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MORE ON TOTAL DOMINATION POLYNOMIAL AND
Dt-EQUIVALENCE CLASSES OF SOME GRAPHS

S. Alikhani∗ and N. Jafari

Abstract. Let G = (V,E) be a simple graph of order n. A total dominating set
of G is a subset D of V such that every vertex of V is adjacent to some vertices of
D. The total domination number of G is equal to the minimum cardinality of a total
dominating set in G and is denoted by γt(G). The total domination polynomial of G is
the polynomial Dt(G, x) =

∑n
i=γt(G) dt(G, i)xi, where dt(G, i) is the number of total

dominating sets of G of size i. Two graphs G and H are said to be total dominating
equivalent or simply Dt-equivalent, if Dt(G, x) = Dt(H,x). The equivalence class of
G, denoted [G], is the set of all graphs Dt-equivalent to G. A polynomial

∑n
k=0 akx

k

is called unimodal, if the sequence of its coefficients is unimodal, that means there
is some k ∈ {0, 1, . . . , n}, such that a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an. In
this paper, we investigate Dt-equivalence classes of some graphs. Also, we introduce
some families of graphs whose total domination polynomials are unimodal. The Dt-
equivalence classes of graphs of order ≤ 6 are presented in the appendix.

1. Introduction
Let G = (V,E) be a simple graph. The order of G is the number of

vertices of G. For any vertex v ∈ V , the open neighborhood of v is the
set N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood is the set
N [v] = N(v) ∪ {v}. For a set S ⊂ V , the open neighborhood of S is
the set N(S) =

∪
v∈S N(v) and the closed neighborhood of S is the set

N [S] = N(S)∪ S. The set D ⊂ V is a total dominating set if every vertex of
V is adjacent to some vertices of D, or equivalently, N(D) = V . The total
domination number γt(G) is the minimum cardinality of a total dominating
set in G. A total dominating set with cardinality γt(G) is called a γt-set. An
i-subset of V is a subset of V of cardinality i. Let Dt(G, i) be the family of
total dominating sets of G which are i-subsets and let dt(G, i) = |Dt(G, i)|.
The polynomial Dt(G, x) =

∑n
i=1 dt(G, i)xi is defined as total domination

polynomial of G. A root of Dt(G, x) is called a total domination root of
G. For many graph polynomials, their roots have attracted considerable
attention.
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A natural question to ask is to what extent can a graph polynomial describe
the underlying graph (for example, a survey of what is known with regards
to chromatic polynomials can be found in Chapter 3 of [16]). We say that
two graphs G and H are total domination equivalent or simply Dt-equivalent
(written G ∼t H) if they have the same total domination polynomial. Simi-
larly to domination polynomial [1, 22], we let [G] denote the Dt-equivalence
class determined by G, that is [G] = {H|H ∼t G}. A graph G is said to
be total dominating unique or simply Dt-unique if [G] = {G}. Two problems
arise:

(i) Which graphs are Dt-unique, that is, are completely determined by
their total domination polynomials?

(ii) Can we determine the Dt-equivalence class of a graph?

Both problems appear difficult, but there are some partial results known.
Recurrence relations of graph polynomials have received considerable atten-
tion in the literature. It is well-known that the independence polynomial and
matching polynomial of a graph satisfies a linear recurrence relation with
respect to two vertex elimination operations, the deletion of a vertex and
the deletion of vertex’s closed neighborhood. Other graph polynomials in
the literature satisfy similar recurrence relations with respect to vertex and
edge elimination operations [24]. In contrast, it is significantly harder to find
recurrence relations for the domination polynomial and the total domination
polynomial. The easiest recurrence relation is to remove an edge and to com-
pute the total domination polynomial of the graph arising instead of the one
for the original graph. Indeed, for the total domination polynomial of a graph
there might be such irrelevant edges, that can be deleted without changing
the value of the total domination polynomial at all. An irrelevant edge is an
edge e ∈ E of G, such that Dt(G, x) = Dt(G \ e, x). These edges can be
useful to classify some graphs by their total domination polynomials.

The corona of two graphs G1 and G2, as defined by Frucht and Harary in
[18], is the graph G = G1◦G2 formed from one copy of G1 and |V (G1)| copies
of G2, where the i-th vertex of G1 is adjacent to every vertex in the i-th copy
of G2. The corona G◦K1, in particular, is the graph constructed from a copy
of G, where for each vertex v ∈ V (G), a new vertex v′ and a pendant edge
vv′ are added.

