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ON Z-SYMMETRIC MODULES

B. P. MINH∗ AND N. V. SANH

Abstract. A ring R is called a left Z-symmetric ring if ab ∈ Zl(R) implies
ba ∈ Zl(R), where Zl(R) is the set of left zero-divisors. A right Z-symmetric ring
is defined similarly, and a Z-symmetric ring is one that is both left and right Z-
symmetric. In this paper, we introduce the concept of Z-symmetric modules as a
generalization of Z-symmetric ring. Additionally, we introduce the concept of an ev-
ersible module as an analogy to eversible rings and prove that every eversible module
is also a Z-symmetric module, like in the case of rings.

1. Introduction
Throughout this paper, all rings are associative with identity and all

modules are unitary right R-modules. Let S = End(MR) denote the
endomorphism ring of M . With this notation, MR becomes an S-R bi-
module. A submodule X of M is called a fully invariant submodule if
f(X) ⊂ X for any f ∈ S. The class of fully invariant submodules of M is
nonempty and closed under intersections and sums. For a submodule X of M ,
we denote IX = {f ∈ S | f(M) ⊂ X}−the right ideal of S related to X. Fol-
lowing [13], a fully invariant proper submodule X is called a prime submodule
if φSm ⊂ X, then either φ(M) ⊂ X or m ∈ X for any φ ∈ S and any m ∈ M
(X is called a strongly prime submodule of M if for any φ ∈ S = End(MR)
and any m ∈ M,φ(m) ∈ X implies that φ(M) ⊂ X or m ∈ X). Especially,
M is prime (resp. strongly prime) if 0 is the prime (resp. strongly prime)
submodule of M . A right R-module M is called a self-generator if it gen-
erates all its submodules. A nonzero submodule U of M is essential in M
if the intersection of U with any nonzero submodule of M is nonzero. We
also denote lS(m) = {φ ∈ S |φ(m) = 0}, rR(m) = {r ∈ R |mr = 0} and
lS(X) = {φ ∈ S |φ(x) = 0 ∀x ∈ X}, where m ∈ M , X ⊂ M . The readers
are referred to [5] and [13] for all undefined concepts and terminologies.

It is well known that a ring R is reduced (= having no nonzero nilpotent
elements) if and only if a2 = 0 implies a = 0 for all a ∈ R. The concept of
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reduced rings was extended to reduced modules by Zhou and Lee [9], that is, a
right R-module M is called a reduced module if for any r ∈ R and any m ∈ M ,
mr = 0 implies mR∩Mr = 0. A module M is called symmetric [1] if whenever
r, s ∈ R and m ∈ M satisfy m(rs) = 0, then we have m(sr) = 0. Following
[1] and [2], a module M is said to be semi-commutative if mr = 0 implies
mRr = 0 for any m ∈ M and any r ∈ R. Following Sanh, a submodule X of
a right R-module M is IFP if for any m ∈ M and any φ ∈ S, if φ(m) ∈ X,
then φSm ⊂ X. M is an IFP module if 0 is an IFP submodule. For any ring
R, R being IFP is equivalent to R being semi-commutative, but in the case
of modules two notions are different.

By [5] an element a of the ring R is a left (resp. right) zero-divisor if there
exists 0 ̸= b ∈ R such that ab = 0 (resp. ba = 0). If a is both a left and a
right zero-divisor, then it is called a zero-divisor. The sets of all left and right
zero-divisors in a ring R are denoted by Zl(R) and Zr(R), respectively. Note
that an element a ∈ R is regular if it is not a zero-divisor. A ring in which
every left zero-divisor is also a right zero-divisor is called an eversible ring
[7]. From [6], a ring R is said to be reversible if ab = 0 implies that ba = 0
for any a, b ∈ R.

Recently, A. K. Chaturvedi et al.[5] defined the notion of Z-symmetric
rings. A ring R is called left Z-symmetric if ab ∈ Zl(R), then ba ∈ Zl(R) for
any a, b ∈ R. Similarly, a ring R is said to be right Z-symmetric if ab ∈ Zr(R),
then ba ∈ Zr(R) for any a, b ∈ R. Naturally, R is Z-symmetric if it is both
left and right Z-symmetric. It has been shown in [5] that all commutative
rings, nil rings, reduced rings and Artinian rings are Z-symmetric rings.

