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WEAK IDEMPOTENT NIL-CLEAN RINGS

B. Asmare, T. Abebaw and K. Venkateswarlu∗

Abstract. We introduce the concept of a weak idempotent nil-clean ring as a
generalization of a weakly nil-clean ring. We give certain characterizations for weak
idempotent nil-clean rings in terms of Jacobson radical and nil-radical. Further, we
obtain any weak idempotent nil-clean ring R ∼= R1 × R2 where R1 and R2 are weak
idempotent nil-clean rings such that 2 ∈ J(R1) and 3 ∈ J(R2).

1. Introduction
Throughout this paper, R stands for associative ring with unity unless and

otherwise stated. We denote the set of all idempotents, nilpotents, units, the
Jacobson radical, and the prime radicals (nil-radicals) of a ring R by Id(R),
Nil(R), U(R), J(R) and N(R) respectively.
We recall the following definitions from [3]. A ring R is called

1. strongly nil-clean if for each r ∈ R, there exists a nilpotent n and an
idempotent e such that r = n+ e and ne = en.

2. nil-clean if every element can be expressed as a sum of a nilpotent and
an idempotent.

3. strongly weakly nil-clean if each element r ∈ R can be represented as
either r = n + e or r = n − e, ne = en where n is nilpotent and e is
idempotent.

4. weakly nil-clean ring if every element can be written as either a sum
or a difference of a nilpotent and an idempotent.

5. clean if every element can be written as a sum of a unit and an idem-
potent.

The following hold: Strongly nil-clean ⇒ nil-clean ⇒ weakly nil-clean ⇒
clean.

It is observed that every element can be represented as a sum of a certain
element and an idempotent element in all the above-said rings. It is quite
natural to ask whether the representation can be generalized or not. In any
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ring R, if a4 = a2 then such a is called weak idempotent element. Clearly, ev-
ery idempotent is weak idempotent but not conversely. For instance, consider
the ring of integers modulo 4. Clearly, every element is a weak idempotent
element but 2 is not idempotent. In view of these observations, is it possible
to replace the idempotent element with a weak idempotent element in the
above-said classes of rings? To some extent the answer is affirmative. In this
context, we introduce the notion of weak idempotent nil-clean rings which is
a subclass of the class of clean rings and a wider class to the class of weakly
nil-clean rings.

In this paper, we introduce the notion of weak idempotent nil-clean rings
(for short, win-clean rings) and furnish certain examples. Further, we obtain
some basic results concerning weak idempotent nil-clean rings. In the next
section, we prove R/Nil(R) is a reduced win-clean ring if and only if R is
a commutative win-clean ring. Also, we characterize the win-clean ring in
Proposition 2.23. The main result of this paper is that every win-clean ring
R is isomorphic to a direct product of win-clean rings R1 and R2 where
2 ∈ J(R1) and 3 ∈ J(R2).

2. Main results
Definition 2.1. Let R be a ring. An element a ∈ R is called weak idempotent
nil-clean if a = n+w for some nilpotent n and some weak idempotent w. R is
said to be weak idempotent nil-clean if every element of R is weak idempotent
nil-clean.

Remark 2.2. We denote the set of all weak idempotent elements by wi(R)
and weak idempotent nil-clean ring by win-clean ring.

Example 2.3. Let R = M2(Z3). Then R is win-clean ring.

Example 2.4. Let R = Z3 × Z3. Then R is win-clean ring.

Remark 2.5. If R is a ring and w is a weak idempotent element, then
(1) w2n = w2, and w2n+1 = w3.
(2) Id(R) ∪ −Id(R) ⊆ wi(R).

We can easily verify that every weakly nil-clean ring is a win-clean ring
using remark 2.5 (2) but the converse is not true. For instance, Z3 × Z3 is
win-clean ring but not weakly nil-clean, since (2, 1) cannot be expressed as a
sum or a difference of any nilpotent and any idempotent element in Z3 ×Z3.

