

Weak idempotent nil-clean rings

B. Asmare, T. Abebaw and K. Venkateswarlu*[∗]*

To cite this article: B. Asmare, T. Abebaw and K. Venkateswarlu*[∗]* (15 October 2024): Weak idempotent nil-clean rings, Journal of Algebraic Systems, DOI: 10.22044/JAS.2023.13177.1725

To link to this article: [https://doi.org/10.22044/JAS.2023.13177.](https://doi.org/10.22044/JAS.2023.13177.1725) [1725](https://doi.org/10.22044/JAS.2023.13177.1725)

Published online: 15 October 2024

WEAK IDEMPOTENT NIL-CLEAN RINGS

B. ASMARE, T. ABEBAW AND K. VENKATESWARLU*∗*

Abstract. We introduce the concept of a weak idempotent nil-clean ring as a generalization of a weakly nil-clean ring. We give certain characterizations for weak idempotent nil-clean rings in terms of Jacobson radical and nil-radical. Further, we obtain any weak idempotent nil-clean ring $R \cong R_1 \times R_2$ where R_1 and R_2 are weak idempotent nil-clean rings such that $2 \in J(R_1)$ and $3 \in J(R_2)$.

1. INTRODUCTION

Throughout this paper, *R* stands for associative ring with unity unless and otherwise stated. We denote the set of all idempotents, nilpotents, units, the Jacobson radical, and the prime radicals (nil-radicals) of a ring *R* by *Id*(*R*), $Nil(R), U(R), J(R)$ and $N(R)$ respectively.

We recall the following definitions from [\[3](#page-12-0)]. A ring *R* is called

- 1. strongly nil-clean if for each $r \in R$, there exists a nilpotent *n* and an idempotent *e* such that $r = n + e$ and $ne = en$.
- 2. nil-clean if every element can be expressed as a sum of a nilpotent and an idempotent.
- 3. strongly weakly nil-clean if each element $r \in R$ can be represented as either $r = n + e$ or $r = n - e$, $ne = en$ where *n* is nilpotent and *e* is idempotent.
- 4. weakly nil-clean ring if every element can be written as either a sum or a difference of a nilpotent and an idempotent.
- 5. clean if every element can be written as a sum of a unit and an idempotent.

The following hold: Strongly nil-clean *⇒* nil-clean *⇒* weakly nil-clean *⇒* clean.

It is observed that every element can be represented as a sum of a certain element and an idempotent element in all the above-said rings. It is quite natural to ask whether the representation can be generalized or not. In any

Published online: 15 October 2024

MSC(2020): Primary: 16N40; Secondary: 16N20, 16N99.

Keywords: Weakly nil-clean rings; Weak idempotent nil-clean rings; Clean rings.

Received: 27 May 2023, Accepted: 13 September 2023.

*[∗]*Corresponding author.

ring *R*, if $a^4 = a^2$ then such *a* is called weak idempotent element. Clearly, every idempotent is weak idempotent but not conversely. For instance, consider the ring of integers modulo 4. Clearly, every element is a weak idempotent element but 2 is not idempotent. In view of these observations, is it possible to replace the idempotent element with a weak idempotent element in the above-said classes of rings? To some extent the answer is affirmative. In this context, we introduce the notion of weak idempotent nil-clean rings which is a subclass of the class of clean rings and a wider class to the class of weakly nil-clean rings.

In this paper, we introduce the notion of weak idempotent nil-clean rings (for short, win-clean rings) and furnish certain examples. Further, we obtain some basic results concerning weak idempotent nil-clean rings. In the next section, we prove $R/Nil(R)$ is a reduced win-clean ring if and only if R is a commutative win-clean ring. Also, we characterize the win-clean ring in Proposition [2.23.](#page-6-0) The main result of this paper is that every win-clean ring *R* is isomorphic to a direct product of win-clean rings *R*¹ and *R*² where $2 \in J(R_1)$ and $3 \in J(R_2)$.

2. Main results

Definition 2.1. Let *R* be a ring. An element $a \in R$ is called weak idempotent nil-clean if $a = n + w$ for some nilpotent *n* and some weak idempotent *w*. *R* is said to be weak idempotent nil-clean if every element of *R* is weak idempotent nil-clean.

Remark 2.2*.* We denote the set of all weak idempotent elements by *wi*(*R*) and weak idempotent nil-clean ring by win-clean ring.

Example 2.3. Let $R = M_2(\mathbb{Z}_3)$. Then *R* is win-clean ring.

Example 2.4. Let $R = \mathbb{Z}_3 \times \mathbb{Z}_3$. Then *R* is win-clean ring.