By a mild motivation, we introduce the concept of Z-symmetric modules.
In Section 2, we present a modified version of reduced modules that includes
left and right-sidedness. We also introduce the definition of reversible mod-
ules as a generalization of reversible rings and establish some connections
between the concepts introduced in this section. Section 3 starts with the
concepts of left and right zero-divisors in modules, which serve as the foun-
dation for the concept of Z-symmetric modules. We then establish some
conditions under which the endomorphism ring of a right Z-symmetric mod-
ule is right Z-symmetric. In Section 4, we introduce the concept of eversible
modules, which is an extension of eversible rings. We prove in general that
if a module is eversible, then it is Z-symmetric, analogous to the case of
rings. Furthermore, we provide an example illustrating that the relationship
between reversible modules and eversible modules may not necessarily be the
same as in the ring context, where every reversible ring is also an eversible
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ring. We also show that if a quasi-projective module MR has a nil endo-
morphism ring, then its factor module M/X is a right Z-symmetric module.
Here, X is a fully invariant proper submodule of M . We finally demonstrate
that when the sets of left and right zero-divisors in a Z-symmetric module
MR are proper subsets of it, both the ring R and the endomorphism ring S
are Dedekind-finite.

2. Preliminaries
Definition 2.1. We call a right R-module M a left-reduced module if for any
φ ∈ S and any m ∈ M , φ(m) = 0 implies that Sm ∩ φ(M) = 0, where
S = End(MR). A right R-module M is a right-reduced module if for any
m ∈ M and any r ∈ R,mr = 0 implies that mR ∩Mr = 0.

Example 2.2. We claim that Zp is a left-reduced Z-module, where p is
a prime. Let φk ∈ S = EndZ(Zp), k = 0, . . . , p − 1 and x ∈ Zp with
φk(x) = 0. Note that φk is the Z-endomorphism sending 1 to k ∈ Zp. One has
φk(x) = φk(1)x = kx = 0. Therefore, either k = 0 or x = 0. Thus
φk (Zp) ∩ Sx = 0.

Remark 2.3. (a) R is a reduced ring iff RR is left-reduced as a right R-
module. Similarly, R is reduced iff RR is right-reduced.

(b) It is not difficult to verify that if MR is left-reduced, then S = End(MR)
is a reduced ring. Note that if MR is right-reduced, then we might not
conclude that R is a reduced ring.

With a mild modification (see also [9, Lemma 1.2]), we have the following
lemma:

Lemma 2.4. The following are equivalent:
1. MR is left-reduced.
2. For any m ∈ M and any φ ∈ S, the following conditions hold:

(a) φ(m) = 0 implies φSm = 0.
(b) φ2(m) = 0 then φ(m) = 0.

For the sake of completeness, we present shortly the proof here.
Proof. Assume that (1) holds, and suppose that φ(m) = 0. It then follows
φϕm ∈ Sm ∩ φ(M) = 0 for all ϕ ∈ S. Thus φSm = 0 and (a) follows. Let
φ2(m) = 0, then Sφ(m)∩φ(M) = 0. From φ(m) ∈ Sφ(m)∩φ(M), it follows
that φ(m) = 0, proving (b).

The proof of (2) =⇒ (1) is routine, hence is omitted. □
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Remark 2.5. The class of modules satisfying 2(a) in Lemma 2.4 is said to
have insertion factor property, in short, IFP module (see [3]). Note that if
φ2(m) = 0 implies that φSm = 0, then M is said to be strongly IFP ([3]).
Definition 2.6. An MR module is called left-reversible if S is a reversible
ring. If R is a reversible ring, then we call MR a right-reversible module. If
MR is both left and right-reversible, then we call MR a reversible module.
Definition 2.7. Let M be a right R-module. M is called a left-symmetric
module if for any f, g ∈ S and any m ∈ M, fg(m) = 0 implies that gf(m) = 0.
MR is right-symmetric if m(ab) = 0 implies that m(ba) = 0 for any a, b ∈ R
and any m ∈ M . If MR is both left and right-symmetric, then we call MR a
symmetric module.
In case MR = RR, if RR is left-symmetric, then RR is right-symmetric, and
vice versa.
Proposition 2.8. If M is strongly IFP, then M is left-symmetric (see also
[3, Proposition 2.3]).
Proof. Let f, g ∈ S and m ∈ M such that fg(m) = 0. Since M is an IFP
module, we have fgSm = 0. Hence fgf(m) = 0. It then follows that
(gf)2(m) = 0. As M is strongly IFP, gfSm = 0. Thus gf(m) = 0, proving
our proposition. □
Proposition 2.9. If M is left-symmetric, then M is left-reversible.
Proof. Observe that for f, g ∈ S, fg = 0 implies that fg(m) = 0 for all
m ∈ M . By assumption, gf(m) = 0 for all m ∈ M . Thus gf = 0 as
required. □
Example 2.10. (a) Clearly, all MR modules whose endomorphism rings

