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A NON-COMMUTATIVE GENERALIZATION OF MTL-RINGS

S. Mouchili, S. Atamewoue∗ and S. Ndjeya

Abstract. The current work extends the class of commutative MTL-rings estab-
lished by the authors to the non-commutative ones. That class of rings will be named
generalized MTL-rings since they are not necessary commutative. We show that in
the non-commutative case, a local ring with identity is a generalized MTL-ring if and
only if it is an ideal chain ring. We prove that the ring of matrices over an MTL-
ring is a non-commutative MTL-ring. We also study their representation in terms of
subdirect irreducibility.

1. Introduction
In recent articles, several authors have investigated classes of rings for which

the semiring of ideals is an algebra of a well-known subvariety of residuated
lattices. In 2009, Belluce and Di Nola started the study of commutative rings
whose ideals form an MV-algebra [2]. Years after, that study was extended
to Gödel algebras as it can be seen in [3]. In 2018 Heubo-kwegna et al.
[13] pushed that study futher to BL-algebras. Then a year later, Chajda
and Langer investigated commutative rings whose ideals are complemented
[5]. It was in 2016 and 2022 that Kadji et al. and Atamewoue et al.[1, 18]
extended the works [2] and [13] to their non-commutative perspective (pseudo
BL-algebras).
In [10] Flondor et al. introduced the notion of pseudo MTL-algebras under

the name of weak-pseudo BL-algebras through the concept of pseudo t-norm
which is not necessary a commutative t-norm. Since a continuous pseudo t-
nom on the interval [0, 1] is always commutative as it can be seen in [10], then
no strict pseudo BL-algebra can be constructed on [0, 1]. However, dropping
the pseudo-divisibility property of pseudo BL-algebras leads to weak-pseudo
BL-algebras, also known as pseudo MTL-algebras.
In the current work, we study and characterize rings whose lattice of ideals

forms a pseudo MTL-algebra. That class of rings will be named generalized
MTL-rings since they are not necessary commutative.
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We start by some preliminaries on pseudo MTL-algebras. Then we continue
by showing that, in the non-commutative case, a local ring with identity is a
generalized MTL-ring if and only if it is an ideal chain ring, as it is proved
for commutative MTL-rings [19]. But this result is not true when rings
have no identity. We also realize that the ring of matrices on MTL-rings is
a generalized MTL-ring without being a generalized BL-ring. Some other
important examples and properties of generalized MTL-rings are given. We
end up studying their representation in terms of subdirect irreducibility.

2. Foundations on pseudo MTL-algebras
In this section we give definitions, examples and some properties of pseudo

MTL-algebras.

Definition 2.1. An algebraic structure (A,∧,∨,�,→,⇝, 0, 1) of type
(2, 2, 2, 2, 2, 0, 0) is called a pseudo MTL-algebra if the following conditions
are satisfied:

(i) (A,∧,∨, 0, 1) is a bounded lattice.
(ii) (A,�, 1) is a monoid, that is, � is associative and x� 1 = 1� x = x.
(ii) x� y ≤ z iff x ≤ y → z iff y ≤ x⇝ z, ∀x, y, z ∈ A.
(iv) (x → y) ∨ (y → x) = (x ⇝ y) ∨ (y ⇝ x) = 1, ∀x, y, z ∈ A, (pseudo-

prelinearity property).

Definition 2.2. A pseudo MTL-algebra A = (A,∧,∨,�,→,⇝, 0, 1) is called
a pseudo BL-algebra if x∧y = x� (x → y) = (x⇝ y)�x (pseudo-divisibility
property).

Before giving some examples of pseudo MTL-algebras, let us recall the
notion of t-norm.

Definition 2.3. A t-norm on the segment [0, 1] is a function
T : [0, 1]× [0, 1] −→ [0, 1] which satisfies the following properties.

(i) Commutativity: T (a, b) = T (b, a).
(ii) Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d.
(iii) Associativity: T (a, T (b, c)) = T (T (a, b), c).
(iv) The number 1 acts as identity element: T (a, 1) = a.