Remark 2.5*.* If *R* is a ring and *w* is a weak idempotent element, then

(1)
$$
w^{2n} = w^2
$$
, and $w^{2n+1} = w^3$.

$$
(2) \,\, Id(R) \cup -Id(R) \subseteq wi(R).
$$

We can easily verify that every weakly nil-clean ring is a win-clean ring using remark [2.5](#page-2-0) (2) but the converse is not true. For instance, $\mathbb{Z}_3 \times \mathbb{Z}_3$ is win-clean ring but not weakly nil-clean, since $(2, 1)$ cannot be expressed as a sum or a difference of any nilpotent and any idempotent element in $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Theorem 2.6. *Let* R *be a ring. If* $w \in R$ *is weak idempotent, then*

(1) w^k is a weak idempotent element, i.e, $w^{2k} = w^{4k}$ where $k \in \mathbb{N}$. (2) w^2 *and* $1 - w^2$ *are idempotent elements.* (3) $2w^2 - 1$ *and* $w - 1 + w^2$ *are units.* (4) $w^n - w^{n+2}$ *is nilpotent for every* $n \in \mathbb{N}$. $(5) (1 - w^2)w^2 = 0$ (6) *w is clean.*

Proof. It is straightforward. □

Definition 2.7. Let *R* be a ring and *I* be an ideal of *R*. Then the weak idempotents can be lifted modulo *I* if there exists $w \in wi(R)$ for a given $a \in R$ with $a^4 - a^2 \in I$ such that $w - a \in I$.

Proposition 2.8. Let I be a nil ideal of a ring R *. If* \bar{w} is a weak idempotent *element in* R/I *, then* \bar{w} *can be lifted to a weak idempotent in* R *.*

Proof. Let $\bar{w} \in R/I$ be a weak idempotent and *w* be any pre-image for \bar{w} . Then $\bar{w}^2 = \bar{w}^4$ implies that $w^2 - w^4 \in I$ or $w^2 \equiv w^4 (mod I)$ where w^2 and w^4 are pre-images of \bar{w}^2 and \bar{w}^4 , in R/I respectively. Let $z = 1 - w^2$. Then (a) $w^2z = zw^2$ and (b) $w^2 + z \equiv 1 \pmod{I}$.

Now $w^2z = w^2 - w^4 \in I$. Then $0 = (w^2z)^k = w^{2k}z^k$ for some positive integer *k*. Also, w^{2k} is a pre-image of \bar{w} , since $w^{2k} \equiv w^2 (mod I)$. Conditions (*a*) and (*b*) are preserved when *w* and *z* are replaced by w^{2k} and z^k . Moreover, condition (*c*) $w^2z = zw^2 = 0$ is also preserved.

From condition (*b*), we have $x = 1 - w^2 - z \in I$. Then $(1 - w^2 - z)^m = 0$ for some positive integer *m*. Thus $1 = 1 - x^m = (1 - x)(1 + x + \cdots + x^{m-1})$ and it follows that $1 - x$ has an inverse $u = 1 + x + \cdots + x^{m-1}$. *u* commutes with *w* and *z* as *x* commutes with *w* and *z*.

Since $x \in I$, $u \equiv 1 \pmod{I}$. We can replace *w* and *z* with uw^2 and *uz*, in this case *w* is again a pre-image for \bar{w} and also conditions (*a*), (*b*), and (*c*) hold true. Further, it is true that (*d*) $w^2 + z = 1$. By condition (*c*), we have $w^2z = 0$, so it gives that $w^2 = w^2(w^2 + z) = w^4 + w^2z = w^4$. Therefore, \bar{w} lifted to the weak idempotent *w* in *R*. \Box

Proposition 2.9. *The homomorphic image of any win-clean ring is winclean.*

Proof. It is straightforward. □

Remark 2.10*.* The converse of Theorem [2.9](#page-3-0) is not true. For instance, consider the canonical epimorphism $\alpha : \mathbb{Z} \to \mathbb{Z}/(3)$ given by $\alpha(n) = n + (3)$. Then $\mathbb{Z}_3 \cong \mathbb{Z}/(3)$ is a win-clean ring, but $\alpha^{-1}(\mathbb{Z}/(3)) = \mathbb{Z}$ is not a win-clean ring.

Let *R* be a ring and *M* a left *R*-module. Consider the idealization of *R* and *M* given by $R(M) = R \oplus M$. For (r, m) , $(s, t) \in R(M)$, product and sum defined as follows:

$$
(r, m)(s, t) = (rs, rt + sm); (r, m) + (s, t) = (r + s, m + t).
$$

Then *R*(*M*) is the ring.

