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WEAK IDEMPOTENT NIL-CLEAN RINGS

B. ASMARE, T. ABEBAW AND K. VENKATESWARLU*

ABSTRACT. We introduce the concept of a weak idempotent nil-clean ring as a
generalization of a weakly nil-clean ring. We give certain characterizations for weak
idempotent nil-clean rings in terms of Jacobson radical and nil-radical. Further, we
obtain any weak idempotent nil-clean ring R = R; X Ry where R; and Rs are weak
idempotent nil-clean rings such that 2 € J(R;y) and 3 € J(R2).

1. INTRODUCTION

Throughout this paper, R stands for associative ring with unity unless and
otherwise stated. We denote the set of all idempotents, nilpotents, units, the
Jacobson radical, and the prime radicals (nil-radicals) of a ring R by Id(R),
Nil(R), U(R), J(R) and N(R) respectively.

We recall the following definitions from [3]. A ring R is called

1.

strongly nil-clean if for each » € R, there exists a nilpotent n and an
idempotent e such that » = n 4 e and ne = en.

. nil-clean if every element can be expressed as a sum of a nilpotent and

an idempotent.

. strongly weakly nil-clean if each element » € R can be represented as

either r =n+e or r = n — e, ne = en where n is nilpotent and e is
idempotent.

. weakly nil-clean ring if every element can be written as either a sum

or a difference of a nilpotent and an idempotent.

. clean if every element can be written as a sum of a unit and an idem-

potent.

The following hold: Strongly nil-clean = nil-clean = weakly nil-clean =

clean.

It is observed that every element can be represented as a sum of a certain
element and an idempotent element in all the above-said rings. It is quite
natural to ask whether the representation can be generalized or not. In any
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ring R, if a* = a? then such a is called weak idempotent element. Clearly, ev-
ery idempotent is weak idempotent but not conversely. For instance, consider
the ring of integers modulo 4. Clearly, every element is a weak idempotent
element but 2 is not idempotent. In view of these observations, is it possible
to replace the idempotent element with a weak idempotent element in the
above-said classes of rings? To some extent the answer is affirmative. In this
context, we introduce the notion of weak idempotent nil-clean rings which is
a subclass of the class of clean rings and a wider class to the class of weakly
nil-clean rings.

In this paper, we introduce the notion of weak idempotent nil-clean rings
(for short, win-clean rings) and furnish certain examples. Further, we obtain
some basic results concerning weak idempotent nil-clean rings. In the next
section, we prove R/Nil(R) is a reduced win-clean ring if and only if R is
a commutative win-clean ring. Also, we characterize the win-clean ring in
Proposition 2.23. The main result of this paper is that every win-clean ring

R is isomorphic to a direct product of win-clean rings R; and Ry where
2 € J(Rl) and 3 € J(RQ)

2. MAIN RESULTS

Definition 2.1. Let R be aring. An element a € R is called weak idempotent
nil-clean if a = n+w for some nilpotent n and some weak idempotent w. R is
said to be weak idempotent nil-clean if every element of R is weak idempotent
nil-clean.

Remark 2.2. We denote the set of all weak idempotent elements by wi(R)
and weak idempotent nil-clean ring by win-clean ring.

Example 2.3. Let R = M3(Zs3). Then R is win-clean ring.
Example 2.4. Let R = Z3 X Z3. Then R is win-clean ring.

Remark 2.5. If R is a ring and w is a weak idempotent element, then

(1) w* = w?, and wW?" = w3,

(2) Id(R) U —Id(R) C wi(R).

We can easily verify that every weakly nil-clean ring is a win-clean ring
using remark 2.5 (2) but the converse is not true. For instance, Zg X Zs is
win-clean ring but not weakly nil-clean, since (2, 1) cannot be expressed as a
sum or a difference of any nilpotent and any idempotent element in Zg x Zs.