Without the commutativity, T is called a pseudo t-norm. A proper pseudo
t-norm is a pseudo t-norm which is not commutative.

The following examples from [7] and [10] show that there are pseudo MTL-
algebras which are not pseudo BL-algebras.
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Example 2.4. Let A = {0, a, b, c, 1} be a chain: 0 < a < b < c < 1 and the
operations �, → and ⇝ are defined by:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 a a c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c b c c 1 1
1 0 a b c 1

⇝ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c a c c 1 1
1 0 a b c 1

Then (A,∧,∨,�,→,⇝, 0, 1) is a pseudo MTL-algebra. But it is not a pseudo
BL-algebra because: (b → a)� b = a 6= 0 = b� (b⇝ a).

Example 2.5. Let 0 < a1 < b1 < 1. Define T0,1 : [0, 1]× [0, 1] −→ [0, 1] by

T0,1(x, y) =

{
0, if 0 ≤ x ≤ a1, 0 ≤ y ≤ b1;

min(x, y), otherwise.

Then T0,1 is a pseudo t-norm on [0, 1]. It is not commutative since
0 = T0,1(a1, b1) 6= T0,1(b1, a1) = min(b1, a1) = a1.
The two implications associated to T0,1 are defined by:

x → y =

 max(a1, y), if x ≤ b1, (x > y);
y, if x > b1, (x > y);
1, if (x ≤ y).

and

x⇝ y =

 b1, if x ≤ a1, (x > y);
y, if x > a1, (x > y);
1, if (x ≤ y).

Then the algebraic structure A = ([0, 1],∧,∨, T0,1,→,⇝, 0, 1) is a pseudo
MTL-algebra which is not a pseudo BL-algebra.

Here below are some essential rules of calculus in pseudo MTL-algebras.

Proposition 2.6 ([10]). The following properties hold in any pseudo MTL-
algebra (A,∧,∨,�,→,⇝, 0, 1) and for all x, y, z ∈ A.

(1) x� (x⇝ y) ≤ y ≤ x⇝ (x� y) and x� (x⇝ y) ≤ x ≤ y ⇝ (y � x).
(2) (x → y)� x ≤ x ≤ y → (x� y) and (x → y)� x ≤ y ≤ x → (y � x).
(3) If x ≤ y, then z ⇝ x ≤ z ⇝ y and z → x ≤ z → y.
(4) If x ≤ y, then x� z ≤ y � z and z � x ≤ z � y.
(5) If x ≤ y, then y ⇝ z ≤ x⇝ z and y → z ≤ x → z.
(6) x ≤ y iff x⇝ y = 1 iff x → y = 1.
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(7) x⇝ x = x → x = 1.
(8) 1⇝ x = 1 → x = x.
(9) y ≤ x⇝ y and y ≤ x → y.
In this work, a ring R is not necessary a commutative ring. An ideal of

R without any other precision refers to a two-sided ideal of R. Noetherian
refers to left and right Noetherian. Without any precision rings use in this
work have an identity.

3. Generalized MTL-rings, definitions and first properties
In this section, we generalize the notion of MTL-rings [19] to non-

commutative rings by introducing the so-called generalized MTL-rings. Con-
sidering that this generalized MTL-rings are not necessary commutative.
Main properties and some connections to other classes of rings are presented.
Note 3.1. Let R be a ring, 0R its neutral element with respect to addition.
Let A be an ideal of R.
O := {0R}.
Id(R) denotes the set of all ideals of R.
A• := {x ∈ R/xA = O} denotes the right-annihilator of R.
A− := {x ∈ R/Ax = O} denotes the left annihilator of R.
A ring R is said to have the condition (*) if for every x ∈ R, there exists

an element e ∈ R such that e · x = x · e = x. All the rings used in this paper
are supposed to have the condition (*). From [11], there is a residuated
lattice formed by the two-sided ideals of the ring R which is the following:
A(R) := 〈Id(R),∧,∨,�,→,⇝, O,R〉, where A∧B := A∩B, A∨B := A+B,
A� B := A · B, A → B := {x ∈ R/xA ⊆ B} and