Theorem 2.11. *Let R be a ring and M be a left R-module. Then R is win-clean if and only if R*(*M*) *is win-clean.*

Proof. Assume that *R* is win-clean ring and $(r, m) \in R(M)$ where $r \in R$ and $m \in M$. Then $r = n + w$ for $n \in Nil(R)$ and $w \in wi(R)$. Thus $n^k = 0$ for $k \in \mathbb{N}$. So $(n, m)^{k+1} = (n^{k+1}, (k+1)n^k m) = (0, 0)$ which implies that $(r, m) = (n + w, m) = (n, m) + (w, 0)$ is win-clean expression of (r, m) . Hence, $R(M)$ is win-clean. Conversely, $R \cong R(M)/(0 \oplus M)$ is homomorphic image of $R(M)$. So by Theorem [2.9,](#page-3-0) R is win-clean ring. \Box

Proposition 2.12. Let R be a ring. Then weak idempotent elements in $J(R)$ *are nilpotents.*

Proof. Let $w \in J(R)$ be a weak idempotent element. Then $w^2 \in J(R)$ and also $1 - w^2$ is an idempotent element. Again, $w^2 \in J(R)$ implies that 1 − w^2 ∈ $U(R)$. So 1 − w^2 is both idempotent and unit. Thus 1 − $w^2 = 1$, since 1 is the only unit and idempotent element. This implies that $w^2 = 0$. Hence *w* is nilpotent element. \Box

Proposition 2.13 ([\[8](#page-12-1)]). Let R be a ring and $a, b \in R$ such that $ab \neq ba$. *Then*

$$
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} + \sum_{k=0}^n D_k b^{n-k}
$$

where $d_a(x) = ax - xa$ and $D_k = D_k(b, a) = (a + d_b)^n 1 - a^n$, $D_0(b, a) = 0$, $D_{n+1}(b, a) = d_b a^n + (A + d_b) D_n(b, a).$

Proposition 2.14. *Let* R *be a win-clean ring, then* $J(R) \subseteq Nil(R)$ *.*

Proof. Let $a \in J(R)$. Then $a = n + w$, where $n \in Nil(R)$ and $w \in wi(R)$. Then $(a - w)^k = 0$ for some $k \in \mathbb{N}$. So $(w - a)^k \in J(R)$. Now

$$
(w-a)^k = \sum_{k=0}^n {n \choose k} w^k a^{n-k} + \sum_{k=0}^n D_k a^{n-k}
$$

implies that $(w-a)^k$ −[$\sum_{k=0}^{n-1}$ $\binom{n}{k}$ $\sum_{k=0}^{n} D_k a^{n-k}$ = $w^k \in J(R) \cap wi(R)$. Since $J(R)$ does not contain units and non-zero idempotents, *w* must be nilpotent. Now $a - w, w \in Nil(R)$ which in turn implies that $a \in Nil(R)$. Hence $J(R) \subseteq Nil(R)$. **Corollary 2.15.** *If R is a win-clean ring, then J*(*R*) *is nil.*

Remark 2.16*.* A reduced win-clean ring is a ring in which all the elements are weak idempotents.

Proposition 2.17. *Let R be a commutative ring. Then R is win-clean if and only if* $R/Nil(R)$ *is a reduced win-clean ring.*

Proof. Assume that *R* is win-clean ring. Let $\bar{x} = x + Nil(R) \in R/Nil(R)$ for some $x \in R$. Now write

$$
\bar{x} = (n + w) + Nil(R) = (n + Nil(R)) + (w + Nil(R)) = w + Nil(R)
$$

and $w + Nil(R) \in wi(R/Nil(R))$. This implies that \bar{x} is weak idempotent element in $R/Nil(R)$. Since \bar{x} is arbitrary, $R/Nil(R)$ is reduced win-clean ring. Conversely, assume that $R/Nil(R)$ is win-clean ring and let $r \in R$. Since $R/Nil(R)$ is reduced, $Nil(R/Nil(R)) = \{0\}$ and $r + Nil(R) = w + Nil(R)$ for some $w + Nil(R) \in wi(R/Nil(R))$. Then $w^4 - w^2 \in Nil(R)$. By Proposition [2.12](#page-4-0), the weak idempotent $w + Nil(R)$ can be lifted to a weak idempotent $w \in wi(R)$ such that $r - w = n$ for some $n \in Nil(R)$, i.e., $r = n + w$. This shows that *r* is win-clean. Hence *R* is win-clean ring. \Box

Corollary 2.18. *Let R be a commutative ring. Then R is win-clean if and only if R/N*(*R*) *is win-clean ring.*

Proof. It is obvious. \Box

Proposition 2.19. *Let I be a nil ideal of a ring R. R is win-clean if and only if R/I is win-clean.*

Proof. (\implies) It is obvious.