Theorem 2.6. Let R be a ring. If w € R is weak idempotent, then
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wk is a weak idempotent element, i.e, w** = w** where k € N.
w? and 1 — w? are idempotent elements.
2w? — 1 and w — 1 + w? are units.
w™ — w"? is nilpotent for every n € N.
1 —wH)w? =0
(6) w is clean.

Proof. It is straightforward. ]

Definition 2.7. Let R be a ring and [ be an ideal of R. Then the weak
idempotents can be lifted modulo I if there exists w € wi(R) for a given
a € R with a* — a* € I such that w —a € I.

Proposition 2.8. Let I be a nil ideal of a ring R. If w is a weak idempotent
element in R/I, then w can be lifted to a weak idempotent in R.

Proof. Let w € R/I be a weak idempotent and w be any pre-image for .
Then w? = w* implies that w? —w* € I or w? = w!(modl) where w* and w*
are pre-images of w? and w?, in R/I respectively. Let 2 = 1 — w?. Then (a)
w?z = zw? and (b) w? + z = 1(modlI).

Now w?z = w? —w* € I. Then 0 = (w?2)* = w*2z* for some positive
integer k. Also, w? is a pre-image of w, since w?* = w?(modI). Conditions
(a) and (b) are preserved when w and z are replaced by w? and z*. Moreover,
condition (¢) w?z = zw? = 0 is also preserved.

From condition (b), we have x = 1 — w? — 2z € I. Then (1 — w? — 2)™ = 0
for some positive integer m. Thus 1 =1—2" = (1 —2)(1 +x +--- + 2™ 1)
and it follows that 1 — z has an inverse u =1+ x +--- + 2™ . u commutes
with w and z as  commutes with w and z.

Since x € I, u = 1(modI). We can replace w and z with uw?® and uz, in
this case w is again a pre-image for w and also conditions (a), (b), and (c)
hold true. Further, it is true that (d) w? + z = 1. By condition (c), we have

w?z = 0, so it gives that w? = w?(w? + z) = w* + w?2 = w*. Therefore, w

2

lifted to the weak idempotent w in R. ]
Proposition 2.9. The homomorphic image of any win-clean ring is win-
clean.

Proof. 1t is straightforward. ]

Remark 2.10. The converse of Theorem 2.9 is not true. For instance, consider
the canonical epimorphism « : Z — Z/(3) given by a(n) = n + (3). Then
Zs = 7./(3) is a win-clean ring, but a~(Z/(3)) = Z is not a win-clean ring.
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Let R be a ring and M a left R-module. Consider the idealization of R and
M given by R(M) = R® M. For (r,m),(s,t) € R(M), product and sum
defined as follows:

(rym)(s,t) = (rs,rt + sm); (r,m) + (s,t) = (r +s,m + t).
Then R(M) is the ring.
Theorem 2.11. Let R be a ring and M be a left R-module. Then R is
win-clean if and only if R(M) is win-clean.

Proof. Assume that R is win-clean ring and (r,m) € R(M) where r € R
and m € M. Then r = n+ w for n € Nil(R) and w € wi(R). Thus
nk =0 for k € N. So (n,m)*! = (n**1 (k + 1)n*m) = (0,0) which implies
that (r,m) = (n+w,m) = (n,m) + (w,0) is win-clean expression of (r,m).
Hence, R(M) is win-clean. Conversely, R = R(M)/(0 & M) is homomorphic
image of R(M). So by Theorem 2.9, R is win-clean ring. ]

Proposition 2.12. Let R be a ring. Then weak idempotent elements in J(R)
are nilpotents.

Proof. Let w € J(R) be a weak idempotent element. Then w? € J(R)
and also 1 — w? is an idempotent element. Again, w? € J(R) implies that
1 —w?e U(R). So 1 — w?is both idempotent and unit. Thus 1 — w? = 1,
since 1 is the only unit and idempotent element. This implies that w? = 0.
Hence w is nilpotent element. [

Proposition 2.13 ([8]). Let R be a ring and a,b € R such that ab # ba.