Theorem 2.6. Let R be a ring. If w ∈ R is weak idempotent, then
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(1) wk is a weak idempotent element, i.e, w2k = w4k where k ∈ N.
(2) w2 and 1− w2 are idempotent elements.
(3) 2w2 − 1 and w − 1 + w2 are units.
(4) wn − wn+2 is nilpotent for every n ∈ N.
(5) (1− w2)w2 = 0
(6) w is clean.

Proof. It is straightforward. □
Definition 2.7. Let R be a ring and I be an ideal of R. Then the weak
idempotents can be lifted modulo I if there exists w ∈ wi(R) for a given
a ∈ R with a4 − a2 ∈ I such that w − a ∈ I.

Proposition 2.8. Let I be a nil ideal of a ring R. If w̄ is a weak idempotent
element in R/I, then w̄ can be lifted to a weak idempotent in R.

Proof. Let w̄ ∈ R/I be a weak idempotent and w be any pre-image for w̄.
Then w̄2 = w̄4 implies that w2 −w4 ∈ I or w2 ≡ w4(modI) where w2 and w4

are pre-images of w̄2 and w̄4, in R/I respectively. Let z = 1− w2. Then (a)
w2z = zw2 and (b) w2 + z ≡ 1(modI).

Now w2z = w2 − w4 ∈ I. Then 0 = (w2z)k = w2kzk for some positive
integer k. Also, w2k is a pre-image of w̄, since w2k ≡ w2(modI). Conditions
(a) and (b) are preserved when w and z are replaced by w2k and zk. Moreover,
condition (c) w2z = zw2 = 0 is also preserved.

From condition (b), we have x = 1− w2 − z ∈ I. Then (1− w2 − z)m = 0
for some positive integer m. Thus 1 = 1− xm = (1− x)(1 + x+ · · ·+ xm−1)
and it follows that 1− x has an inverse u = 1+ x+ · · ·+ xm−1. u commutes
with w and z as x commutes with w and z.

Since x ∈ I, u ≡ 1(modI). We can replace w and z with uw2 and uz, in
this case w is again a pre-image for w̄ and also conditions (a), (b), and (c)
hold true. Further, it is true that (d) w2 + z = 1. By condition (c), we have
w2z = 0, so it gives that w2 = w2(w2 + z) = w4 + w2z = w4. Therefore, w̄
lifted to the weak idempotent w in R. □
Proposition 2.9. The homomorphic image of any win-clean ring is win-
clean.

Proof. It is straightforward. □
Remark 2.10. The converse of Theorem 2.9 is not true. For instance, consider
the canonical epimorphism α : Z → Z/(3) given by α(n) = n + (3). Then
Z3

∼= Z/(3) is a win-clean ring, but α−1(Z/(3)) = Z is not a win-clean ring.



98 ASMARE, ABEBAW AND VENKATESWARLU

Let R be a ring and M a left R-module. Consider the idealization of R and
M given by R(M) = R ⊕ M . For (r,m), (s, t) ∈ R(M), product and sum
defined as follows:

(r,m)(s, t) = (rs, rt+ sm); (r,m) + (s, t) = (r + s,m+ t).

Then R(M) is the ring.
Theorem 2.11. Let R be a ring and M be a left R-module. Then R is
win-clean if and only if R(M) is win-clean.
Proof. Assume that R is win-clean ring and (r,m) ∈ R(M) where r ∈ R
and m ∈ M . Then r = n + w for n ∈ Nil(R) and w ∈ wi(R). Thus
nk = 0 for k ∈ N. So (n,m)k+1 = (nk+1, (k + 1)nkm) = (0, 0) which implies
that (r,m) = (n + w,m) = (n,m) + (w, 0) is win-clean expression of (r,m).
Hence, R(M) is win-clean. Conversely, R ∼= R(M)/(0⊕M) is homomorphic
image of R(M). So by Theorem 2.9, R is win-clean ring. □
Proposition 2.12. Let R be a ring. Then weak idempotent elements in J(R)
are nilpotents.
Proof. Let w ∈ J(R) be a weak idempotent element. Then w2 ∈ J(R)
and also 1 − w2 is an idempotent element. Again, w2 ∈ J(R) implies that
1 − w2 ∈ U(R). So 1 − w2 is both idempotent and unit. Thus 1 − w2 = 1,
since 1 is the only unit and idempotent element. This implies that w2 = 0.
Hence w is nilpotent element. □
Proposition 2.13 ([8]). Let R be a ring and a, b ∈ R such that ab ̸= ba.
Then