(←) Let $r \in R$. Then $\bar{r} = r + I \in R/I$. We can write $\bar{r} = \bar{n} + \bar{w}$ where $\bar{n} \in Nil(R/I)$ and $\bar{w} \in wi(R/I)$ implies that $r + I = (n + w) + I$. The nilpotent \bar{n} in R/I lift to a nilpotent *n* in *R*. To see this, $\bar{n}^k = 0$ for $k \geq 1$ in R/I implies that $n^k \in I$. Since *I* is nil, $(n^k)^m = 0$. So $n^{km} = 0$ for $m \ge 1$. We know that weak idempotents lift modulo any nil ideal, this allows us to assume that *w* is a weak idempotent in *R*. Moreover, $r - n - w \in I$. It follows that $r - w = n + d$ where $d \in I$. Since $n^m = 0$ for some $m \in \mathbb{N}$, we have $(n+d)^k \in I$ because *I* is ideal of *R*. Thus $(n+d)^{mk} = 0$ for some $m \in \mathbb{N}$ as *I* is nil ideal. So $n + d$ is nilpotent. Therefore, *R* is win-clean, as desired. \Box

Corollary 2.20. *A ring R is win-clean if and only if R/J*(*R*) *is win-clean and J*(*R*) *is nil.*

Proof. Since $J(R)$ is nil, the proof follows from Proposition [2.19](#page-5-0). □

The converse of Proposition [2.14](#page-4-1) is not true. Consider example 1.2 in[[7\]](#page-12-2). If we take a simple domain $F = \mathbb{Z}_5$, then $A = M_2(\mathbb{Z}_5)$ is a ring of 2×2 matrices over integer modulo 5, and $B = D_2(\mathbb{Z}_5)$ is a ring of 2×2 diagonal matrices over integer modulo 5 such that $Nil(B) = \begin{pmatrix} 0 & \mathbb{Z}_5 \\ 0 & 0 \end{pmatrix}$. Define $R = B + A[[x]]_x$, where $A[[x]]$ denotes the formal power series ring with an indeterminate x over a ring *R*. Then $Nil(R) \subseteq J(R) = Nil(B) + A[[x]]$ and $R/J(R) \cong \mathbb{Z}_5$. But \mathbb{Z}_5 is not win-clean and hence $R/J(R)$ is not win-clean. Therefore, By Corollary [2.20](#page-5-1), *R* is not win-clean ring.

Remark 2.21. It is clear that if $x \in R$ a non-zero central nilpotent, then 1 − $xr \in U(R)$ for all $r \in R$. Hence $x \in J(R)$, i.e, the non-zero central nilpotents are contained in Jacobson radical, *J*(*R*).

Corollary 2.22. *Let R be a win-clean ring such that the weak idempotents* are central. Then $C(R)$, the center of R, is a win-clean ring.

Proposition 2.23. *The following are equivalent for a ring R:*

- (1) *R is win-clean.*
- (2) *12 is nilpotent and R/*12*R is win-clean.*
- (3) $R/J(R)$ *is win-clean and* $J(R)$ *is nil.*

Proof. (1) \implies (2). If 12 = 0, then we are done. Assume that $12 \neq 0$. As *R* is a ring with 1, $1 + 1 = 2 \in R$ is the least non-unit central element of *R*. Then there exist a weak idempotent *w* and a nilpotent *n* such that $2 = n + w$. Thus $(2-n)^2 = (2-n)^4 \implies 2^2 - 4n + n^2 = 2^4 - 32n + 24n^2 - 8n^3 + n^4$. So $n(-n^3 + 8n^2 - 23n + 28) = 12$. Hence, 12 is nilpotent. Since *R* is win-clean, *R/*12*R* is win-clean by Proposition [2.19.](#page-5-0)

(2) \implies (1) follows from Proposition [2.19](#page-5-0) and (1) \iff (3) obtained immediately from Corollary [2.20](#page-5-1). \Box

Proposition 2.24 ([[5\]](#page-12-3))**.** *Let R be a ring, and let I be any nil-ideal of R. Then R is nil-clean if and only if R/I is nil-clean.*

Proposition 2.25. *A ring R is nil-clean if and only if R is win-clean and* $2 \in J(R)$.

Proof. (\implies) Suppose *R* is nil-clean and $r \in R$. Then $r = n + e$ where $n \in Nil(R)$ and $e \in Id(R)$. Thus $e \in wi(R)$. So *r* is win-clean and hence *R* is win-clean. Also, $2 = n + e$ implies that $n = 2$. Thus 2 is central nilpotent. This implies that $2 \in J(R)$.

 (\Leftarrow) Assume *R* is win-clean. Then *J*(*R*) is nil. As 2 ∈ *J*(*R*),

$$
2 + J(R) = 0 + J(R).
$$

We know that a nilpotent modulo nil ideal lifted to nilpotent in *R*. So we have $2 = 0$, i.e., $char(R/J(R)) = 2$. Thus for all $r \in R$ we have $2\bar{r} = 0$ and $1 - 2\bar{r} = 1$. So $R/J(R)$ is Boolean. Hence $R/J(R)$ is nil-clean. By Proposition [2.24,](#page-6-1) *R* is nil-clean. \Box

Proposition 2.26. *A ring R is weakly nil-clean if and only if R is win-clean* and $2 \in J(R)$ *or* $3 \in J(R)$ *.*

Proof. (\implies) Obviously *R* is win-clean. Assume that $2 \notin J(R)$. Then $2 \in U(R)$ and $6^n = 0$ for some positive integer *n* as 6 is nilpotent element in *R* ([[3\]](#page-12-0), Theorem 2). Thus $2^n 3^n = 0$ implies that $3^n = 0$. Hence $3 \in J(R)$.