Then . .
(a+b)" = Z (Z) aFpn T 4 Z Db F
k=0

k=0
where d,(x) = ax — xa and Dy = Dy(b,a) = (a + dy)"1 — a”, Dy(b,a) = 0,
Dy y1(b,a) = dya" + (A + dp) Dy (b, a).

Proposition 2.14. Let R be a win-clean ring, then J(R) C Nil(R).

Proof. Let a € J(R). Then a = n 4+ w, where n € Nil(R) and w € wi(R).
Then (a — w)* = 0 for some k € N. So (w — a)* € J(R). Now

(w—a)* =35 (Pw e + 32 Dra" "

implies that (w—a)"—[> "}y (I wka" *+3°7_, Dra" ] = w* € J(R)Nwi(R).
Since J(R) does not contain units and non-zero idempotents, w must be
nilpotent. Now a — w,w € Nil(R) which in turn implies that a € Nil(R).
Hence J(R) C Nil(R). O
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Corollary 2.15. If R is a win-clean ring, then J(R) is nil.

Remark 2.16. A reduced win-clean ring is a ring in which all the elements are
weak idempotents.

Proposition 2.17. Let R be a commutative ring. Then R is win-clean if
and only if R/Nil(R) is a reduced win-clean ring.

Proof. Assume that R is win-clean ring. Let & = x + Nil(R) € R/Nil(R) for
some v € R. Now write

T=(n+w)+ Nil(R)=(n+ Nil(R)) + (w+ Nil(R)) = w + Nil(R)

and w + Nil(R) € wi(R/Nil(R)). This implies that z is weak idempotent
element in R/Nil(R). Since z is arbitrary, R/Nil(R) is reduced
win-clean ring. Conversely, assume that R/Nil(R) is win-clean ring and
let » € R. Since R/Nil(R) is reduced, Nil(R/Nil(R)) = {0} and
r + Nil(R) = w + Nil(R) for some w + Nil(R) € wi(R/Nil(R)). Then
wt — w? € Nil(R). By Proposition 2.12, the weak idempotent w + Nil(R)
can be lifted to a weak idempotent w € wi(R) such that r —w = n for some
n € Nil(R), i.e., r = n + w. This shows that r is win-clean. Hence R is
win-clean ring. O

Corollary 2.18. Let R be a commutative ring. Then R is win-clean if and
only if R/N(R) is win-clean ring.

Proof. 1t is obvious. ]

Proposition 2.19. Let I be a nil ideal of a ring R. R is win-clean if and
only if R/I is win-clean.

Proof. (=) It is obvious.

(<) Let r € R. Then7 =r+1 € R/I. We can write 7 = 1 + w where
n € Nil(R/I) and w € wi(R/I) implies that » + I = (n +w) + I. The
nilpotent 7 in R/I lift to a nilpotent n in R. To see this, n* = 0 for k > 1
in R/I implies that n* € I. Since I is nil, (n*)™ = 0. So n*™ = 0 for m > 1.
We know that weak idempotents lift modulo any nil ideal, this allows us to
assume that w is a weak idempotent in R. Moreover, r—n—w € I. It follows
that r — w = n + d where d € I. Since n™ = 0 for some m € N, we have
(n + d)* € I because I is ideal of R. Thus (n + d)™ = 0 for some m € N as
I is nil ideal. So n + d is nilpotent. Therefore, R is win-clean, as desired. [

Corollary 2.20. A ring R is win-clean if and only if R/J(R) is win-clean
and J(R) is nil.
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Proof. Since J(R) is nil, the proof follows from Proposition 2.19. ]

The converse of Proposition 2.14 is not true. Consider example 1.2 in [7]. If
we take a simple domain F' = Zs, then A = Ms(Zs) is a ring of 2 X 2 matrices
over integer modulo 5, and B = Ds(Z5) is a ring of 2 x 2 diagonal matrices

_ 8 Zd%). Define R = B + A[]l.,
where A[[z]] denotes the formal power series ring with an indeterminate x
over a ring R. Then Nil(R) C J(R) = Nil(B) + Al[z]] and R/J(R) = Zs.
But Zs is not win-clean and hence R/J(R) is not win-clean. Therefore, By
Corollary 2.20, R is not win-clean ring.

over integer modulo 5 such that Nil(B)

Remark 2.21. 1t is clear that if x € R a non-zero central nilpotent, then
1 —ar € U(R) for all r € R. Hence z € J(R), i.e, the non-zero central
nilpotents are contained in Jacobson radical, J(R).