A finite sequence of real numbers (a0, a1, a2, . . . , an) is said to be unimodal,
if there is some k ∈ {0, 1, . . . , n}, called the mode of sequence, such that

a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an.
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The mode is unique if ak−1 < ak > ak+1. A polynomial is called unimodal if
the sequence of its coefficients is unimodal. It is log-concave if a2k ≥ ak−1ak+1

for all 1 ≤ k ≤ n − 1. It is symmetric if ak = an−k for 0 ≤ k ≤ n. A log-
concave sequence of positive numbers is unimodal (see, e.g., [11, 12, 27]). We
say that a polynomial is unimodal (log-concave, symmetric, respectively) if
the sequence of its coefficients is unimodal (log-concave, symmetric, respec-
tively). A mode of the sequence a0, a1, . . . , an is also called a mode of the
polynomial

∑n
k=0 akx

k.
Unimodality problems of graph polynomials have always been of great

interest to researchers in graph theory [4, 26]. There are a number of re-
sults concerning the coefficients of independence polynomials, many of which
consider graphs formed by applying some sort of operation to simpler graphs.
In [29], for instance, Rosenfeld examines the independence polynomials of
graphs formed by taking various rooted products of simpler graphs (see [19]
for the definition of the rooted product of two graphs.) In particular, he has
shown that the property of having only real roots is preserved under forming
rooted products. Mandrescu in [28] has shown that the independence poly-
nomial of corona product of any graph with 2 copies of K1, i.e., I(G◦2K1, x)
is unimodal. Levit and Mandrescu in [27] generalized this result and have
shown that if H = Kr−e, r ≥ 2, then the polynomial I(G◦H, x) is unimodal
and symmetric for every graph G. In 2014, Alikhani and Peng conjectured
that the domination polynomial is unimodal [9]. In [5], Alikhani and Jahari
demonstrated unimodality of the domination polynomials for several fami-
lies of graphs, including every friendship graph as well as the corona of any
graph with P3 or Kn. Recently, further conditions for unimodality of the
domination polynomial have been proved in [10, 13, 25].

Although the unimodality of the independence polynomial and the
domination polynomial has been actively studied, almost no attention has
been given to the unimodality of the total domination polynomials. We
checked the total domination polynomial of graphs of order at most six (see
[8]) and observed that all of these polynomials are unimodal. As usual we
denote the complete graph, path and cycle of order n by Kn, Pn and Cn,
respectively. Also Sn is the star graph with n vertices.

In the next section, we study the total dominating equivalence classes of
some graphs such as G◦Km and K1,n. In Section 3, we consider some specific
graphs and study the unimodality of their total domination polynomials. The
Dt-equivalence classes of graphs of order ≤ 6 are presented in the appendix.
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2. Dt-classes of some graphs
Two graphs G and H are said to be total dominating equivalent or simply

Dt-equivalent, if Dt(G, x) = Dt(H, x) and written G ∼t H. It is evident
that the relation ∼ of Dt-equivalent is an equivalence relation on the family
G of graphs, and thus G is partitioned into equivalence classes, called the
Dt-equivalence classes. Given G ∈ G, let

[G] = {H ∈ G : H ∼t G}.
If [G] = {G}, then G is said to be total dominating unique or simply

Dt-unique.
It is easy to see, if two graphs G and H are isomorphic, then

Dt(G, x) = Dt(H, x), but the reverse is not always true. We have shown
all graphs of order less than or equal six that are not isomorphic but have
the same total domination polynomial, as Figures 8, 9, and 10 in Appendix.
Note that all graphs of order one, two and three are Dt-unique. We need the
following theorems to obtain more results on Dt-equivalence classes of some
graphs:

Theorem 2.1. [15] Let G = (V,E) be a graph. Then

Dt(G, x) = Dt(G \ v, x) +Dt(G⊙ v, x)−Dt(G⊚ v, x)

where G⊙v denotes the graph obtained from G by removing all edges between
vertices of N(v) and G⊚ v denotes the graph G⊙ v \ v.

Theorem 2.2. [15] If G = (V,E) is a graph and e = {u, v} ∈ E with
N [v] = N [u], then Dt(G, x) = Dt(G \ e, x) + x2Dt(G \N [u], x).