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k +

n∑
k=0

Dkb
n−k

where da(x) = ax − xa and Dk = Dk(b, a) = (a + db)
n1 − an, D0(b, a) = 0,

Dn+1(b, a) = dba
n + (A+ db)Dn(b, a).

Proposition 2.14. Let R be a win-clean ring, then J(R) ⊆ Nil(R).
Proof. Let a ∈ J(R). Then a = n + w, where n ∈ Nil(R) and w ∈ wi(R).
Then (a− w)k = 0 for some k ∈ N. So (w − a)k ∈ J(R). Now

(w − a)k =
∑n

k=0

(
n
k

)
wkan−k +

∑n
k=0Dka

n−k

implies that (w−a)k−[
∑n−1

k=0

(
n
k

)
wkan−k+

∑n
k=0Dka

n−k] = wk ∈ J(R)∩wi(R).
Since J(R) does not contain units and non-zero idempotents, w must be
nilpotent. Now a − w,w ∈ Nil(R) which in turn implies that a ∈ Nil(R).
Hence J(R) ⊆ Nil(R). □
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Corollary 2.15. If R is a win-clean ring, then J(R) is nil.
Remark 2.16. A reduced win-clean ring is a ring in which all the elements are
weak idempotents.

Proposition 2.17. Let R be a commutative ring. Then R is win-clean if
and only if R/Nil(R) is a reduced win-clean ring.
Proof. Assume that R is win-clean ring. Let x̄ = x+Nil(R) ∈ R/Nil(R) for
some x ∈ R. Now write

x̄ = (n+ w) +Nil(R) = (n+Nil(R)) + (w +Nil(R)) = w +Nil(R)

and w + Nil(R) ∈ wi(R/Nil(R)). This implies that x̄ is weak idempotent
element in R/Nil(R). Since x̄ is arbitrary, R/Nil(R) is reduced
win-clean ring. Conversely, assume that R/Nil(R) is win-clean ring and
let r ∈ R. Since R/Nil(R) is reduced, Nil(R/Nil(R)) = {0} and
r + Nil(R) = w + Nil(R) for some w + Nil(R) ∈ wi(R/Nil(R)). Then
w4 − w2 ∈ Nil(R). By Proposition 2.12, the weak idempotent w + Nil(R)
can be lifted to a weak idempotent w ∈ wi(R) such that r −w = n for some
n ∈ Nil(R), i.e., r = n + w. This shows that r is win-clean. Hence R is
win-clean ring. □
Corollary 2.18. Let R be a commutative ring. Then R is win-clean if and
only if R/N(R) is win-clean ring.
Proof. It is obvious. □
Proposition 2.19. Let I be a nil ideal of a ring R. R is win-clean if and
only if R/I is win-clean.
Proof. ( =⇒ ) It is obvious.
(⇐=) Let r ∈ R. Then r̄ = r + I ∈ R/I. We can write r̄ = n̄ + w̄ where