Corollary 2.22. Let R be a win-clean ring such that the weak idempotents
are central. Then C(R), the center of R, is a win-clean ring.

Proposition 2.23. The following are equivalent for a ring R:
(1) R is win-clean.
(2) 12 is nilpotent and R/12R is win-clean.
(3) R/J(R) is win-clean and J(R) is nil.

Proof. (1) = (2). If 12 = 0, then we are done. Assume that 12 # 0. As
R is a ring with 1, 1 + 1 = 2 € R is the least non-unit central element of R.
Then there exist a weak idempotent w and a nilpotent n such that 2 = n+w.
Thus (2—n)?= (2—n)! = 22—4n+n?=2'—-32n+24n*> — 8n3 +n. So
n(—n?® + 8n? — 23n + 28) = 12. Hence, 12 is nilpotent. Since R is win-clean,
R/12R is win-clean by Proposition 2.19.

(2) = (1) follows from Proposition 2.19 and (1) <= (3) obtained
immediately from Corollary 2.20. [

Proposition 2.24 ([5]). Let R be a ring, and let I be any nil-ideal of R.
Then R is nil-clean if and only if R/I is nil-clean.

Proposition 2.25. A ring R is nil-clean if and only if R is win-clean and
2e J(R).

Proof. ( = ) Suppose R is nil-clean and r € R. Then r = n + e where
n € Nil(R) and e € Id(R). Thus e € wi(R). So r is win-clean and hence R
is win-clean. Also, 2 = n + e implies that n = 2. Thus 2 is central nilpotent.
This implies that 2 € J(R).
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(<=) Assume R is win-clean. Then J(R) is nil. As 2 € J(R),
2+ J(R) =0+ J(R).

We know that a nilpotent modulo nil ideal lifted to nilpotent in R. So we
have 2 = 0, i.e., char(R/J(R)) = 2. Thus for all r € R we have 2F = 0
and 1 — 2r = 1. So R/J(R) is Boolean. Hence R/J(R) is nil-clean. By
Proposition 2.24, R is nil-clean. [

Proposition 2.26. A ring R is weakly nil-clean if and only if R is win-clean
and 2 € J(R) or 3 € J(R).

Proof. ( = ) Obviously R is win-clean. Assume that 2 ¢ J(R). Then
2 € U(R) and 6" = 0 for some positive integer n as 6 is nilpotent element in
R ([3], Theorem 2). Thus 2"3"™ = 0 implies that 3" = 0. Hence 3 € J(R).
(«<=) Assume that R is win-clean. Then R/J(R) is win-clean and J(R) is
nil by Corollary 2.20. If 2 € J(R), then by Proposition 2.25, R is nil-clean.
So R is weakly nil-clean. Again, if 3 € J(R), then 3+ J(R) =0+ J(R) and
also 2 is invertible in R. we can assume 3 = 0, so that char(R/J(R)) = 3.
So 2 is unit in R/J(R). Moreover, 3r =0, 1 — 37 =1 and 2 — 3r = 2 for all
r € R. Thus R/J(R) = Zs and hence R/J(R) is weakly nil-clean. Therefore,
R is weakly nil-clean. ]

Proposition 2.27. A finite direct product R = [[ R, of rings is win-clean
ring if and only if each R, is win-clean ring.

Proof. 1t is straightforward. ]

Proposition 2.28. Let R be a ring. Then R is win-clean ring if and only if
R = Ry X Ry where Ry is win-clean with 2 € J(Ry) and Ry is 0 or a win-clean
ring with 3 € J(Ry).