A⇝ B := {x ∈ R/Ax ⊆ B}.
Definition 3.2. A ring R is called a generalized MTL-ring if it satisfies the
following pseudo-prelinearity condition (gMTL):

(A → B) + (B → A) = (A⇝ B) + (B ⇝ A) = R,
for all A,B ∈ A(R).
Definition 3.3. A ring R is called a left MTL-ring if the pseudo-prelinearity
condition holds for all the left-ideals of R.
In case the pseudo-prelinearity condition is satisfied for all the right-ideals

of a ring, the ring will be named right MTL-ring.
Remark 3.4. As explored in [1] and [13],
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(a): the condition (gMTL) in the ring R is equivalent to each of the
following conditions:
(gMTL-1):

(A ∩B)⇝ C = (A⇝ C) + (B ⇝ C) for all A,B,C ∈ Id(R),
(gMTL-2):

A⇝ (B + C) = (A⇝ B) + (A⇝ C) for all A,B,C ∈ Id(R);
(b): every pseudo BL-ring is a generalized MTL-ring.

Theorem 3.5. A ring R is a generalized MTL-ring if and only if A(R), the
lattice of ideals of R, is a pseudo MTL-algebra.

Proof. The proof follows the same path as the one in [19]. □

Lemma 3.6 ([1]). Let R be a ring. The following conditions hold for all
ideals A,B and C such that A ⊆ B and A ⊆ C.

(1) A ⊆ (A• · B)•, A ⊆ B → A, A ⊆ B → C, A ⊆ C → B;
(1’) A ⊆ (A− · B)−, A ⊆ B ⇝ A, A ⊆ B ⇝ C, A ⊆ C ⇝ B;
(2) (B/A)• = (B → A)/A and (B/A)− = (B ⇝ A)/A ;
(3) (B/A) → (C/A) = (B → C)/A and (B/A)⇝ (C/A) = (B ⇝ C)/A.

Let us consider the following condition
(gMTL∗−): for all ideals A,B of R, if A ∩B = {0}, then

A• +B• = A− +B− = R.

Remark 3.7. Every generalized MTL-ring satisfies the condition (gMTL∗−).
Actually, since A → B = A → (A ∩ B) and B → A = B → (A ∩ B), then
A ∩ B = O implies A → B = A → O = A• and B → A = B → O = B•.
Moreover, A ⇝ B = A ⇝ (A ∩ B) and B ⇝ A = B ⇝ (A ∩ B), then
A ∩ B = O implies A⇝ B = A⇝ O = A− and B ⇝ A = B ⇝ O = B−.
Therefore,
A• +B• = (A → B) + (B → A) = (A⇝ B) + (B ⇝ A) = A− +B− = R.

Proposition 3.8. A ring R is a generalized MTL-ring if and only if every
quotient (by an ideal) of R satisfies the condition (gMTL∗−).

Proof. Same as for commutative MTL-rings [19]. □

Proposition 3.9. Left(right) MTL-rings are left(right) arithmetical rings.

Proof. Just notice that the lattice of left(right) ideals of a left(right) MTL-
ring is distributive. □
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Remark 3.10. Noetherian generalized MTL-rings are pseudo BL-rings. We
recall that the same remark is done for the commutative case.

Theorem 3.11. A left(right) Noetherian ring is a left(right) MTL-ring if
and only if it is left(right) arithmetical ring.

Proof. The proof of this theorem is similar to the one done for the commuta-
tive case. Actually, Jensen in [17] characterizes arithmetical rings to be rings
for which the prelinearity condition holds for all its finitely generated ideals.
Since the ring is Noetherian, all its ideals are finitely generated, which means
that the prelinearity condition holds for all its ideals, that is, the ring is an
MTL-ring. By replacing ideals by left or right ideals, we still have the similar
conclusion. □
The following paragraphs focus on the construction of some generalized

MTL-rings.