We recall that a leaf is a vertex of degree one and a support vertex is defined
as a vertex adjacent to a leaf.

Theorem 2.3. [6] Let G be a graph and e = {u, v} be an edge of G. If u
and v are adjacent to the support vertices, then e is an irrelevant edge, i.e.,
Dt(G, x) = Dt(G \ e, x).

Theorem 2.4. Let G be a graph and e = {u, v} ∈ E(G) be an edge of G
satisfying NG[u] = NG[v]. If there is a vertex w such as NG(w) ⊆ NG(u),
then e is an irrelevant edge. That means Dt(G, x) = Dt(G \ e, x).

Proof. Let G be a graph and e = {u, v} ∈ E(G) that NG[u] = NG[v]. By
Theorem 2.2 and by the fact that G \ NG[u] has at least one isolate vertex,
w, so Dt(G \NG[u]) = 0 and we have the result. □
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The (m,n)-lollipop graph is a special type of graph consisting of a complete
graph Km of order m and a path graph on n vertices, connected with a bridge.
See Figure 1.

Km

Figure 1. The lollipop graphs L(6, 1), L(8, 3) and L(m,n).

Corollary 2.5. For every natural number m, the total domination polynomial
of (m, 1)-lollipop graph is equal to

Dt(L(m, 1), x) = x(x+ 1)m − x.

Proof. By Theorem 2.3, all edges of complete graph Km in (m, 1)-lollipop
graph are irrelevant. So the total domination polynomial of this graph is
equal to the total domination polynomial of the star graph K1,m and we have
the result. □

Generally, the total domination polynomial of (m,n)-lollipop graphs, i.e.,
Dt(L(m,n), x) is obtained from the following recursive relation:

xDt(L(m,n− 1), x) + x2[Dt(L(m,n− 3), x) +Dt(L(m,n− 4), x)],

where
Dt(L(m, 1), x) = x(x+ 1)m − x,

Dt(L(m, 2), x) = x2(x+ 1)m−1(x+ 2)− (m− 1)x3 − x2,

Dt(L(m, 3), x) = x2(x+ 1)m(x+ 2)− (m− 1)x4 − 2mx3 − 2x2,

Dt(L(m, 4), x) = x2(x+1)m(x2+3x+1)− (m−1)x5−2mx4− (m+2)x3−x2.

Theorem 2.6. Let G be a graph of order n with a vertex v of degree
deg(v) = n − 1. Then G is Dt-unique if and only if G \ v is Dt-unique.

Proof. By Theorem 2.1, we have
Dt(G, x) = Dt(G \ v, x) +Dt(G⊙ v, x)−Dt(G⊚ v, x)
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where Dt(G ⊙ v, x) = Dt(K1,n−1, x) and Dt(G ⊚ v, x) = 0. So we have the
result. □

The friendship (or Dutch-Windmill) graph Fn is a graph that can be
constructed by coalescence n copies of the cycle graph C3 of length 3 with
a common vertex. The Friendship theorem of Paul Erdős, Alfred Rényi and
Vera T. Sós [17], states that graphs with the property that every two vertices
have exactly one neighbour in common are exactly the friendship graphs.
Figure 4 shows some examples of friendship graphs.

Figure 2. Friendship graphs F2, F3 and F4, respectively.

Corollary 2.7. i) For every n > 0, Kn is Dt-unique.
ii) The friendship graph Fn is Dt-unique, for every n ≥ 3.

Proof. i) The result follows induction and Theorem 2.6.
ii) By Theorem 2.6, since Fn \ v is Dt-unique, where v is the center vertex

of Fn, so we have the result. □
Theorem 2.8. For every natural number n > 2, K1,n is not Dt-unique and
especially [K1,n] ⊇ {K1,n, L(n, 1), L(n, 1) − e, . . .} where e is any edge of
complete graph Kn in lollipop graph that is not adjacent to the pendent edge
of this graph.
Proof. Let v be the center vertex in K1,n. We have Dt(K1,n \ v, x) = 0, so
K1,n \ v is not Dt-unique and by Theorem 2.6 we have the result. Also, by
Theorem 2.5 the second part of theorem is achieved. □

Now, we introduce an infinite family of graphs such that are total
dominating equivalent with G ◦ Km. Let G be a graph with vertex set
{v1, . . . , vn}. By G(vm1

1 , vm2
2 , . . . , vmn

n ), we mean the graph obtained from
G by joining mi new vertices to each vi, for i = 1, . . . , n, where m1, . . . ,mn

are positive integers; this graph is called sunlike. We note that by the new
notation, G ◦K1 is equal to G(v11, v

1
2, . . . , v

1
n).