Proof. ( = ) Suppose R is win-clean ring. Then 12 is nilpotent element
in R, so that (12)" = 0 for some positive integer n. Then 4"R N 3"R = 0
and 4"R + 3"R = R. Thus R = (R/2*'R) x (R/3"R) by Chinese remainder
theorem. By Proposition 2.27, Ry = R/2*"R and Ry = R/3"R are win-clean
rings. Thus 2 is central nilpotent in R;. So 2 € J(R;). We can assume
Ry # 0. Then 3 is central nilpotent in Ry and hence 3 € J(R;).

(«<=) It is obvious. O

Corollary 2.29. The following are equivalent for a ring R.

(1) R is a win-clean ring with central weak idempotent elements.
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(2) R = Ry x Ry, where Ry is win-clean with weak idempotents are
central and J(Ry) nil such that Ry/J(Ry) is Boolean, and Ry is 0
or RQ/J(RQ) = Z3 with J(RQ) nil.

(3) R is win-clean ring with central weak idempotent elements, J(R) is nil,
and R/J(R) is isomorphic to either a Boolean ring, or to Zs, or to the
direct product of two such rings.

Proof. (1) = (2) Using Proposition 2.28, we can write R = Ry X Ry, where
Ry is win-clean ring with central weak idempotents and 2 € J(R;); and Rs
is 0 or win-clean ring with central weak idempotents and 3 € J(Rz). Thus
char(Ry/J(R1)) = 2 which in turn implies that £ = —Z for all z € Ry/J(Ry).
Hence, Ry/J(R;) is Boolean. Assume R; # 0. As Ry is win-clean and
3 € J(Ry), Ry/J(Rs) is win-clean and char(Ry/J(Rs)) = 3. Also, 2 is unit
in Ry, since 2 ¢ J(Rz). From this, we conclude that

Ry/J(Ry) = {3Rs,1 — 3Ry,2 — 3R»},

so that every element of Ry/J(Rs) is nilpotent or invertible. Therefore,
Ry/J(Ry) = Z3. Furthermore, by Corollary 2.20, J(Ry) and J(Rs) are nil
ideals.

(2) = (3) and (3) = (1) are straightforward. O]

Theorem 2.30. Let R be a reduced commutative ring. The following state-
ments are equivalent.

(1) R =wi(R).

(2) R is isomorphic to either a Boolean ring B or Zs, or B X Zs.

(3) For all z € R, x* = 2°.

(4) R is win-clean.

Proof. For a reduced ring R, (1) <= (3) <= (4). Thus, it remains to
show the equivalence of (1) and (2).

(1) = (2) Suppose R = wi(R). If y € R, y* is an idempotent. If R is
indecomposable, then either y?> = 0 or y?> = 1 for any y € R. This implies
that y = 0 or y?> = 1 for all y € R. Thus, each nonzero element of R is a unit
and hence R is a field. Hence, R is isomorphic to either Zs or Zs.

Next, assume R is not indecomposable. Let R =S x T and s € S, where
S and T are coprime ideals of R, that is, S+ T = R. Then, (s,0) is not a
unit implies that either (s,0) = (0,0), or (s,0)* = (0,0), or (s,0)* = (s,0),
or (s,0)> = (5,0)* and (s,0)* # (1,0). If (5,0) = (0,0) or (s,0)*> = (0,0),
then (s,0) = (0,0) since S is reduced. In this case, S is a field. So, S is
isomorphic to Zy or Zs. If (s,0)* = (s,0), then s € Id(S) U [-Id(S)] and



WIN-CLEAN RINGS 9

hence S = Id(S)U[—1d(S)]. By [1, Theorem 1.13], S is isomorphic to either
a Boolean ring, or Zs, or B X Zs3, where B is a Boolean ring. The same
holds for T'. As a direct product of two Boolean rings is a Boolean ring we
get R is isomorphic to a Boolean ring B, Zs X Zs, Z3 X B, or Z3 X Z3 X B.
If (5,02 = (5,0)* and (s,0)> # (1,0), then let y = (5,0). Now
R = R(y?) ® R(1 — y?) is the decomposition of R.