 (\Leftarrow) Assume that *R* is win-clean. Then $R/J(R)$ is win-clean and $J(R)$ is nil by Corollary [2.20](#page-5-1). If $2 \in J(R)$, then by Proposition [2.25](#page-6-2), R is nil-clean. So *R* is weakly nil-clean. Again, if $3 \in J(R)$, then $3 + J(R) = 0 + J(R)$ and also 2 is invertible in *R*. we can assume $3 = 0$, so that $char(R/J(R)) = 3$. So $\bar{2}$ is unit in $R/J(R)$. Moreover, $3\bar{r} = \bar{0}$, $\bar{1} - 3\bar{r} = \bar{1}$ and $\bar{2} - 3\bar{r} = \bar{2}$ for all *r* ∈ *R*. Thus $R/J(R) \cong \mathbb{Z}_3$ and hence $R/J(R)$ is weakly nil-clean. Therefore, *R* is weakly nil-clean. \square

Proposition 2.27. *A finite direct product* $R = \prod R_\alpha$ *of rings is win-clean ring if and only if each* R_α *is win-clean ring.*

Proof. It is straightforward. □

Proposition 2.28. *Let R be a ring. Then R is win-clean ring if and only if R* \cong *R*₁ × *R*₂ *where R*₁ *is win-clean with* 2 \in *J*(*R*₁) *and R*₂ *is 0 or a win-clean ring with* $3 \in J(R_2)$.

Proof. (\implies) Suppose *R* is win-clean ring. Then 12 is nilpotent element in *R*, so that $(12)^n = 0$ for some positive integer *n*. Then $4^n R \cap 3^n R = 0$ and $4^nR + 3^nR = R$. Thus $R \cong (R/2^{2n}R) \times (R/3^nR)$ by Chinese remainder theorem. By Proposition [2.27,](#page-7-0) $R_1 = R/2^{2n}R$ and $R_2 = R/3^nR$ are win-clean rings. Thus 2 is central nilpotent in R_1 . So $2 \in J(R_1)$. We can assume $R_2 \neq 0$. Then 3 is central nilpotent in R_2 and hence $3 \in J(R_2)$. (\Leftarrow) It is obvious.

Corollary 2.29. *The following are equivalent for a ring R.*

(1) *R is a win-clean ring with central weak idempotent elements.*

- (2) $R \cong R_1 \times R_2$, where R_1 *is win-clean with weak idempotents are central and* $J(R_1)$ *nil such that* $R_1/J(R_1)$ *is Boolean, and* R_2 *is 0* $or R_2/J(R_2) ≅ \mathbb{Z}_3$ *with* $J(R_2)$ *nil.*
- (3) *R is win-clean ring with central weak idempotent elements, J*(*R*) *is nil,* and $R/J(R)$ *is isomorphic to either a Boolean ring, or to* \mathbb{Z}_3 *, or to the direct product of two such rings.*

Proof. (1) \implies (2) Using Proposition [2.28](#page-7-1), we can write $R \cong R_1 \times R_2$, where *R*₁ is win-clean ring with central weak idempotents and $2 \in J(R_1)$; and R_2 is 0 or win-clean ring with central weak idempotents and $3 \in J(R_2)$. Thus $char(R_1/J(R_1)) = 2$ which in turn implies that $\bar{x} = -\bar{x}$ for all $\bar{x} \in R_1/J(R_1)$. Hence, $R_1/J(R_1)$ is Boolean. Assume $R_2 \neq 0$. As R_2 is win-clean and $3 \in J(R_2)$, $R_2/J(R_2)$ is win-clean and $char(R_2/J(R_2)) = 3$. Also, 2 is unit in R_2 , since $2 \notin J(R_2)$. From this, we conclude that

$$
R_2/J(R_2) = \{3R_2, 1 - 3R_2, 2 - 3R_2\},\
$$

so that every element of $R_2/J(R_2)$ is nilpotent or invertible. Therefore, $R_2/J(R_2) \cong \mathbb{Z}_3$. Furthermore, by Corollary [2.20,](#page-5-1) $J(R_1)$ and $J(R_2)$ are nil ideals.

