p0, r0 ∈ K, from Definition 3.1, we have

NT (p0 ∧ r0) ≤ max{NT (p0),NT (r0)}
NI(p0 ∧ r0) ≤ max{NI(p0),NI(r0)}
NF (p0 ∧ r0) ≥ min{NF (p0),NF (r0)}

Now
1−NF (p0 ∧ r0) ≤ 1−min{NF (p0),NF (r0)}
[NF (p0 ∧ r0)]

c ≤ max{1−NF (p0), 1−NF (r0)}
[NF (p0 ∧ r0)]

c ≤ max{[NF (p0)]
c, [NF (r0)]

c}.

Hence, ⊙N = (NF
c,NI ,NF ) is a FNPI of K. □
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Theorem 3.14. Let N = (NT ,NI ,NF ) be a fuzzy neutrosophic set in a
commutative BCK-algebra K. Then N = (NT ,NI ,NF ) is a FNPI of a K if
and only if ⊡N = (NT ,NI ,NT

c) and ⊙N = (NF
c,NI ,NF ) are FNPI of K.

Definition 3.15. Let N = (NT ,NI ,NF ) be a fuzzy neutrosophic set in a K.
Then for a, b, c ∈ [0, 1], the set U(N ; ⟨a, b⟩) is defined as

U(N ; ⟨a, b⟩) = {p0 ∈ K : NT (p0) ≥ a,NI(p0) ≥ b},
and it is called the upper (a, b)-level cut of N . Similarly, the set L(N ; c) is
defined as L(N ; c) = {p0 ∈ K : NF (p0) ≤ c}, and it is called the lower c-level
cut of N .

Theorem 3.16. Let N = (NT ,NI ,NF ) be a fuzzy neutrosophic set in a
K.Then N = (NT ,NI ,NF ) is a FNPI of K if, for all a, b, c ∈ [0, 1], the sets
U(N ; ⟨a, b⟩) and L(N ; c) are prime ideals of K.

Proof. Suppose the sets U(N ; ⟨a, b⟩) and L(N ; c) are prime ideals of K. Then
U(N ; ⟨a, b⟩) and L(N ; c) are ideals of K (see [4]).
On contrary N = (NT ,NI ,NF ) is not a FNPI of K. Then there exists
p0, r0 ∈ K such that

NT (p0 ∧ r0) > max{NT (p0),NT (r0)}
NI(p0 ∧ r0) > max{NI(p0),NI(r0)}
NF (p0 ∧ r0) < min{NF (p0),NF (r0)}

Let a = 1
2{NT (p0 ∧ r0) +max{NT (p0),NT (r0)}} and

b =
1

2
{NI(p0 ∧ r0) +max{NI(p0),NI(r0)}}

⇒ NT (p0 ∧ r0) > a > max{NT (p0),NT (r0)} and

NI(p0 ∧ r0) > b > max{NI(p0),NI(r0)}.

⇒ p0 ∧ r0 ∈ U(N ; ⟨a, b⟩) but p0 /∈ U(N ; ⟨a, b⟩) and r0 /∈ U(N ; ⟨a, b⟩). This is
a contradiction. Hence N = (NT ,NI ,NF ) is a FNPI of K. □

4. conclusion
The fuzzy neutrosophic prime ideals concept expands the field of algebraic

structures by introducing a new dimension to prime ideals. By extending
these ideals within the realm of fuzzy neutrosophic sets, we have also opened
up exciting possibilities for additional investigation and study.
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