Theorem 2.9. Let G be a connected graph of order n. Any graphs in the
family

{G ◦Km, (G ◦Km) ◦Km, ((G ◦Km) ◦Km) ◦Km, . . .}
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is not Dt-unique.

Proof. Actually for every connected graph G of order n,
[G ◦Km] ⊇ {G ◦Km, G(vm1

1 , vm2
2 , . . . , vmn

n )},

where
n∑

i=1

mi = mn and for every i, mi ≥ 1. □

3. Unimodality of total domination polynomial
In this section, we consider some specific graphs and study the unimodality

of their total domination polynomials. We think that the total domination
polynomial of a graph is unimodal [23]. First, we study the unimodality of
the total domination polynomial of some certain graphs.

3.1. Unimodality of some specific graphs. We need the following
theorem to state and prove some new results for the unimodality of the total
domination polynomial of graphs.

Theorem 3.1. [31] Let f(x) and g(x) be polynomials with positive
coefficients.

i) If both f(x) and g(x) are log-concave, then so is their product f(x)g(x).
ii) If f(x) is log-concave and g(x) is unimodal, then their product f(x)g(x)

is unimodal.
iii) If both f(x) and g(x) are symmetric and unimodal, then so is their

product f(x)g(x).

If polynomials Pi(x) for i = 1, 2, . . . , n with positive coefficients are
log-concave, then

∏n
k=1 Pk(x) is log-concave as well. Here, we introduce a

family of graphs whose total domination polynomial are unimodal.
An (n, k)-firecracker F (n, k) is a graph obtained by the concatenation of n,

k-stars Sk by linking one leaf from each. Also, we generalize the definition
of firecracker graphs. An (k1, k2, . . . , kn)-firecracker F (k1, . . . , kn) is a graph
obtained by the concatenation of ki-stars Ski by linking one leaf from each
(see Figure 3).

Theorem 3.2. [6]
(i) For every natural numbers n and k ≥ 3,

Dt(F (n, k), x) = (x(x+ 1)(k−1) − x)n.

(ii) Dt(F (k1, . . . , kn), x) =
n∏

i=1

(x(x+ 1)(ki−1) − x).
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v1 v2 v3 vn−1 vn

. . .

Figure 3. The graph F (n, k) and F (5, 9, 7, 4, 3).

Theorem 3.3. For natural numbers n, k ≥ 3 and ki ≥ 3 (1 ≤ i ≤ n) the
total domination polynomial of graphs L(n, 1), F (n, k) and F (k1, k2, . . . , kn)
are unimodal.
Proof. The total domination polynomial of these graphs is equal to the
product of the total domination polynomial of some star graphs. For every
natural number n , Dt(K1,n, x) = x(x+1)n−x is unimodal and in particular
log-concave. So by Theorem 3.1 we have results. □

The following theorem gives many graphs whose the total domination
polynomials are unimodal:
Theorem 3.4. Let G be a graph of order n with r isolated vertices. The total
domination polynomial of every graph of the family

{G ◦Km, (G ◦Km) ◦Km, ((G ◦Km) ◦Km) ◦Km, · · · },
is unimodal.
Proof. For every graph G of order n with r isolated vertices we have

Dt(G ◦Km, x) = xn(1 + x)m(n−r)[(x+ 1)n − 1]r.

So by Theorem 3.1 the total domination polynomial of this graph is log-
concave and so is unimodal. □

The generalized friendship graph Fn,q is a collection of n cycles (all of order
q), meeting at a common vertex (see Figure 4). The generalized friendship
graph may also be referred to as a flower ([30]). For q = 3 the graph Fn,q is
denoted simply by Fn and is friendship graph as known.

The n-book graph Bn can be constructed by bonding n copies of the cycle
graph C4 along a common edge {u, v}, see Figure 5. Here we compute the
total domination polynomial of n-book graphs.
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v

Figure 4. Graphs F2,4, F3,4, F4,4 and Fn,4, respectively.

vv

Figure 5. The book graphs B3 and B4, respectively.

Theorem 3.5. For each natural number n,
i) Total domination polynomial of n-book graph Bn is unimodal.
ii) Total domination polynomial of graph Fn,4 is unimodal.