Assume R(y?) is not a Boolean ring. Then, we show that R(1—1%?) is Boolean.
Suppose ry? is not idempotent. Then, for any s € R, ry* + (=s)(1 — 3?) is
not idempotent. Thus, —(ry? + (—s)(1 —y?)) = —ry? + s(1 — 9?) is idempo-
tent. So, each s(1 — y?) is idempotent. Thus, R(1 — y?) is Boolean and also
2R(1 — y?) = 0. Hence, for each y € R, either 2y*> = 0 or 2(1 — 3?) = 0.

If (0:2) ={y € R| 2y = 0} = R, then char(R) = 2. Hence,
R = wi(R) = Id(R) and so R is Boolean. Now assume (0 : 2) # R. Then, we
claim that (0 : 2) is a maximal ideal of R. Suppose there is a maximal ideal
M such that (0:2) C M. Let y> € M — (0 : 2). Then, y*> € wi(R) = R and
y*> ¢ (0:2). Thus, 2y*> # 0 and hence 2(1—4?) = 0. So, 1 —y* € (0:2) C M,
a contradiction. Hence, (0 : 2) is a maximal ideal. So, R = R/(0:2) is an
indecomposable ring with R = wi(R). By the idea in the first part of this
proof, we have that R is isomorphic to Zy or Zs.

Next we show that 2R N (0 : 2) = 0. Assume that y € 2RN (0 : 2). Then,
y = 25 and 2y? = 0. But then y?> = y* = (25)* = 2(25)%(2s)? = 29> = 0. If
2R = 0, then R is Boolean.

Now assume that 2R # 0. If 2R = R, then (0 : 2) = 0 is a maximal ideal
of R. Thus, R is a field and hence by the first paragraph of this proof, it
is isomorphic to Zz. If 2R # R, then R = 2R @& (0 : 2), where (0 : 2) is a
Boolean ring and 2R = R/(0 : 2) is isomorphic to Zs since 2R = Z or Zg by
the first paragraph of this proof and 2R ¢ (0 : 2). Therefore, R is isomorphic
to either a Boolean ring, or Zs, or B X Zs, or Zs3 X Zs3, or Z3 X Z3 X B, where
B is a Boolean ring.

(2) = (1) It is obvious. ]

Recall that a ring is said to be zero dimensional if every prime ideal is
maximal ideal.

Corollary 2.31. Let R be a commutative ring. The following statements
hold.

(1) A reduced indecomposable ring is win-clean if and only if it is
tsomorphic to either Zo or Zs. In particular, any win-clean domain
s isomorphic to either Zso or Zs.
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(2) A win-clean ring is zero-dimensional.

Proof. (1) Suppose R is a reduced indecomposable win-clean. Then 0 is the
only nilpotent, and its idempotents are only 0 and 1. Let w € wi(R).
Then w? € Id(R) implies that w? = 0 or w? = 1. If w? = 0, then w is
both weak idempotent and nilpotent. So w = 0. If w? = 1, then w is
a unit and weak idempotent. Now we have R = {0,1,w}. Since R is
closed under +, w + 1 € R which implies that w+1=0o0r w+1 =1,
orw+1=w. Ifw+1=0, then w= —1. In this case, R = {0,1,—1}
which is isomorphic to Zz. If w+1=1or w+ 1 = w, then w = 0 as
0 # 1. Hence R = {0,1} which is isomorphic to Zy. The converse is
straightforward.

(2) Let R be a win-clean and P a prime ideal of R. Then R/P is an integral
domain. By (1), the quotient R/P is isomorphic to either Zy or Zs and
hence P is maximal ideal.

]

Proposition 2.32. Let R be a win-clean ring with central weak idempotent
elements and let a € R. If aR contains no non-zero idempotent. Then a is
the sum of two nilpotent elements.

Proof. Suppose aR contains no non-zero idempotent. Choose w € wi(R) and
n € Nil(R) such that a = n + w. Then

aw?® = nw?® + wt = nw? + w? = (nw + 1)w?.