 $(2) \implies (3)$ and $(3) \implies (1)$ are straightforward. □

Theorem 2.30. *Let R be a reduced commutative ring. The following statements are equivalent.*

- (1) $R = wi(R)$.
- (2) *R is isomorphic to either a Boolean ring B or* \mathbb{Z}_3 *, or* $B \times \mathbb{Z}_3$ *.*
- (3) *For all* $x \in R$ *,* $x^4 = x^2$ *.*
- (4) *R is win-clean.*

Proof. For a reduced ring R , (1) \iff (3) \iff (4). Thus, it remains to show the equivalence of (1) and (2) .

(1) \implies (2) Suppose $R = wi(R)$. If $y \in R$, y^2 is an idempotent. If R is indecomposable, then either $y^2 = 0$ or $y^2 = 1$ for any $y \in R$. This implies that $y = 0$ or $y^2 = 1$ for all $y \in R$. Thus, each nonzero element of R is a unit and hence *R* is a field. Hence, *R* is isomorphic to either \mathbb{Z}_2 or \mathbb{Z}_3 .

Next, assume *R* is not indecomposable. Let $R = S \times T$ and $s \in S$, where *S* and *T* are coprime ideals of *R*, that is, $S + T = R$. Then, $(s, 0)$ is not a unit implies that either $(s, 0) = (0, 0)$, or $(s, 0)^2 = (0, 0)$, or $(s, 0)^2 = (s, 0)$, or $(s,0)^2 = (s,0)^4$ and $(s,0)^2 \neq (1,0)$. If $(s,0) = (0,0)$ or $(s,0)^2 = (0,0)$, then $(s, 0) = (0, 0)$ since *S* is reduced. In this case, *S* is a field. So, *S* is isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . If $(s,0)^2 = (s,0)$, then $s \in Id(S) \cup [-Id(S)]$ and hence $S = Id(S) \cup [-Id(S)]$. By [\[4](#page-12-4), Theorem 1.13], *S* is isomorphic to either a Boolean ring, or \mathbb{Z}_3 , or $B \times \mathbb{Z}_3$, where *B* is a Boolean ring. The same holds for *T*. As a direct product of two Boolean rings is a Boolean ring we get *R* is isomorphic to a Boolean ring B , $\mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_3 \times B$, or $\mathbb{Z}_3 \times \mathbb{Z}_3 \times B$. If $(s,0)^2 = (s,0)^4$ and $(s,0)^2 \neq (1,0)$, then let $y = (s,0)$. Now $R = R(y^2) \oplus R(1 - y^2)$ is the decomposition of *R*.

Assume $R(y^2)$ is not a Boolean ring. Then, we show that $R(1-y^2)$ is Boolean. Suppose ry^2 is not idempotent. Then, for any $s \in R$, $ry^2 + (-s)(1 - y^2)$ is not idempotent. Thus, $-(ry^2 + (-s)(1 - y^2)) = -ry^2 + s(1 - y^2)$ is idempotent. So, each $s(1 - y^2)$ is idempotent. Thus, $R(1 - y^2)$ is Boolean and also $2R(1 - y^2) = 0$. Hence, for each $y \in R$, either $2y^2 = 0$ or $2(1 - y^2) = 0$.

If $(0 : 2) = \{y \in R \mid 2y^2 = 0\} = R$, then $char(R) = 2$. Hence, $R = wi(R) = Id(R)$ and so *R* is Boolean. Now assume $(0:2) \neq R$. Then, we claim that $(0:2)$ is a maximal ideal of *R*. Suppose there is a maximal ideal *M* such that $(0:2) \subseteq M$. Let $y^2 \in M - (0:2)$. Then, $y^2 \in wi(R) = R$ and $y^2 \notin (0:2)$. Thus, $2y^2 \neq 0$ and hence $2(1-y^2) = 0$. So, $1-y^2 \in (0:2) \subseteq M$, a contradiction. Hence, $(0:2)$ is a maximal ideal. So, $\bar{R} = R/(0:2)$ is an indecomposable ring with $\bar{R} = wi(\bar{R})$. By the idea in the first part of this proof, we have that *R* is isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Next we show that $2R \cap (0:2) = 0$. Assume that $y \in 2R \cap (0:2)$. Then, $y = 2s$ and $2y^2 = 0$. But then $y^2 = y^4 = (2s)^4 = 2(2s)^2(2s)^2 = 2y^2 = 0$. If $2R = 0$, then R is Boolean.

Now assume that $2R \neq 0$. If $2R = R$, then $(0:2) = 0$ is a maximal ideal of *R*. Thus, *R* is a field and hence by the first paragraph of this proof, it is isomorphic to \mathbb{Z}_3 . If $2R \neq R$, then $R = 2R \oplus (0:2)$, where $(0:2)$ is a Boolean ring and $2R \cong R/(0:2)$ is isomorphic to \mathbb{Z}_3 since $2R \cong \mathbb{Z}_2$ or \mathbb{Z}_3 by the first paragraph of this proof and $2R \nsubseteq (0:2)$. Therefore, R is isomorphic to either a Boolean ring, or \mathbb{Z}_3 , or $B \times \mathbb{Z}_3$, or $\mathbb{Z}_3 \times \mathbb{Z}_3$, or $\mathbb{Z}_3 \times \mathbb{Z}_3 \times B$, where *B* is a Boolean ring.