Definition 3.12. A non-commutative valuation ring is a non-commutative
ring whose ideals are totally ordered by the set-inclusion.

Proposition 3.13. A ring R with an identity is a local generalized MTL-ring
if and only if R is a valuation ring.

Proof. Let R be a local generalized MTL-ring not necessary commutative
with identity; M the unique maximal ideal of R; and A,B ∈ Id(R).
We want to show that A ⊆ B orB ⊆ A. It suffices to show that A → B = R

or B → A = R (since the ring R has an identity).
Suppose that A → B 6= R and B → A 6= R, then A → B ⊆ M

and B → A ⊆ M , since M is the unique maximal ideal of R. Hence,
R = (A → B) + (B → A) ⊆ M : contradiction because M is a maximal ideal
of the generalized MTL-ring R. So A ⊆ B or B ⊆ A, that is, R is a valuation
ring.
The converse is obvious. □

Remark 3.14. If we drop the hypothesis that the ring has an identity, then the
Proposition 3.13 will not be true anymore. It is the case when we consider
the example.

Example 3.15. For each n ≥ 2, Vn denotes the linearly ordered set of n
elements, Rn denotes the class of rings R such that the lattice of ideals
A(R) is isomorphic to Vn. Let R ∈ Rn such that R is commutative with
an identity and let M be a simple R-module. Defining the addition and the
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multiplication on R̂ = R×M by:
(r1,m1) + (r2,m2) = (r1 + r2,m1 +m2); (r1,m1) · (r2,m2) = (r1r2,m1m2).

It follows from [20] that (R̂,+, ·) is a non-commutative ring with no iden-
tity which is an arithmetical local ring. The left ideals of R̂ are: Bk × 0,
Bk ×M, (1 ≤ k ≤ n), where 0 = B1 ⊂ B2 ⊂ · · · ⊂ Bn−1 ⊂ Bn = R are ideals
of R. It is noticed that all the left ideals of R̂ are also right ideals of R̂ except
the left ideal Bn× 0. So the only proper ideals of R̂ are: Bk × 0 and Bk ×M ,
1 ≤ k < n, with Bn−1 ×M as the maximal ideal.
The previous Remark and Example 3.15 yield the following proposition.

Proposition 3.16. For n ≥ 3, R̂ is a local generalized MTL-ring whose
lattice of ideals A(R̂) does not form a chain.
Proof. To prove that A(R̂) is not a chain, it suffices to prove it for n = 3.
The elements of A(R̂) are of the form:
(0)× (0)︸ ︷︷ ︸

O

; B1 × (0)︸ ︷︷ ︸
U

; B2 × (0)︸ ︷︷ ︸
V

; B1 ×M︸ ︷︷ ︸
W

; B2 ×M︸ ︷︷ ︸
X

; (1)×M︸ ︷︷ ︸
Y

:

U
W

O

X

V

Y

So A(R̂) is not a chain as it is seen from the picture above. (the arrows mean
“it is included”)
The arithmetical ring R̂ is Noetherian since it is the product of Noetherian
R-modules R and M . According to Theorem 3.11, R̂ is a generalized MTL-
ring. □
The following theorem generalizes Proposition 3.13.

Theorem 3.17. Let R be a ring with an identity such that:
(1) R is left(right) local, that is, it has only one maximal left(right) ideal;

and



130 MOUCHILI, ATAMEWOUE AND NDJEYA

(2) R is left(right) MTL-ring.
Then A(R), the lattice of ideals of R, is a chain.

Proof. The proof is similar to the proof given for Proposition 3.13. □
The next result is very important because it gives a practical tool for the

construction of generalized MTL-rings.

Theorem 3.18. Let R be an MTL-ring with identity and n a non-negative
integer. Then the ring of square matrices Mn(R) is a generalized MTL-ring.