So aw3(nw+1)"t = (nw+ 1)w?*(nw+1)"! in aR. As nw is nilpotent, nw + 1
is unit and w? is idempotent. Thus (nw + 1)w?(nw + 1)~! is idempotent.
Since aR does not contain non-zero idempotent element, we have

(nw + Dw?(nw + 1)1 =0

which implies w? = 0 and hence w is nilpotent. Therefore, a is a sum of two
nilpotent elements. ]

Definition 2.33. Let R be a ring. Then an element z in R is called the
square root of idempotent element if there exists an idempotent element e in
R such that 2% = e.

Proposition 2.34. Let R be a win-clean ring with central weak idempotent
elements in which, 2 € U(R). Then every element of R can be written as a
sum of nilpotent and a square root of idempotent element.
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Proof. Let a € R. Then a = n+ w for some n € Nil(R) and w € wi(R). Let
v =2w?—1. Then v? = (2w?—1)? = 4w? — 4w? + 1=4w? — 4w?+1 = 1. Thus
vt = (2w? — 1)(2w?* — 1)1 = 1. Now v = 2w? — 1 implies w? = (v +1)/2
and [(v+1)/2)> = (v+1)/2. Therefore, w is a square root of idempotent. [J

Next, we see that a win-clean ring is a subclass of clean rings.
Theorem 2.35. Fvery win-clean ring is clean.

Proof. Let R be a win-clean ring and a € R. Then a = n + w for some
nilpotent n and weak idempotent w. So a = n+w = (n+w—14+w?)+(1—w?).
By Theorem 2.6, w—1+w? is unit and 1 —w? € Id(R). To see n+w — 1+ w?
is unit. Let u = w — 1+ w?. Then n +w — 1+ w? = n + u. Since n and
(u~In) are nilpotents, we have n™ = 0 and (u~'n)™ = 0 for some positive
integer m. Now

(nw) ! =[u(l+ )] = L= = (2P = (5 e ()" !
:[1 o u—ln + (u—l )2 et (_1)m—l(u—1n)m—1]u—1.

and so
(n + u)(n + u)_l :(n + u)[l —un R (_1)m—1(u—1n)m_1]u_1
:n[l — u_ln 4 (_1>m—l(u—1n)m—1]u—1

+ull — uln + (u_ln)2 T (—1)m_1(u_1n)m_l]u_1
—nu~ ! — (nu_1)2 + (nu_1)3 et (_1)m—1(nu—1)m
+1—nu !+ (nu_1)2 — (—1)m_1(nu_1)m_1
=1.

Thus a is clean. Therefore, R is clean. O

In general, the converse of Theorem 2.35 does not hold true. For example,
integer modulo 5, Zs, is clean but not win-clean.

Lemma 2.36. If w is a weak idempotent element in a win-clean ring R and
2 € J(R), then w & w? is nilpotent.

Proof. Since 2 € J(R), we have (wtw?)? = 2(w?*+w?) € J(R). As J(R) is nil,
there exists some positive integer m such that 2" = 0 and also (w+w?)*™ = 0.
Hence, w + w? is nilpotent. O

The following proposition sets a condition for which a clean element
becomes win-clean.
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Proposition 2.37. Let R be a commutative ring, 2 € J(R) and x be clean
in R with clean decomposition x = u+ e. Then x is win-clean if and only if
there exists w € wi(R) N Nil(R) such that 2e — 1 + w is nilpotent.

Proof. ( =) Suppose x is win-clean. Then x = n + f for some n € Nil(R)
and f € wi(R). Nowz =n+f = (n—1+f+f?)+(1—f?). Since 2 € J(R),
f + f? is nilpotent by Lemma 2.36. Then take u = n — 1 + f + f2 and
e=1-—f% So

2e —1+u=2(1—f)—1+Mn—-1+f+f)+f=n+f.

(<=) We can rewrite x = u+easz = (u+2e — 1 +w?) + (1 — e —w?).
Since 1 — e — w? is weak idempotent, z is win-clean. [
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