 $(2) \implies (1)$ It is obvious.

Recall that a ring is said to be zero dimensional if every prime ideal is maximal ideal.

Corollary 2.31. *Let R be a commutative ring. The following statements hold.*

(1) *A reduced indecomposable ring is win-clean if and only if it is isomorphic to either* \mathbb{Z}_2 *or* \mathbb{Z}_3 *. In particular, any win-clean domain is isomorphic to either* \mathbb{Z}_2 *or* \mathbb{Z}_3 *.*

(2) *A win-clean ring is zero-dimensional.*

- *Proof.* (1) Suppose *R* is a reduced indecomposable win-clean. Then 0 is the only nilpotent, and its idempotents are only 0 and 1. Let $w \in wi(R)$. Then $w^2 \in Id(R)$ implies that $w^2 = 0$ or $w^2 = 1$. If $w^2 = 0$, then *w* is both weak idempotent and nilpotent. So $w = 0$. If $w^2 = 1$, then *w* is a unit and weak idempotent. Now we have $R = \{0, 1, w\}$. Since R is closed under $+, w+1 \in R$ which implies that $w+1=0$ or $w+1=1$, or $w + 1 = w$. If $w + 1 = 0$, then $w = -1$. In this case, $R = \{0, 1, -1\}$ which is isomorphic to \mathbb{Z}_3 . If $w + 1 = 1$ or $w + 1 = w$, then $w = 0$ as $0 \neq 1$. Hence $R = \{0, 1\}$ which is isomorphic to \mathbb{Z}_2 . The converse is straightforward.
	- (2) Let *R* be a win-clean and *P* a prime ideal of *R*. Then *R/P* is an integral domain. By (1), the quotient R/P is isomorphic to either \mathbb{Z}_2 or \mathbb{Z}_3 and hence *P* is maximal ideal.

Proposition 2.32. *Let R be a win-clean ring with central weak idempotent elements and let* $a \in R$ *. If* aR *contains no non-zero idempotent. Then* a *is the sum of two nilpotent elements.*

Proof. Suppose aR contains no non-zero idempotent. Choose $w \in wi(R)$ and $n \in Nil(R)$ such that $a = n + w$. Then

$$
aw^3 = nw^3 + w^4 = nw^3 + w^2 = (nw + 1)w^2.
$$

So $aw^3(nw+1)^{-1} = (nw+1)w^2(nw+1)^{-1}$ in *aR*. As *nw* is nilpotent, $nw+1$ is unit and w^2 is idempotent. Thus $(nw + 1)w^2(nw + 1)^{-1}$ is idempotent. Since *aR* does not contain non-zero idempotent element, we have

$$
(nw + 1)w^{2}(nw + 1)^{-1} = 0
$$

which implies $w^2 = 0$ and hence *w* is nilpotent. Therefore, *a* is a sum of two nilpotent elements. $\hfill \Box$

Definition 2.33. Let R be a ring. Then an element x in R is called the square root of idempotent element if there exists an idempotent element *e* in *R* such that $x^2 = e$.

Proposition 2.34. *Let R be a win-clean ring with central weak idempotent elements in which,* $2 \in U(R)$ *. Then every element of* R *can be written as a sum of nilpotent and a square root of idempotent element.*

□

Proof. Let $a \in R$. Then $a = n + w$ for some $n \in Nil(R)$ and $w \in wi(R)$. Let $v = 2w^2 - 1$. Then $v^2 = (2w^2 - 1)^2 = 4w^4 - 4w^2 + 1 = 4w^2 - 4w^2 + 1 = 1$. Thus $vv^{-1} = (2w^2 - 1)(2w^2 - 1)^{-1} = 1$. Now $v = 2w^2 - 1$ implies $w^2 = (v + 1)/2$ and $[(v+1)/2]^2 = (v+1)/2$. Therefore, *w* is a square root of idempotent. \square

Next, we see that a win-clean ring is a subclass of clean rings.