Proof. i) We have Dt(Bn, x) = (x(x+ 1)n + xn)2 (see [23]), so

Dt(Bn, x) =
(
xn+1 + (n+ 1)xn +

(
n

n− 2

)
xn−1 + . . .+

(
n

2

)
x3 + nx2

)2
.

By Theorem 3.1 this polynomial is log-concave and so unimodal.
ii) Since Dt(Fn,4, x) = xn+1(x+ 2)n[(x+ 1)n + xn−1] (see [3]) and(

2i
(
n

i

))2 ≥ 2i−1

(
n

i− 1

)
2i+1

(
n

i+ 1

)
= 22i

(
n

i− 1

)(
n

i+ 1

)
,

so this polynomial is unimodal. □
Some results about the unimodality of polynomials can be proved by the

locations of their roots.

Theorem 3.6. [14] If a polynomial p(x) with positive coefficients has only
real roots, then it is log-concave and unimodal.

Here, we introduce some family of graphs whose total domination roots are
real, and so their total domination polynomial are log-concave and unimodal.
The helm graph Hn is obtained from the wheel graph Wn by attaching a
pendent edge at each vertex of the n-cycle of the wheel. We consider the
generalized helm graph Hn,m, as the graph is obtained from the wheel graph
Wn by attaching m pendent edges at each vertex of the n-cycle of the wheel.
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v v

Figure 6. Helm graph H8 and generalized helm graph H8,5, respectively.

H

v1

v2

v3

v4

vn

vn−1

vn−2

u1

u2

u3

u4
un−2

un−1

un

Figure 7. The graph H(3).

Theorem 3.7. [3] For natural numbers m,n,
Dt(Hn,m, x) = xn(x+ 1)mn+1,

specially for m = 1, Dt(Hn, x) = xn(x+ 1)n+1.
By the definition, the graph H(3) is obtained by identifying each vertex of

H with an end vertex of a P3 ([7]). See Figure 7.
Theorem 3.8. [6] For any graph H of order n,

Dt(H(3), x) = x2n(x+ 2)n.

By Theorems 3.6, 3.7 and 3.8 we have the following corollary:
Corollary 3.9. The total domination polynomial of graphs Hn, Hm,n, H(3)

and sunlike graphs G(vk11 , vk22 , . . . , vknn ) are unimodal.
3.2. Unimodality and minimum degree. Beaton and Brown in section
3 of [10] have shown that graphs of order n with minimum degree at least
2 log2(n) have unimodal domination polynomial. With the same method, we
do it for the total domination polynomial in this subsection. The approach
is exactly similar to [10].

For a graph of order n, let ri(G) proportion of subsets of vertices of G with
cardinality i which are total dominating. That is, ri(G) = dt(G,i)

(ni)
. As stated in
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[10], we have ri+1(G) ≥ ri(G). This allow us to obtain the following lemma.
The proof is similar to the proof of Lemma 3.1 in [10].

Lemma 3.10. Let G be a graph of order n and k ≥ n
2 . If rk(G) ≥ n−k

k+1 , then
dt(G, i + 1) ≤ dt(G, i) for all i ≥ k. In particular if k = ⌈n2⌉, then Dt(G, x)
is unimodal with mode ⌈n2⌉.

The following theorem which is similar to Theorem 3.2 in [10] is useful for
the study of the unimodality of the total domination polynomial of most of
graphs. The proof of this theorem is almost similar to the proof of Theorem
3.2 in [10], but we prove it here.

Theorem 3.11. If G is a graph of order n with minimum degree
δ(G) ≥ 2 log2(n) + 1, then Dt(G, x) is unimodal with mode at ⌈n2⌉.

Proof. Set δ = δ(G), di = dt(G, i) and ri = ri(G) for all i. Let ni denote
the number of non-total dominating subsets S ⊆ V (G) of cardinality i. Note
that ni =

(
n
i

)
− di and so

ri =
di(
n
i

) = 1− ni(
n
i

) .
We now show that ni ≤ n

(
n−δ
i

)
. For each vertex v ∈ V , let ni(v) denote

the number of subsets which do not total dominate v. A subset S does not
dominate v if and only if it does not contain any vertices in N(v). Therefore
ni(v) simply counts every subset of V (G) with i vertices which omits N(v).
So ni(v) =

(
n−deg(v)

i

)
. Furthermore any non-total dominating set of size i

must not total dominate some vertex of G. Therefore

ni ≤
∑
v∈V

ni(v) =
∑
v∈V

(
n− deg(v)

i

)
≤

∑
v∈V

(
n− δ

i

)
= n

(
n− δ

i

)
.