n̄ ∈ Nil(R/I) and w̄ ∈ wi(R/I) implies that r + I = (n + w) + I. The
nilpotent n̄ in R/I lift to a nilpotent n in R. To see this, n̄k = 0 for k ≥ 1
in R/I implies that nk ∈ I. Since I is nil, (nk)m = 0. So nkm = 0 for m ≥ 1.
We know that weak idempotents lift modulo any nil ideal, this allows us to
assume that w is a weak idempotent in R. Moreover, r−n−w ∈ I. It follows
that r − w = n + d where d ∈ I. Since nm = 0 for some m ∈ N, we have
(n+ d)k ∈ I because I is ideal of R. Thus (n+ d)mk = 0 for some m ∈ N as
I is nil ideal. So n+ d is nilpotent. Therefore, R is win-clean, as desired. □
Corollary 2.20. A ring R is win-clean if and only if R/J(R) is win-clean
and J(R) is nil.
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Proof. Since J(R) is nil, the proof follows from Proposition 2.19. □
The converse of Proposition 2.14 is not true. Consider example 1.2 in [7]. If

we take a simple domain F = Z5, then A = M2(Z5) is a ring of 2×2 matrices
over integer modulo 5, and B = D2(Z5) is a ring of 2 × 2 diagonal matrices

over integer modulo 5 such that Nil(B) =

(
0 Z5

0 0

)
. Define R = B+A[[x]]x,

where A[[x]] denotes the formal power series ring with an indeterminate x
over a ring R. Then Nil(R) ⊊ J(R) = Nil(B) + A[[x]] and R/J(R) ∼= Z5.
But Z5 is not win-clean and hence R/J(R) is not win-clean. Therefore, By
Corollary 2.20, R is not win-clean ring.
Remark 2.21. It is clear that if x ∈ R a non-zero central nilpotent, then
1 − xr ∈ U(R) for all r ∈ R. Hence x ∈ J(R), i.e, the non-zero central
nilpotents are contained in Jacobson radical, J(R).
Corollary 2.22. Let R be a win-clean ring such that the weak idempotents
are central. Then C(R), the center of R, is a win-clean ring.
Proposition 2.23. The following are equivalent for a ring R:

(1) R is win-clean.
(2) 12 is nilpotent and R/12R is win-clean.
(3) R/J(R) is win-clean and J(R) is nil.

Proof. (1) =⇒ (2). If 12 = 0, then we are done. Assume that 12 ̸= 0. As
R is a ring with 1, 1 + 1 = 2 ∈ R is the least non-unit central element of R.
Then there exist a weak idempotent w and a nilpotent n such that 2 = n+w.
Thus (2−n)2 = (2−n)4 =⇒ 22− 4n+n2 = 24− 32n+24n2− 8n3+n4. So
n(−n3 + 8n2 − 23n+ 28) = 12. Hence, 12 is nilpotent. Since R is win-clean,
R/12R is win-clean by Proposition 2.19.
(2) =⇒ (1) follows from Proposition 2.19 and (1) ⇐⇒ (3) obtained

immediately from Corollary 2.20. □
Proposition 2.24 ([5]). Let R be a ring, and let I be any nil-ideal of R.
Then R is nil-clean if and only if R/I is nil-clean.
Proposition 2.25. A ring R is nil-clean if and only if R is win-clean and
2 ∈ J(R).
Proof. ( =⇒ ) Suppose R is nil-clean and r ∈ R. Then r = n + e where
n ∈ Nil(R) and e ∈ Id(R). Thus e ∈ wi(R). So r is win-clean and hence R
is win-clean. Also, 2 = n+ e implies that n = 2. Thus 2 is central nilpotent.
This implies that 2 ∈ J(R).
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(⇐=) Assume R is win-clean. Then J(R) is nil. As 2 ∈ J(R),

2 + J(R) = 0 + J(R).

We know that a nilpotent modulo nil ideal lifted to nilpotent in R. So we
have 2 = 0, i.e., char(R/J(R)) = 2. Thus for all r ∈ R we have 2r̄ = 0̄
and 1 − 2r̄ = 1̄. So R/J(R) is Boolean. Hence R/J(R) is nil-clean. By
Proposition 2.24, R is nil-clean. □

Proposition 2.26. A ring R is weakly nil-clean if and only if R is win-clean
and 2 ∈ J(R) or 3 ∈ J(R).