Theorem 2.35. *Every win-clean ring is clean.*

Proof. Let *R* be a win-clean ring and $a \in R$. Then $a = n + w$ for some nilpotent *n* and weak idempotent *w*. So $a = n + w = (n + w - 1 + w^2) + (1 - w^2)$. By Theorem [2.6,](#page-2-1) $w-1+w^2$ is unit and $1-w^2 \in Id(R)$. To see $n+w-1+w^2$ is unit. Let $u = w - 1 + w^2$. Then $n + w - 1 + w^2 = n + u$. Since *n* and $(u^{-1}n)$ are nilpotents, we have $n^m = 0$ and $(u^{-1}n)^m = 0$ for some positive integer *m*. Now

$$
(n+u)^{-1} = [u(1+\frac{n}{u})]^{-1} = [1-\frac{n}{u}+(\frac{n}{u})^2 - (\frac{n}{u})^3 + \dots + (-\frac{n}{u})^{m-1}]u^{-1}
$$

=
$$
[1-u^{-1}n + (u^{-1}n)^2 - \dots + (-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1}.
$$

and so

$$
(n+u)(n+u)^{-1} = (n+u)[1-u^{-1}n+\cdots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1}
$$

\n
$$
= n[1-u^{-1}n+\cdots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1}
$$

\n
$$
+u[1-u^{-1}n+(u^{-1}n)^2-\cdots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1}
$$

\n
$$
=nu^{-1}-(nu^{-1})^2+(nu^{-1})^3-\cdots+(-1)^{m-1}(nu^{-1})^m
$$

\n
$$
+1-nu^{-1}+(nu^{-1})^2-\cdots+(-1)^{m-1}(nu^{-1})^{m-1}
$$

\n
$$
=1.
$$

Thus *a* is clean. Therefore, *R* is clean. \Box

In general, the converse of Theorem [2.35](#page-11-0) does not hold true. For example, integer modulo 5, \mathbb{Z}_5 , is clean but not win-clean.

Lemma 2.36. *If w is a weak idempotent element in a win-clean ring R and* $2 \in J(R)$, then $w \pm w^2$ is nilpotent.

Proof. Since $2 \in J(R)$, we have $(w \pm w^2)^2 = 2(w^2 \pm w^3) \in J(R)$. As $J(R)$ is nil, there exists some positive integer *m* such that $2^m = 0$ and also $(w \pm w^2)^{2m} = 0$. Hence, $w \pm w^2$ is nilpotent. \square

The following proposition sets a condition for which a clean element becomes win-clean.

Proposition 2.37. Let R be a commutative ring, $2 \in J(R)$ and x be clean *in R with clean decomposition* $x = u + e$ *. Then x is win-clean if and only if there exists* $w \in wi(R) \cap Nil(R)$ *such that* $2e - 1 + u$ *is nilpotent.*

Proof. (\implies) Suppose *x* is win-clean. Then $x = n + f$ for some $n \in Nil(R)$ and $f \in wi(R)$. Now $x = n + f = (n - 1 + f + f^2) + (1 - f^2)$. Since $2 \in J(R)$, $f + f^2$ is nilpotent by Lemma [2.36.](#page-11-1) Then take $u = n - 1 + f + f^2$ and $e = 1 - f^2$. So

$$
2e - 1 + u = 2(1 - f2) - 1 + (n - 1 + f + f2) + f2 = n + f.
$$

(←) We can rewrite $x = u + e$ as $x = (u + 2e - 1 + w^2) + (1 - e - w^2)$. Since $1 - e - w^2$ is weak idempotent, *x* is win-clean. □

Acknowledgments

We thank the unknown reviewers for their invaluable suggestions and comments for the improvement of this paper.

REFERENCES

- 1. S. Ali, A note on commutative weakly nil clean rings, *J. Algebra Appl.*, **15**(10) (2016), Article ID: 1620001.
- 2. D. K. Basnet and J. Bhattacharyya, Weak nil-clean rings, (2015), https://doi.org/10.48550/arXiv.1510.07440.
- 3. S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, *J. Algebra Appl.*, **15**(08) (2016), Article ID: 1650148.
- 4. P. V. Danchev and W. W. McGovern, Commutative weakly nil clean unital rings, *J. Algebra*, **425** (2015), 410–422.
- 5. A. J. Diesl, Nil clean rings, *J. Algebra*, **383** (2013), 197–211.
- 6. T. Koşan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, *J. pure appl. algebra*, **220**(2) (2016), 633–646.
- 7. C. I. Lee and S. Y. Park, When nilpotents are contained in Jacobson radicals, *J. Korean Math. Soc.*, **55**(5)(2018), 1193–1205.
- 8. W. Wyss, Two non-commutative binomial theorems, (2017), https://doi.org/10.48550/arXiv.1707.03861
- 9. M. I. Zubayda and N. F. Norihan, On weak nil-clean rings, *Open Access library journal*, **9**(e8812) (2022), 2333–9721.

Biadiglign Asmare

Department of Mathematics, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Email: biadiglign.asmare@aau.edu.et

Tilahun Abebaw

Department of Mathematics, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Email: tilahun.abebaw@aau.edu.et

Kolluru Venkateswarlu

Department of Computer Science and System Engineering, College of Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India. Email: drkvenkateswarlu@gmail.com