So we have
ri = 1− ni(

n
i

)
≥ 1−

n
(
n−δ
i

)(
n
i

)
= 1− n(n− δ)!

i!(n− δ − i)!
.
i!(n− i)!

n!

= 1− (n− δ)!

(n− 1)!
.

(n− i)!

(n− δ − i)!
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= 1− (n− i)(n− i− 1)...(n− i− δ + 1)

(n− 1)...(n− δ + 1)
.

Note that for any k ≥ 0, n−i−k
n−k ≥ n−i−k−1

n−k−1 holds as i ≥ 0. Therefore
n− i

n
≥ n− i− 1

n− 1
≥ ... ≥ n− i− δ + 1

n− δ + 1
,

and so
ri ≥ 1− (n− i)(

n− i

n
)δ−1.

Now suppose that f(x, δ) = 1− (n− x)
(
n−x
n )δ−1 and g(x) = n−x

x+1 = n+1
x+1 − 1

for x, δ ∈ [0, n]. Note that f(x, δ) is an increasing function of both x and δ
and g(x) is also a decreasing function of x. By Lemma 3.10, it suffices to
show f(n2 , 2 log2(n) + 1) ≥ g(n2 ). Note

f(
n

2
, 2 log2(n) + 1) = 1− n

2
(
1

2
)2 log2(n) = 1− n

2n2
= 1− 1

2n
,

and
g(
n

2
) =

n
2

n
2 + 1

=
n

n+ 2
= 1− 2

n+ 2
.

Therefore f(n2 , 2 log2(n) + 1) ≥ g(n2 ) if and only if 2
n+2 ≥ 1

2n which holds for
all n ≥ 1. □

Here, similar to [13] we state and prove a result for the unimodality of the
total domination polynomial of certain regular graphs. First we need the
following theorem:

Theorem 3.12. [23] Let G be a graph of order n. Then for every 0 ≤ i < n
2

we have dt(G, i) ≤ dt(G, i+ 1).

Theorem 3.13. Let G = (V,E) be an m-regular graph on 2n vertices for
some n ≥ 4 and m ≥ n− 1. Then, Dt(G, x) is unimodal with a mode at n.

Proof. Note that by by Theorem 3.12, we have
dt(G, 1) ≤ dt(G, 2) ≤ ... ≤ dt(G, n− 1) ≤ dt(G, n).

By the degree condition, each vertex v has a neighborhood of size at least
n− 1. Every set of vertices that does not total dominate v must be a subset
of V \ N(v), which has size 2n − |N(v)| ≤ 2n − (n − 1) = n + 1, and
thus there is at most one such set of size n + 1. Iterating over the vertices,
we see that there are at most 2n non-total dominating sets of size n + 1,
and furthermore every set of size at least n + 1 is total dominating. Thus,
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2n
n

)
− 2n ≤ dt(G, n) ≤

(
2n
n

)
and dt(G, n + r) =

(
2n
n+r

)
for 1 ≤ r ≤ n. We

clearly have dt(G, n + 1) ≥ dt(G, n + 2) ≥ ... ≥ dt(G, 2n). For n ≥ 4, it is
straightforward to check that

(
2n
n

)
− 2n ≥

(
2n
n+1

)
. Therefore we can conclude

that Dt(G, x) is unimodal with a mode at n. □
Example 3.14. By Theorem 3.13, the total domination polynomial of
complete graphs, cube graph Q3 and Octahedron are unimodal.

We end this paper with the following corollary.

Corollary 3.15. The total domination polynomial of Cartesian product of
Kn and K2, i.e., Dt(Kn□K2, x) is unimodal.

Proof. Since Kn□K2 is an n-regular graph of order 2n, so we have the result
by Theorem 3.13. □
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4. Appendix: Dt-equivalence classes of graphs of order ≤ 6

Dt(G, x) = x(x + 1)3 − x

Figure 8. The Dt-equivalence class of connected graphs of order 4.