Proof. ( =⇒ ) Obviously R is win-clean. Assume that 2 /∈ J(R). Then
2 ∈ U(R) and 6n = 0 for some positive integer n as 6 is nilpotent element in
R ([3], Theorem 2). Thus 2n3n = 0 implies that 3n = 0. Hence 3 ∈ J(R).
(⇐=) Assume that R is win-clean. Then R/J(R) is win-clean and J(R) is

nil by Corollary 2.20. If 2 ∈ J(R), then by Proposition 2.25, R is nil-clean.
So R is weakly nil-clean. Again, if 3 ∈ J(R), then 3 + J(R) = 0 + J(R) and
also 2 is invertible in R. we can assume 3 = 0, so that char(R/J(R)) = 3.
So 2̄ is unit in R/J(R). Moreover, 3r̄ = 0̄, 1̄− 3r̄ = 1̄ and 2̄− 3r̄ = 2̄ for all
r ∈ R. Thus R/J(R) ∼= Z3 and hence R/J(R) is weakly nil-clean. Therefore,
R is weakly nil-clean. □

Proposition 2.27. A finite direct product R =
∏

Rα of rings is win-clean
ring if and only if each Rα is win-clean ring.

Proof. It is straightforward. □

Proposition 2.28. Let R be a ring. Then R is win-clean ring if and only if
R ∼= R1×R2 where R1 is win-clean with 2 ∈ J(R1) and R2 is 0 or a win-clean
ring with 3 ∈ J(R2).

Proof. ( =⇒ ) Suppose R is win-clean ring. Then 12 is nilpotent element
in R, so that (12)n = 0 for some positive integer n. Then 4nR ∩ 3nR = 0
and 4nR + 3nR = R. Thus R ∼= (R/22nR)× (R/3nR) by Chinese remainder
theorem. By Proposition 2.27, R1 = R/22nR and R2 = R/3nR are win-clean
rings. Thus 2 is central nilpotent in R1. So 2 ∈ J(R1). We can assume
R2 ̸= 0. Then 3 is central nilpotent in R2 and hence 3 ∈ J(R2).
(⇐=) It is obvious. □

Corollary 2.29. The following are equivalent for a ring R.
(1) R is a win-clean ring with central weak idempotent elements.
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(2) R ∼= R1 × R2, where R1 is win-clean with weak idempotents are
central and J(R1) nil such that R1/J(R1) is Boolean, and R2 is 0
or R2/J(R2) ∼= Z3 with J(R2) nil.

(3) R is win-clean ring with central weak idempotent elements, J(R) is nil,
and R/J(R) is isomorphic to either a Boolean ring, or to Z3, or to the
direct product of two such rings.

Proof. (1) =⇒ (2) Using Proposition 2.28, we can write R ∼= R1×R2, where
R1 is win-clean ring with central weak idempotents and 2 ∈ J(R1); and R2

is 0 or win-clean ring with central weak idempotents and 3 ∈ J(R2). Thus
char(R1/J(R1)) = 2 which in turn implies that x̄ = −x̄ for all x̄ ∈ R1/J(R1).
Hence, R1/J(R1) is Boolean. Assume R2 ̸= 0. As R2 is win-clean and
3 ∈ J(R2), R2/J(R2) is win-clean and char(R2/J(R2)) = 3. Also, 2 is unit
in R2, since 2 /∈ J(R2). From this, we conclude that

R2/J(R2) = {3R2, 1− 3R2, 2− 3R2},
so that every element of R2/J(R2) is nilpotent or invertible. Therefore,
R2/J(R2) ∼= Z3. Furthermore, by Corollary 2.20, J(R1) and J(R2) are nil
ideals.
(2) =⇒ (3) and (3) =⇒ (1) are straightforward. □

Theorem 2.30. Let R be a reduced commutative ring. The following state-
ments are equivalent.

(1) R = wi(R).
(2) R is isomorphic to either a Boolean ring B or Z3, or B × Z3.
(3) For all x ∈ R, x4 = x2.
(4) R is win-clean.