Proof. Let R be an MTL-ring and Mn(R) the ring of square matrices on R
(n ∈ N∗).
(i) Mn(R) is already non-commutative.
(ii) Ideals of Mn(R) are of the form I = Mn(I) where I is an ideal of

R. They satisfy the prelinearity condition. Indeed, let I, J ∈ Id(Mn(R)).
I = Mn(I) and J = Mn(J), where I and J are ideals of R.

I → J = {A ∈ Mn(R) /A · B ∈ J , ∀B ∈ I}.
Let In be the identity matrix of Mn(R). To show that

(I → J ) + (J → I) = Mn(R),
it suffices to show that In ∈ (I → J ) + (J → I).
Since R is an MTL-ring, then (I → J) + (J → I) = R. Then 1 = x0 + y0

for certain x0 ∈ I → J and y0 ∈ J → I.

In =


x0 + y0 0 · · · 0

0 x0 + y0 · · · 0
... ... ... ...
0 · · · · · · x0 + y0



=


x0 0 · · · 0
0 x0 · · · 0
... ... ... ...
0 · · · · · · x0


︸ ︷︷ ︸

Dx0

+


y0 0 · · · 0
0 y0 · · · 0
... ... ... ...
0 · · · · · · y0


︸ ︷︷ ︸

Dy0

The matrix Dx0
belongs to I → J and Dy0 belongs to J → I. Indeed, let

A = (aij) ∈ I, then Dx0
A = x0A ∈ J because x0 ∈ I → J and all the aij ∈ I.

So Dx0
∈ I → J . Similarly, Dy0 ∈ J → I. So, In ∈ (I → J ) + (J → I)

and this proves that (I → J ) + (J → I) = Mn(R).
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(iii) If R is not Noetherian, then Mn(R) is not Noetherian. Actually,
suppose that Mn(R) is a Noetherian ring. Let I ∈ Id(R) be an ideal not
finitely generated. Since Mn(R) is supposed to be a Noetherian ring, then
Mn(I) is finitely generated. That is, there exist m matrices Ak = (akij)1≤i,j≤n,
k = 1, · · · ,m, m ∈ N∗ such that Mn(I) = 〈A1, A2, · · · , Am〉.
So for all b ∈ I,

b 0 · · · 0
0 0 · · · 0
... ... ... ...
0 · · · · · · 0

 =
m∑
k=1

rkAk =
m∑
k=1

rk(a
k
ij) =

m∑
k=1

(rka
k
ij).

This implies b =
∑m

k=1 rk(a
k
11) and this is for all b ∈ I, which means that

I is finitely generated: this yields a contradiction. Therefore, Mn(R) is a
non-Noetherian ring.
This concludes the proof. □

Corollary 3.19. Let R be a non-commutative non-Noetherian valuation ring
with identity. Then, Mn(R) is a generalized MTL-ring which is not a pseudo
BL-ring.

Proof. Since the ring R is a non-Noetherian MTL-ring, then Mn(R) is non-
Noetherian. The conclusion falls from the theorem above because Mn(R) is
a generalized MTL-ring. □

Remark 3.20. In Theorem 3.18 above, Mn(R) in general, is a strict general-
ized MTL-ring in the sense that it is not a pseudo BL-ring.

We are now going to give another way to construct generalized MTL-rings
using the non-commutative version of the Nagata’s construction seen in [19].
Before we can do it, let us recall some important condition: the Ore condition
(see [6] for more details), which is the condition for a ring to have a fraction
field. More precisely, let R be a ring without non trivial zero-divisor.

Right Ore condition: the ring R is said to be right Ore if the following
condition holds: aR ∩ bR 6= 0, for all a, b ∈ R\{0}, where aR and bR are
right principal ideals of R.

Left Ore condition: the ring R is said to be left Ore if the following condition
holds: Ra ∩Rb 6= 0, for all a, b ∈ R\{0}, where Ra and Rb are left principal
ideals of R.
The ring R is said to be Ore or to have Ore condition if it is left and right

Ore.



