ON Z-SYMMETRIC MODULES

Document Type : Original Manuscript

Authors

Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand.

Abstract

A ring $R$ is called a left $\mathcal{Z}$-symmetric ring if $ab \in \mathcal{Z}_l(R)$ implies $ba \in \mathcal{Z}_l(R)$, where $\mathcal{Z}_l(R)$ is the set of left zero-divisors. A right $\mathcal{Z}$-symmetric ring is defined similarly, and a $\mathcal{Z}$-symmetric ring is one that is both left and right $\mathcal{Z}$-symmetric. In this paper, we introduce the concept of $\mathcal{Z}$-symmetric modules as a generalization of $\mathcal{Z}$-symmetric ring. Additionally, we introduce the concept of an eversible module as an analogy to eversible rings and prove that every eversible module is also a $\mathcal{Z}$-symmetric module, like in the case of rings.

Keywords


  1. N. Agayev, S. Halicioğlu and A. Harmanci, On symmetric modules, Riv. Math. Univ. Parma, 2(8) (2009), 91–99.
  1. N. Agayev and A. Harmanci, On semi-commutative modules and rings, Kyungpook Math. J., 47 (2007), 21–30.
  1. B. Chattae and N. V. Sanh, A note on strongly IFP submodules and modules, East-West
  2. Math., 20(2) (2018), 202–205.
  3. A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Pub. Program, Boston, 1980.
  1. A. K. Chaturvedi, N. Kumar and K. P. Shum, On Z-symmetric rings, Math. Slovaca, 71(6) (2021), 1361–1374.
  1. P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc., 31(6) (1999), 641–648.
  2. E. Ghashghaei, M. T. Kosan, M. Namdari and T. Yildirim, Rings in which every left zero-divisor is also a right zero-divisor and conversely, J. Algebra Appl., 18(5) (2019), Article ID: 1950096.
  1. T. Y. Lam, A First Course in Noncommutative Rings, (2nd ed.), Springer, New York, 2001.
  2. T. K. Lee and Y. Zhou, Reduced modules, In: Rings, Modules, Algebras, and Abelian Groups, 365–377, Lecture Notes in Pure and Appl. Math., 236, Marcel Dekker, New York, 2004.
  1. A. G. Naoum and W. K. H. Al-Aubaidy, A note on multiplication modules and their rings of endomorphisms, Kyungpook Math. J., 35(2) (1995), 223–228.
  1. N. V. Sanh, O. Arunphalungsanti, N. T. Bac and S. Chairat, On fully bounded Noether ian modules and their endomorphism rings, East-West J. Math., 22(1) (2020), 95–101.
  1. N. V. Sanh, S. Asawasamrit, K. F. U. Ahmed and L. P. Thao, On prime and semiprime Goldie modules, Asian-European Journal of Mathematics, 4(2) (2011), 321–334.
  1. N. V. Sanh, N. A. Vu, K. F. U. Ahmed, S. Asawasamrit and L. P. Thao, Primeness in module category, Asian-European Journal of Mathematics, 3(1) (2010), 145–154.