Proof. For a reduced ring R, (1) ⇐⇒ (3) ⇐⇒ (4). Thus, it remains to
show the equivalence of (1) and (2).
(1) =⇒ (2) Suppose R = wi(R). If y ∈ R, y2 is an idempotent. If R is

indecomposable, then either y2 = 0 or y2 = 1 for any y ∈ R. This implies
that y = 0 or y2 = 1 for all y ∈ R. Thus, each nonzero element of R is a unit
and hence R is a field. Hence, R is isomorphic to either Z2 or Z3.

Next, assume R is not indecomposable. Let R = S × T and s ∈ S, where
S and T are coprime ideals of R, that is, S + T = R. Then, (s, 0) is not a
unit implies that either (s, 0) = (0, 0), or (s, 0)2 = (0, 0), or (s, 0)2 = (s, 0),
or (s, 0)2 = (s, 0)4 and (s, 0)2 ̸= (1, 0). If (s, 0) = (0, 0) or (s, 0)2 = (0, 0),
then (s, 0) = (0, 0) since S is reduced. In this case, S is a field. So, S is
isomorphic to Z2 or Z3. If (s, 0)2 = (s, 0), then s ∈ Id(S) ∪ [−Id(S)] and
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hence S = Id(S)∪ [−Id(S)]. By [4, Theorem 1.13], S is isomorphic to either
a Boolean ring, or Z3, or B × Z3, where B is a Boolean ring. The same
holds for T . As a direct product of two Boolean rings is a Boolean ring we
get R is isomorphic to a Boolean ring B, Z3 × Z3, Z3 × B, or Z3 × Z3 × B.
If (s, 0)2 = (s, 0)4 and (s, 0)2 ̸= (1, 0), then let y = (s, 0). Now
R = R(y2)⊕R(1− y2) is the decomposition of R.
Assume R(y2) is not a Boolean ring. Then, we show that R(1−y2) is Boolean.
Suppose ry2 is not idempotent. Then, for any s ∈ R, ry2 + (−s)(1 − y2) is
not idempotent. Thus, −(ry2 + (−s)(1− y2)) = −ry2 + s(1− y2) is idempo-
tent. So, each s(1− y2) is idempotent. Thus, R(1− y2) is Boolean and also
2R(1− y2) = 0. Hence, for each y ∈ R, either 2y2 = 0 or 2(1− y2) = 0.

If (0 : 2) = {y ∈ R | 2y2 = 0} = R, then char(R) = 2. Hence,
R = wi(R) = Id(R) and so R is Boolean. Now assume (0 : 2) ̸= R. Then, we
claim that (0 : 2) is a maximal ideal of R. Suppose there is a maximal ideal
M such that (0 : 2) ⊆ M . Let y2 ∈ M − (0 : 2). Then, y2 ∈ wi(R) = R and
y2 /∈ (0 : 2). Thus, 2y2 ̸= 0 and hence 2(1−y2) = 0. So, 1−y2 ∈ (0 : 2) ⊆ M ,
a contradiction. Hence, (0 : 2) is a maximal ideal. So, R̄ = R/(0 : 2) is an
indecomposable ring with R̄ = wi(R̄). By the idea in the first part of this
proof, we have that R̄ is isomorphic to Z2 or Z3.

Next we show that 2R ∩ (0 : 2) = 0. Assume that y ∈ 2R ∩ (0 : 2). Then,
y = 2s and 2y2 = 0. But then y2 = y4 = (2s)4 = 2(2s)2(2s)2 = 2y2 = 0. If
2R = 0, then R is Boolean.

Now assume that 2R ̸= 0. If 2R = R, then (0 : 2) = 0 is a maximal ideal
of R. Thus, R is a field and hence by the first paragraph of this proof, it
is isomorphic to Z3. If 2R ̸= R, then R = 2R ⊕ (0 : 2), where (0 : 2) is a
Boolean ring and 2R ∼= R/(0 : 2) is isomorphic to Z3 since 2R ∼= Z2 or Z3 by
the first paragraph of this proof and 2R ⊈ (0 : 2). Therefore, R is isomorphic
to either a Boolean ring, or Z3, or B×Z3, or Z3×Z3, or Z3×Z3×B, where
B is a Boolean ring.
(2) =⇒ (1) It is obvious. □

Recall that a ring is said to be zero dimensional if every prime ideal is
maximal ideal.