are commutative (e.g. Zn) are all left-symmetric, left-reversible and
IFP.

(b) It is straightforward to show that all left-reduced modules are strongly
IFP (see Lemma 2.4), hence are IFP. The converse needs not be true.
Take M = Z12 as a Z-module. Apparently, Z12 is IFP, however, Z12 is
not a left-reduced module. To see this, take φ6 ∈ S and 2 ∈ Z12. We
have φ6(2) = 0, but 0 ̸= 6 ∈ φ6(Z12) ∩ S(2).

Remark 2.11. The following implications hold for any module MR: “MR is
left-reduced =⇒ MR is strongly IFP =⇒ MR is left-symmetric =⇒ MR

is left-reversible”. For the right side, we only have “MR is right-reduced =⇒
MR is strongly semi-commutative =⇒ MR is right-symmetric”.
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Proposition 2.12. Let MR be a self-generator. If M is a left-reversible
module, then M is an IFP module.

Proof. Since M is left-reversible, S is a reversible ring by definition. Hence
S is IFP. It is clear that if M is IFP, then S is an IFP ring. Thus it suffices
to show that for a self-generator module M , if S = End(MR) is IFP, then M
is IFP.

Let φ(m) = 0 with arbitrary φ ∈ S,m ∈ M . Since M is a self-generator,
mR =

∑
i∈ I ϕi(M), where ϕi ∈ S for some set I. It then follows that

0 = φ(mR) = φ
(∑

i∈ I ϕi(M)
)
=

∑
i∈ I φϕi(M). Consequently, φϕi(M) = 0

for all i. Then by hypothesis, φSϕi = 0 for all i ∈ I. Hence φS(mR) = 0,
proving that φSm = 0. This completes our proof. □

Remark 2.13. Recall that MR is faithful if rR(M) = 0. If MR is faithful, then
we have “MR is right-reduced =⇒ MR is strongly semi-commutative =⇒
MR is right-symmetric =⇒ MR is right-reversible”.

3. Z-symmetric modules
Definition 3.1. An element m ∈ M is said to be a right zero-divisor if there
exists a nonzero φ ∈ S such that φ(m) = 0. It is called a left zero-divisor
if there is 0 ̸= r ∈ R such that mr = 0. The set of all right (resp. left)
zero-divisors of M is denoted by Zr(M) (resp. Zl(M)). An element m ∈ M
is called a zero-divisor if it is both a left and a right zero-divisor.

Example 3.2. (a) Clearly, if M ̸= 0, then Zr(M) and Zl(M) are non
empty since 0 belongs to these sets.

(b) Consider Z5 as a Z-module. Nonzero elements of S = End(Z5) are
φk, k = 1, 2, 3, 4, where φk maps 1 to k ∈ Z5. For any x ∈ Z5,
φk(x) = kx, which is zero if and only if x is zero. Therefore, a nonzero
element of Z5 is not a right zero-divisor. Apparently, every nonzero
element of Z5 is a left zero-divisor. Note also that any prime p > 1
serves our purpose.

(c) For an element m of M , m ∈ Zr(M) ⇔ lS(m) ̸= 0. Analogously,
m ∈ Zl(M) ⇔ rR(m) ̸= 0.

We are now in a position to define the concept of Z-symmetric modules.