132 MOUCHILI, ATAMEWOUE AND NDJEYA

Theorem 3.21. Let Vi, i = 1, · · · , n; (n ∈ N) be non-Noetherian non-
commutative valuation rings without non trivial zero-divisor, all of them with
the Ore condition and with the same fraction field. Then the ring R =

n⋂
i=1

Vi

is a generalized MTL-ring which is not a pseudo BL-ring.

Proof. The proof follows exactly the same path as the one done for the com-
mutative MTL-ring which can be seen in [19]; just replace ideals by two-sided
ideals to have the result. □
Other examples of generalized MTL-rings are the following:

(i) Polynomial rings over non-commutative non-Noetherian valuation rings
(or in general, polynomial rings over generalized MTL-rings). Shortly a poly-
nomial ring over a generalized MTL-ring R[X] is a generalized MTL-ring.

(ii) Skew-polynomial rings over a commutative non-Noetherian valuation
rings (or in general, skew-polynomial rings over MTL-rings).

Let us now deal with ideals in generalized MTL-rings.

Remark 3.22. In every ring R, the following properties are true for all ideals
A, B and C in R.

(a): A⇝ B = A⇝ (A ∩B);
(b): (A+B)⇝ C = (A⇝ C) ∩ (B ⇝ C);
(c): A⇝ (B ∩ C) = (A⇝ B) ∩ (A⇝ C).

Proposition 3.23. Let R be a generalized MTL-ring with identity, M be
a maximal ideal of R and A, B and C ideals of R. One has the following
properties:

(1) S−1A ⊆ S−1B or S−1B ⊆ S−1A, where S = R\M is a multiplication
set and S−1R is the localization at M .

(2) For all ideal C of R,
(i) AaBb ⊆ Aa+b +Ba+b, for all natural integers a and b. So
(ii) (A+B)n = An +Bn, for all natural integer n.
(iii) (A+B)(A ∩B) = AB.
(iv) C(A ∩B) = CA ∩ CB.
(v) C + (A ∩B) = (C + A) ∩ (C + A)
(vi) C ∩ (A+B) = (C ∩ A) + (C ∩B).
(vii) C ⇝ (A+B) = (C ⇝ A) + (C ⇝ B).
(viii) (A ∩B)⇝ C = (A⇝ C) + (B ⇝ C).
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(3)
√
A+B =

√
A+

√
B, where

√
A is the radical of the ideal A.

(4) There is an endomorphism ϕ of determinant 1 such that :
ϕ : R×R −→ R×R

(A,B) 7−→ (A+B,A ∩B)

(5) Distorted Chinese Remainder Theorem:
R/A×R/B ∼= R/(A+B)×R/(A ∩B).

(6) More generally, for all n ≥ 1, there is an endomorphism ϕ of determi-
nant 1 such that:

ϕ : Rn −→ Rn

A = (Aj)1≤j≤n 7−→ (σj (A)) ,

where σj(A) is homogeneous elementary symmetric polynomial of degree
j in Ak:

σj(A) =
∑

k1<···<kj

Ak1 ∩ · · · ∩ Akj =
⋂

k0<···<kn−1

Ak0 + · · ·+ Akn−j
.

In the above properties, the operator ⇝ can be replaced by → and the
proof follows the same path as the one done in [19] with the operator →.

4. Further on generalized MTL-rings
Proposition 4.1 ([1]). Generalized MTL-rings are closed under

(i) finite direct products,
(ii) arbitrary direct sums,
(iii) homomorphic images.

We recall that ([4]) an algebra A is a subdirect product of an indexed family
(Ai)i∈I of algebras if:
(i) A ≤

∏
i∈I

Ai and

(ii) πi(A) = Ai, for each i ∈ I.
An embedding α : A →

∏
i∈I

Ai is subdirect if α(A) is a subdirect product

of the Ai.
An algebra A is subdirectly irreducible if for every subdirect embedding

α : A →
∏
i∈I

Ai, there is an i ∈ I such that πi ◦α : A → Ai is an isomorphism.