Dt(G, x) = x(x+ 1)
4
− x

Dt(G, x) = x2
(x+ 1)

3 Dt(G, x) = x2
(x+ 1)

2
(x+ 2)

Dt(G, x) = x2
(x+ 2)(x2

+ 3x+ 3) Dt(G, x) = x2
(x3

+ 5x2
+ 9x+ 7)

Figure 9. The Dt-equivalence classes of connected graphs of order 5.
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Dt(G, x) = x(x+ 1)
5
− x

Dt(G, x) = x2(x+ 1)
4

Dt(G, x) = x2(x+ 1)
3
(x+ 2)

Dt(G, x) = x2(x+ 1)
2
(x+ 2)

2

Dt(G, x) = x2(x4 + 6x3 + 14x2 + 16x+ 9)

Dt(G, x) = x(x+ 2)
2
(x2 + 2x+ 2)

Dt(G, x) = x2(x2 + 3x+ 3)
2

Dt(G, x) = x2(x+ 1)
2
(x2 + 3x+ 3)
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Dt(G, x) = x3(x3 + 4x2 + 6x+ 2)

Dt(G, x) = x2(x4 + 5x3 + 8x2 + 4x+ 1)

Dt(G, x) = x3(x3 + 5x2 + 8x+ 3)

Dt(G, x) = x2(x+ 1)
3
(x+ 3)

Dt(G, x) = x2(x4 + 6x3 + 12x2 + 8x+ 2)

Dt(G, x) = x2(x4 + 6x3 + 13x2 + 10x+ 3) Dt(G, x) = x2(x4 + 5x3 + 10x2 + 7x+ 2)

Dt(G, x) = x3(x+ 1)
3

Dt(G, x) = x3(x3 + 4x2 + 5x+ 1)

Dt(G, x) = x2(x4 + 5x3 + 9x2 + 5x+ 1) Dt(G, x) = x2(x4 + 6x3 + 15x2 + 19x+ 12)

Dt(G, x) = x2(x+ 2)(x3 + 4x2 + 5x+ 3) Dt(G, x) = x2(x4 + 6x3 + 15x2 + 19x+ 11)

Dt(G, x) = x2(x+ 1)
2
(x2 + 4x+ 5)

Figure 10. The Dt-equivalence classes of connected graphs of order 6.
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MORE ON TOTAL DOMINATION POLYNOMIAL AND

Dt-EQUIVALENCE CLASSES OF SOME GRAPHS

S. ALIKHANI AND N. JAFARI

گراف ها برخی هم ارزی Dt کلاس های و تام احاطه گر چندجمله ای بیشتر مطالعه

جعفری٢ ان. و علیخانی١ اس.

ایران یزد، یزد، دانشگاه ریاضی، علوم ١,٢دانشکده

زیرمجموعه یک G تام احاطه گر مجموعه است. n مرتبه از ساده گراف یک G = (V,E) کنید فرض
برابر G تام احاطه گر عدد است. D رئوس از برخی مجاورت در V راس هر که به طوری است V از D
چندجمله ای می شود. داده نشان γt(G) با و است G در تام احاطه گر مجموعه یک اندازه حداقل با
تعداد dt(G, i) آن در که است، Dt(G, x) =

∑n
i=γt(G) dt(G, i)xi چندجمله ای G تام احاطه گر

سادگی به یا تام احاطه گری هم ارز H و G گراف دو است. i اندازه با G تام احاطه گر مجموعه های
می شود، داده نشان [G] با که ،G ارزی هم کلاس .Dt(G, x) = Dt(H, x) اگر هستند، هم ارز -Dt

می شود، نامیده تک مدول
∑n

k=٠ akx
k چندجمله ای یک است. G Dt-هم ارز گراف ها همه مجموعه

که به گونه ای باشد موجود ،k ∈ {٠, ١, . . . , n} عدد یعنی باشد، تک مدول آن ضرایب دنباله اگر
برخی Dt-هم ارزی کلاس های مقاله، این در .a٠ ≤ . . . ≤ ak−١ ≤ ak ≥ ak+١ ≥ . . . ≥ an
چندجمله ای که می کنیم معرفی را گراف ها از خانواده ها از تعدادی همچنین می کنیم. بررسی را گراف ها
ارائه پیوست در ≤ ۶ مرتبه از گراف های Dt-هم ارزی کلاس های هستند. تک مدول آن ها تام احاطه گر

شده اند.

تک مدول. هم ارزی، کلاس تام، احاطه گر چندجمله ای کلیدی: کلمات
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