Definition 3.3. An MR module is said to be right Z-symmetric if for any
f, g ∈ S with fg ∈ Zr(S), then gf(M) ⊂ Zr(M). Similarly, we call a module
MR, left Z-symmetric if for any r1, r2 in R such that r1r2 ∈ Zl(R), then
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Mr2r1 ⊂ Zl(M). A module MR is called a Z-symmetric module if it is both
left and right Z-symmetric.

A ring R is right Z-symmetric if for any a, b ∈ R, whenever ab ∈ Zr(R),
then ba ∈ Zr(R). R is left Z-symmetric if for any a, b ∈ R, whenever
ab ∈ Zl(R), then ba ∈ Zl(R). R is Z-symmetric if it is both left and right
Z-symmetric (see [5]).

Remark 3.4. (a) A ring R is left (resp. right) Z-symmetric iff the module
RR is left (resp. right) Z-symmetric.

(b) In the above definition, gf(M) ⊂ Zr(M) implies lS(gf(m)) ̸= 0 for all
m ∈ M . Similarly, Mr2r1 ⊂ Zl(M) if rR(mr2r1) ̸= 0 for all m ∈ M .
Note that lS(gf(M)) and rR(Mr2r1) need not necessarily be nonzero.

(c) It is clear from the definition that if the ring S (resp. R) is right (resp.
left) Z-symmetric, then MR is right (resp. left) Z-symmetric.

Next, we find some conditions for the right Z-symmetricity of M to be the
right Z-symmetricity of S.

Theorem 3.5. Let MR be a cyclic module. Then M is right Z-symmetric if
and only if S is right Z-symmetric.

Proof. Let f, g ∈ S, fg ∈ Zr(S). Then by assumption,
gf(m)R = gf(mR) = gf(M) ⊂ Zr(M).

Since 0 ̸= lS(gf(m)), then 0 ̸= lS(gf(mR)) = lS(gf(M)), proving that
gf ∈ Zr(S), hence S is right Z-symmetric. This completes our proof. □

In general, if MR is a finitely generated module, which is a right Z-symmetric
module, we do not know if the ring S is right Z-symmetric.

Recall that a nonzero MR module is said to be uniform if every nonzero
submodule of M is essential in M . Note that any nonzero submodule of
a uniform module is uniform and that any essential extension of a uniform
module is again uniform. A submodule X of M is called an M -annihilator if
X = rM(T ) = Ker(T ) for some T ⊂ S.

The singular submodule of a right R-module M is defined as follow:
Z(M) = {m ∈ M |mK = 0 for some essential right ideal K of R}

It is equivalent to say that if m ∈ Z(M), then rR(m) = {r ∈ R | mr = 0}
is an essential right ideal of R. A right R-module M is called a non-singular
module if Z(M) = 0. At the other extreme, M is called a singular module if
Z(M) = M .
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Lemma 3.6. Let M be a non-singular right R-module, and let A, B be
M-annihilators of M with A being essential in B. Then A = B.

Proof. The proof can be found in [12], and we present shortly here for the
sake of completeness. Let 0 ̸= b ∈ B, by [4, Lemma 1.1], there is an essential
right ideal K of R such that 0 ̸= bK ⊂ A. Therefore,

lS(A)(bK) ⊂ lS(A)A = 0.

Since M is non-singular, lS(A)(b) ⊂ Z(M) = 0, then it follows

b ∈ rM(lS(A)) = rM(lS(rM(T )) = rM(T ) = A

for some T ⊂ S. Thus B = A. □

Theorem 3.7. Let M be a uniform non-singular right R-module. Then M
is right Z-symmetric iff S is right Z-symmetric.

Proof. It suffices to show the “only if” part. For convenience, we write
rM lS(fX) instead of rM(lS(f(X)) and write fm where it is appropriate to
refer to f(m) for any f ∈ S, m ∈ M.