The famous Birkhoff subdirectly irreducible representation theorem of al-
gebras says that every algebra is isomorphic to a subdirect product of subdi-
rectly irreducible algebras (which are its homomorphic images).
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Since we are dealing with two-sided ideals of generalized MTL-rings, we
have a following representation theorem whose proof is similar to the one for
commutative MTL-rings.

Proposition 4.2. Every generalized MTL-ring R is a subdirect product of
a family {Rr : r ∈ R\{0}} of subdirectly irreducible generalized MTL-rings
satisfying:

1. A(R) is a subdirect product of {A(Rr) : r ∈ R\{0}}.
2. A(Rr) is a pseudo MTL-algebra with a unique atom.

Proof. The proof follows the same path as the one done in [19], Theorem
7.1. □
Example 4.3. Consider R = M2(Z4) the ring of 2× 2 square matrices over
the ring Z4.
R is a generalized MTL-ring since Z4 is an MTL-ring. Let r ∈ R\{0}; let

Ir be a maximal ideal among ideals which do not contain r. So,
⋂
r 6=0

Ir = {0},

every factor R/Ir is subdirectly irreducible and R is a subdirect product of
the family {R/Ir : r ∈ R\{0}}. It can also be seen that, every quotient R/Ir
is an MTL-ring. Set Rr = R/Ir.
(1) To show that R is a subdirect product of {R/Ir : r ∈ R\{0}}, consider

α : A(R) →
∏
r 6=0

A(R/Ir) defined by α(I)(r) = (I + Ir) mod Ir.

(2) Since Rr is subdirectly irreducible, each A(Rr) is an MTL-algebra with
a unique atom.

5. Conclusion
In this work, we extended the notion of MTL-ring to the non-commutative

case by defining rings whose ideals form pseudo MTL-algebras.
Useful properties have been presented. For instance, it has been found that
in the non-commutative case, a local ring with identity is a generalized MTL-
ring if and only if it is an ideal chain ring. But this is not true with non-
commutative rings without identity. Some examples of generalized MTL-
rings have been studied. We found that non-commutative non-Noetherian
valuation rings with identity and Mn(R), the ring of matrices over R, R
being an MTL-ring (n ∈ N∗), are significant examples of generalized MTL-
rings. Further work related to this topic can be the study of rings whose
fuzzy ideals form an MTL-algebra as introduced in [21].
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MTL-حلقه ها از ناجابجایی تعمیم یک

نجیا٣ اس. و آتامه ووئه٢ اس. موچیلی١، اس.

کامرون یائونده، اول، یائونده دانشگاه ریاضی، ١گروه

کامرون یائونده، اول، یائونده دانشگاه ،H.T.T.C. ریاضی ٢,٣گروه

حالت به را شده اند معرفی نویسندگان توسط که جابجایی MTL-حلقه های کلاس مقاله، این در
شد خواهند نامیده تعمیم یافته MTL-حلقه های حلقه ها، از کلاس این می شود. داده تعمیم ناجابجایی
یک یکدار، موضعی حلقه یک ناجابجایی، حالت در که می دهیم نشان ما نیستند. جابجایی ضرورتاً زیرا
که می کنیم اثبات همچنین باشد. ایده آل زنجیری حلقه یک اگر تنها و اگر است تعمیم یافته MTL-حلقه
را آن ها نمایش علاوه، به است. ناجابجایی MTL-حلقه یک MTL-حلقه، یک روی ماتریس ها حلقه

می کنیم. مطالعه زیرمستقیم تحویل ناپذیری نظر از

ارزیاب. حلقه نوتری، غیر حلقه ناجابجایی، حلقه MTL-حلقه، MTL-جبر، شبه کلیدی: کلمات
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