A NON-COMMUTATIVE GENERALIZATION OF MTL-RINGS

Document Type : Original Manuscript

Authors

Department of Mathematics of H.T.T.C., University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.

Abstract

The current work extends the class of commutative MTL-rings established by the authors to the non-commutative ones. That class of rings will be named generalized MTL-rings since they are not necessary commutative. We show that in the non-commutative case, a local ring with identity is a generalized MTL-ring if and only if it is an ideal chain ring. We prove that the ring of matrices over an MTL-ring is a non-commutative MTL-ring. We also study their representation in terms of subdirect irreducibility.

Keywords


1. S. Atamewoue Tsafack, A. G. Fobasso Tchinda, Y. Feng and S. Ndjeya, A generalized of BL-rings, Italian Journal of Pure and Applied Mathematics, 47 (2022), 991–1008.
 
2. L. P. Belluce and Di Nola, Commutative rings whose ideals form an MV-algebra, Mathematical Logic Quarterly, (2009), 468–486.
 
3. L. P. Belluce, Di Nola and E. Marchioni, Ring and Gödel algebra, Algebra universalis, 64 (2010), 103–116.
 
4. S. Burris and H. P. Sankappanavar, A course in Universal Algebra, Springer, New YorkHeidelberg-Berlin, 1981.
 
5. I. Chajda and H. Länger, Commutative Rings whose ideal lattices are complemented, Asian European J. Math, 12 (2019), Article ID: 1950039.
 
6. A. W. Chatters, Three examples concerning the Ore condition in Noetherian rings, Proceedings of the Edinburgh Mathematical Society, 23 (1980), 87–192.
 
7. L. C. Ciungu, Non-Commutative Multiple-Valued Logic Algebras, Department of Mathematics, University of Iowa, Iowa city, IA, USA, Springer Monographs in Mathematics, 2014.
 
8. L. C. Ciungu, Some classes of pseudo MTL-algebras, Bull. Math. Soc. Sci. Math. Roumanie, 50 (2007), 223–247.
 
9. F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy set Syst., 24 (2001), 271–288.
 
10. P. Flondor, G. Georgescu and A. Iorgulescu, Pseudo t-noms and pseudo BL-algebras, Soft Computing, 5 (2001), 355–371.
 
11. N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: an algebraic glimpse at logics without contraction, Studies in Logic and the Foundations of Mathematics, Elsevier, 2007.
 
12. G. Gratzer, Lattice theory, W. H. Freeman and Company, San Francisco, 1979.
 
13. O. A. Heubo-Kwegna, C. Lele, S. Ndjeya and J. B. Nganou, BL-rings, Logic journal of the IGPL, (2018), 290–299.
 
14. A. Iorgulescu, Classes of pseudo-BCK algebras - Part I., Journal of Multiple-Valued Logic and Soft Computing, 12 (2006), 71–130.
 
15. A. Iorgulescu, Classes of pseudo-BCK algebras - Part II., Journal of Multiple-Valued Logic and Soft Computing, 12 (2006), 575–629.
 
16. S. Jenei and F. Montagna, A Proof of Standard Completeness for Esteva and Godo’s Logic MTL, Studia Logica, 70 (2002), 183–192.
 
17. C. U. Jensen, Arithmetical rings, Copenhagen, Danmark. Acta Mathematica, Academiae Scientiarum Hungaricae, 17 (1966), 115–123.
 
18. A. Kadji, C. Lele and J. B. Nganou, On a non-commutative generalisation of Lukasiewicz rings, Journal of Applied Logic, (2016) 1–13
 
19. S. Mouchili, S. Atamewoue, S. Ndjeya and O. Heubo-Kwegnan, MTL-rings and MTLalgebras, (2022), https://arxiv.org/2106.10428.
 
 20. L. Sin-Min, On the construction of local and arithmetic rings, Acta Mathematica Academiae Scientiarum Hungaricae, 32 (1978), 31–34.
 
21. S. V. Tchoffo Foka and M. Tonga, Rings and Residuated lattices whose fuzzy ideals form a Boolean algebra, Soft Computing, 26 (2022), 535–539