Let M be right Z-symmetric, and let fg ∈ Zr(S). Then gf(M) ⊂ Zr(M).
We can assume that gf ̸= 0. Pick an element a ∈ M with gf(a) ̸= 0.
Because gf(a) is a right zero-divisor, lS(gfa) ̸= 0, hence lS(gfaR) ̸= 0. Ob-
viously, lS(gfaR) ⊃ lS(gfM), it follows that rM lS(gfaR) ⊂ rM lS(gfM).
Note also that rM lS(gfaR) ̸= 0, since lS(gfaR)(gfaR) = 0. It follows from
M being uniform that rM lS(gfaR) is an essential submodule of rM lS(gfM).
These two sets are clearly M -annihilators. Hence, by Lemma 3.6,
rM lS(gfaR) = rM lS(gfM). One has

0 ̸= lS(gfaR) = lSrM lS(gfaR) = lSrM lS(gfM) = lS(gfM).

Therefore, there is 0 ̸= h ∈ S such that hgf(m) = 0 for all m. Thus hgf = 0,
proving that gf ∈ Zr(S), and S is right Z-symmetric. □

We restrict ourselves to the commutative case for a while. Let R be a
commutative ring, MR is called a multiplication module if every submodule
of M is of the form MI for some ideal I of R. It turns out to be that
multiplication modules have some nice properties.

Proposition 3.8. Let MR be a multiplication right R-module, and let φ ∈ S.
Then ∀m ∈ M, ∃r ∈ R such that φ(m) = mr. Therefore, S = End(MR) is
commutative, and each submodule of M is fully invariant.
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Proof. This can be proven using similar arguments as in [10, Proposition 1.1]
with a note that MI is a fully invariant submodule of M for any ideal I of
R. □

Theorem 3.9. Let MR be a nonzero multiplication right R-module. Then M
is a Z-symmetric module.

Proof. Since R is commutative, R is a left Z-symmetric module. Similarly,
S is commutative [Proposition 3.8], then S is a right Z-symmetric module.
Thus M is a Z-symmetric module. □

4. Some properties
In this section, we first define the concept of eversible modules. After that,

various connections between left (resp. right) Z-symmetric modules and the
other types of modules are investigated.

Definition 4.1. A right R-module M is called an eversible module if every
left zero-divisor is a right zero-divisor, and vice versa. In other words, M
is eversible if Zr(M) = Zl(M). A ring R is eversible iff RR is an eversible
module.

Example 4.2. (a) Consider the Z-module Z2. Clearly, End(Z2) = {0, id}.
Therefore, 0 ∈ Z2 is the only right zero-divisor. On the other hand,
1 ∈ Z2 is clearly a nonzero left zero-divisor of Z2. Thus Z2 is not
eversible.

(b) In general, if S = End(MR) is eversible, we could not conclude that
MR is eversible (see Example 4.2 (a)).

Theorem 4.3. Let M be a strongly prime module. Then S = End(MR) is
eversible with Zl(S) = Zr(S) = 0.

Proof. Let f ∈ Zr(S), there exists 0 ̸= h such that hf(M) = 0, that is,
hf(m) = 0 for all m ∈ M . Since M is strongly prime and h(M) ̸= 0,
it follows that f(m) = 0 for all m ∈ M , hence Zr(S) = 0. Now, let
f ∈ Zl(S), fh(M) = 0 for some h ̸= 0. Take an a ∈ M such that h(a) ̸= 0.
By the same reasoning, fh(a) = 0, which implies that f(M) = 0 or h(a) = 0.
Therefore, f(M) = 0, proving that Zl(S) = 0. □

From Theorem 4.3, we can deduce that any strongly prime module is a
right Z-symmetric module. Before going any further, we need the following
lemma.
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Lemma 4.4. Let f, g ∈ S with fg ∈ Zr(S). Then either gf(M) ⊂ Zr(M)
or f(M) ⊂ Zr(M).

Proof. Let fg ∈ Zr(S) such that gf(M) ̸⊂ Zr(M). Then there exists an
a ∈ M such that gf(a) /∈ Zr(M), that is φgf(a) ̸= 0 for all 0 ̸= φ ∈ S. Since
fg ∈ Zr(S), fg(M) ⊂ Zr(M). In particular, fg(f(a)) ∈ Zr(M). Hence,
there exists 0 ̸= h such that (hf)gf(a) = 0. As we pointed out previously
that lS(gf(a)) = 0, then hf must be zero, hence f ∈ Zr(S). Therefore,
f(M) ⊂ Zr(M). □

Lemma 4.5. Let r1, r2 ∈ R with r1r2 ∈ Zl(R). Then either Mr2r1 ⊂ Zl(M)
or Mr2 ⊂ Zl(M).