Corollary 2.31. Let R be a commutative ring. The following statements
hold.

(1) A reduced indecomposable ring is win-clean if and only if it is
isomorphic to either Z2 or Z3. In particular, any win-clean domain
is isomorphic to either Z2 or Z3.
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(2) A win-clean ring is zero-dimensional.

Proof. (1) Suppose R is a reduced indecomposable win-clean. Then 0 is the
only nilpotent, and its idempotents are only 0 and 1. Let w ∈ wi(R).
Then w2 ∈ Id(R) implies that w2 = 0 or w2 = 1. If w2 = 0, then w is
both weak idempotent and nilpotent. So w = 0. If w2 = 1, then w is
a unit and weak idempotent. Now we have R = {0, 1, w}. Since R is
closed under +, w+ 1 ∈ R which implies that w+ 1 = 0 or w+ 1 = 1,
or w + 1 = w. If w + 1 = 0, then w = −1. In this case, R = {0, 1,−1}
which is isomorphic to Z3. If w + 1 = 1 or w + 1 = w, then w = 0 as
0 ̸= 1. Hence R = {0, 1} which is isomorphic to Z2. The converse is
straightforward.

(2) Let R be a win-clean and P a prime ideal of R. Then R/P is an integral
domain. By (1), the quotient R/P is isomorphic to either Z2 or Z3 and
hence P is maximal ideal.

□

Proposition 2.32. Let R be a win-clean ring with central weak idempotent
elements and let a ∈ R. If aR contains no non-zero idempotent. Then a is
the sum of two nilpotent elements.

Proof. Suppose aR contains no non-zero idempotent. Choose w ∈ wi(R) and
n ∈ Nil(R) such that a = n+ w. Then

aw3 = nw3 + w4 = nw3 + w2 = (nw + 1)w2.

So aw3(nw+1)−1 = (nw+1)w2(nw+1)−1 in aR. As nw is nilpotent, nw+1
is unit and w2 is idempotent. Thus (nw + 1)w2(nw + 1)−1 is idempotent.
Since aR does not contain non-zero idempotent element, we have

(nw + 1)w2(nw + 1)−1 = 0

which implies w2 = 0 and hence w is nilpotent. Therefore, a is a sum of two
nilpotent elements. □

Definition 2.33. Let R be a ring. Then an element x in R is called the
square root of idempotent element if there exists an idempotent element e in
R such that x2 = e.

Proposition 2.34. Let R be a win-clean ring with central weak idempotent
elements in which, 2 ∈ U(R). Then every element of R can be written as a
sum of nilpotent and a square root of idempotent element.
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Proof. Let a ∈ R. Then a = n+w for some n ∈ Nil(R) and w ∈ wi(R). Let
v = 2w2−1. Then v2 = (2w2−1)2 = 4w4−4w2+1=4w2−4w2+1 = 1. Thus
vv−1 = (2w2 − 1)(2w2 − 1)−1 = 1. Now v = 2w2 − 1 implies w2 = (v + 1)/2
and [(v+1)/2]2 = (v+1)/2. Therefore, w is a square root of idempotent. □

Next, we see that a win-clean ring is a subclass of clean rings.

Theorem 2.35. Every win-clean ring is clean.