Following [5], every eversible ring is Z-symmetric. We now generalize this
result.

Theorem 4.6. Let MR be eversible, then MR is a Z-symmetric module.

Proof. We give only the proof for the case concerning right Z-symmetric
module. The left Z-symmetric case can be obtained in a similar fashion.
This is a proof by way of contrapositive.

Suppose that M is not right Z-symmetric. Then we could find a pair
f, g ∈ S with fg ∈ Zr(S) such that gf(M) ̸⊂ Zr(M). Therefore, there
exists an x ∈ M such that gf(x) /∈ Zr(M). Moreover, it follows from
Lemma 4.4 that f(M) ⊂ Zr(M), which implies that f(m) ∈ Zr(M) for all
m ∈ M . In particular, f(x) ∈ Zr(M). Now, if gf(x) ∈ Zl(M), we are done
since Zr(M) ̸= Zl(M). For otherwise, suppose that gf(x) /∈ Zl(M), it then
follows that gf(x)r ̸= 0 for all nonzero r ∈ R. Consequently, f(x)r ̸= 0 for
all 0 ̸= r ∈ R, proving that f(x) /∈ Zl(M). As mentioned earlier, from
f(x) ∈ Zr(M), we see that Zl(M) ̸= Zr(M). Therefore, M is not ev-
ersible. □

Lemma 4.7. In an Artinian ring R, if an element a /∈ Zl(R) (resp. Zr(R)),
then it is right (resp. left) invertible.

Proof. Consider a stationary descending chain

aR ⊃ . . . ⊃ anR ⊃ an+1R ⊃ . . .,

where n ≥ 2. Since a2 is clearly nonzero, we can choose an m ≥ 1 such that
0 ̸= amR = am+1R. One has am = am+1r for some r, hence

a[am−1(ar − 1)] = 0.
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Therefore, am−1(ar−1) must be zero. Continuing in this process, at the very
last step, we get ar − 1 = 0 implying that ar = 1, proving that a is right
invertible.

The other case can be obtained similarly. □
Following lemma 4.7, we can deduce that every Artinian ring is eversible,

and from [5] every reversible ring is eversible. Interestingly, these are not
true in module cases (see examples below).

Example 4.8. (a) Recall from Example 4.2 that Z2 is not eversible, which
is clearly a reversible Z-module.

(b) Consider Rn as a vector space over the reals. Clearly, Rn is an Artinian
R-module. For x ∈ Rn and k ∈ R, xk = 0 implies that x = 0 or k = 0.
Therefore, Zl(Rn) = 0. On the other hand, since EndR(Rn) ∼= Mn(R),
if we pick a nonzero A ∈ Mn(R) such that A has nonzero null space,
then it follows that Zr(Rn) ̸= 0, proving that Rn is not eversible.

Recall that every nil ring is Z-symmetric [5]. We have the following theo-
rem:

Theorem 4.9. Let M be a nonzero right R-module. If S = End(MR) is a
nil ring, then M is a right Z-symmetric module. Similarly, if R is a nil ring,
then M is a left Z-symmetric module.

Proof. The proof is straightforward, since every nil ring is Z-symmetric. □
Theorem 4.10. Let M be a nonzero IFP module. Then M is a right Z-
symmetric module. If M is a faithful semi-commutative module, then M is
a left Z-symmetric module.

Proof. We prove only the case of right Z-symmetric module. Let fg ∈ Zr(S).
There exists 0 ̸= h ∈ S such that hfg(m) = 0 for all m ∈ M . From M being
IFP, it follows that hfgS(m) = 0, particularly hfgf(m) = 0 for all m ∈ M .
If hf ̸= 0, then we are done. Otherwise, assuming hf = 0, recall that if M
is IFP, then S is an IFP ring. It then follows hgf = 0, which implies that
hgf(m) = 0 for all m. Therefore, gf(M) ⊂ Zr(M), proving that MR is right
Z-symmetric. □
Theorem 4.11. If M ̸= 0 is left-reversible, then M is right Z-symmetric. If
M is right-reversible, then M is left Z-symmetric.