Proof. Let R be a win-clean ring and a ∈ R. Then a = n + w for some
nilpotent n and weak idempotent w. So a = n+w = (n+w−1+w2)+(1−w2).
By Theorem 2.6, w−1+w2 is unit and 1−w2 ∈ Id(R). To see n+w−1+w2

is unit. Let u = w − 1 + w2. Then n + w − 1 + w2 = n + u. Since n and
(u−1n) are nilpotents, we have nm = 0 and (u−1n)m = 0 for some positive
integer m. Now

(n+ u)−1 =[u(1 +
n

u
)]−1 = [1− n

u
+ (

n

u
)2 − (

n

u
)3 + · · ·+ (−n

u
)m−1]u−1

=[1− u−1n+ (u−1n)2 − · · ·+ (−1)m−1(u−1n)m−1]u−1.

and so
(n+ u)(n+ u)−1 =(n+ u)[1− u−1n+ · · ·+ (−1)m−1(u−1n)m−1]u−1

=n[1− u−1n+ · · ·+ (−1)m−1(u−1n)m−1]u−1

+u[1− u−1n+ (u−1n)2 − · · ·+ (−1)m−1(u−1n)m−1]u−1

=nu−1 − (nu−1)2 + (nu−1)3 − · · ·+ (−1)m−1(nu−1)m

+1− nu−1 + (nu−1)2 − · · ·+ (−1)m−1(nu−1)m−1

=1.

Thus a is clean. Therefore, R is clean. □
In general, the converse of Theorem 2.35 does not hold true. For example,

integer modulo 5, Z5, is clean but not win-clean.

Lemma 2.36. If w is a weak idempotent element in a win-clean ring R and
2 ∈ J(R), then w ± w2 is nilpotent.

Proof. Since 2 ∈ J(R), we have (w±w2)2 = 2(w2±w3) ∈ J(R). As J(R) is nil,
there exists some positive integer m such that 2m = 0 and also (w±w2)2m = 0.
Hence, w ± w2 is nilpotent. □

The following proposition sets a condition for which a clean element
becomes win-clean.
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Proposition 2.37. Let R be a commutative ring, 2 ∈ J(R) and x be clean
in R with clean decomposition x = u+ e. Then x is win-clean if and only if
there exists w ∈ wi(R) ∩Nil(R) such that 2e− 1 + u is nilpotent.

Proof. ( =⇒ ) Suppose x is win-clean. Then x = n+ f for some n ∈ Nil(R)
and f ∈ wi(R). Now x = n+f = (n−1+f +f 2)+(1−f 2). Since 2 ∈ J(R),
f + f 2 is nilpotent by Lemma 2.36. Then take u = n − 1 + f + f 2 and
e = 1− f 2. So

2e− 1 + u = 2(1− f 2)− 1 + (n− 1 + f + f 2) + f 2 = n+ f .
(⇐=) We can rewrite x = u + e as x = (u + 2e − 1 + w2) + (1 − e − w2).

Since 1− e− w2 is weak idempotent, x is win-clean. □
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ضعیف خودتوان  پوچ-تمیز حلقه های

ونکتسوارلو٣ کی. و آبباو٢ تی. اسماره١، بی.

اتیوپی آبابا، آدیس آبابا، آدیس دانشگاه محاسباتی، و طبیعی علوم کالج ریاضیات، ١,٢گروه

هند پرادش، آندرا ویساخاپاتنام، آندرا، دانشگاه مهندسی، کالج سیستم، مهندسی و کامپیوتر علوم ٣گروه

ضعیف پوچ -تمیز حلقه های از تعمیمی که را ضعیف خودتوان پوچ-تمیز حلقه مفهوم مقاله، این در
برای خاص سازی مشخصه یک پوچ-رادیکال، و رادیکال جیکوبسون به توجه با می کنیم. تعریف است،
پوچ- حلقه هر برای که می  دهیم نشان علاوه، به می دهیم. ارائه ضعیف خودتوان های پوچ-تمیز حلقه های
ضعیف خودتوان پوچ-تمیز حلقه های R٢ و R١ که R ∼= R١ × R٢ داریم R ضعیف خودتوان تمیز

.٣ ∈ J(R٢) و ٢ ∈ J(R١) که طوری به هستند

تمیز. حلقه های ضعیف، خودتوان  پوچ-تمیز حلقه های ضعیف، پوچ-تمیز حلقه های کلیدی: کلمات
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