Proof. Note that M is left-reversible if the ring S is reversible. Let
fg ∈ Zr(S), that is, lS(fg) ̸= 0. There exists a nonzero h such that
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h(fg) = (hf)g = 0. Since (hf)gf = (hfg)f = 0, if hf ̸= 0, we are done. For
otherwise, hf = 0 =⇒ fh = 0 =⇒ gfh = 0, hence hgf = 0. We conclude
that M is right Z-symmetric as desired. □

Since “M is left-reduced =⇒ M is strongly IFP =⇒ M is left-symmetric
=⇒ M is left-reversible =⇒ M is right Z-symmetric module”. Therefore,
all nonzero left-reduced, strongly IFP, left-symmetric and left-reversible mod-
ules are right Z-symmetric modules. On the other hand, if M is faithful, then
we have the same results hold for left Z-symmetric case. Note also that “left-
reversible” might not imply “IFP”. However, as shown in Proposition 2.12,
if we were given further that M is a self-generator, then we would have “M
is left-reduced =⇒ M is strongly IFP =⇒ M is left-symmetric =⇒ M is
left-reversible =⇒ M is IFP =⇒ M is right Z-symmetric module”.

Next, we turn our attention to factor modules and submodules of M .
Lemma 4.12. ([11]) Let X be a fully invariant submodule of M , and let
φ ∈ End(M). Then there is a unique φ̄ ∈ End(M/X) such that φ̄ν = νφ,
where ν : M → M/X is the natural projection.
Lemma 4.13. ([11]) Let X be a submodule of a quasi-projective module M ,
and let φ ∈ End(M/X). There is an f ∈ End(M) such that φν = νf , where
ν is the natural projection.
Lemma 4.14. ([11]) Let M be a quasi-projective right R-module, and let X
be a fully invariant submodule of M . Then End(M/X) ∼= S/IX.
Theorem 4.15. Let M be quasi-projective right R-module whose endomor-
phism ring is a nil ring. Then M/X is right Z-symmetric, where X is a fully
invariant proper submodule of M .
Proof. First of all, we show that if M is quasi-projective and S = End(MR) is
a nil ring, then S̄ = End(M/X) is also a nil ring, where X is a fully invariant
proper submodule of M . For every φ ∈ S̄ = End(M/X), there exists f ∈ S
such that φν = νf (Lemma 4.13). Furthermore, since S = End(M) is nil,
there is a positive integer n such that fn = 0. One has ∀m̄ ∈ M/X,

φn(m̄) = φnν(m) = φn−1(φν)(m) = φn−1(νf)(m) = · · · = νfn(m) = 0.
Therefore, S̄ is nil. Now since S̄ is nil, S̄ is a right Z-symmetric ring (every
nil ring is Z-symmetric). It then follows that M/X is right Z-symmetric. □

In [8], a ring R is Dedekind-finite if ab = 1 implies that ba = 1 for any
a, b ∈ R.
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Theorem 4.16. Let M be a right R-module and suppose that Zr(M) ̸= M . If
M is right Z-symmetric, then S = End(MR) is Dedekind-finite. Similarly, if
Zl(M) ̸= M and M is a left Z-symmetric module, then R is Dedekind-finite.

Proof. Let f, g ∈ S such that fg = 1. One has 0 = (gf − 1)gf . If gf − 1 ̸= 0,
then gf ∈ Zr(S). Consequently, M = fg(M) ⊂ Zr(M), a contradiction.
Thus gf = 1. Similarly, let r1r2 = 1, then r2r1(1 − r2r1) = 0. If r2r1 ̸= 1,
then r2r1 ∈ Zl(R). It now follows from M being left Z-symmetric that
M = Mr1r2 ⊂ Zl(M), a contradiction. □

Proposition 4.17. Let M be a quasi-projective right R-module, and let X
be a fully invariant submodule of M . Then M/X is right Z-symmetric if for
any f, g ∈ S and any φ ∈ S\IX satisfying φfg ∈ IX, then ϕgf ∈ IX for some
ϕ ∈ S\IX.

Proof. By [5, Proposition 2.12], S/IX is right Z-symmetric. It follows from
[11, Lemma 2.13] that S/IX ∼= End(M/X). Consequently, M/X is right
Z-symmetric. □
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