

# Weak idempotent nil-clean rings

B. Asmare, T. Abebaw and K. Venkateswarlu<sup>\*</sup>

**To cite this article:** B. Asmare, T. Abebaw and K. Venkateswarlu<sup>\*</sup> (15 October 2024): Weak idempotent nil-clean rings, Journal of Algebraic Systems, DOI: 10.22044/JAS.2023.13177.1725

To link to this article: https://doi.org/10.22044/JAS.2023.13177. 1725

Published online: 15 October 2024

## WEAK IDEMPOTENT NIL-CLEAN RINGS

B. ASMARE, T. ABEBAW AND K. VENKATESWARLU\*

ABSTRACT. We introduce the concept of a weak idempotent nil-clean ring as a generalization of a weakly nil-clean ring. We give certain characterizations for weak idempotent nil-clean rings in terms of Jacobson radical and nil-radical. Further, we obtain any weak idempotent nil-clean ring  $R \cong R_1 \times R_2$  where  $R_1$  and  $R_2$  are weak idempotent nil-clean rings such that  $2 \in J(R_1)$  and  $3 \in J(R_2)$ .

# 1. INTRODUCTION

Throughout this paper, R stands for associative ring with unity unless and otherwise stated. We denote the set of all idempotents, nilpotents, units, the Jacobson radical, and the prime radicals (nil-radicals) of a ring R by Id(R), Nil(R), U(R), J(R) and N(R) respectively.

We recall the following definitions from [3]. A ring R is called

- 1. strongly nil-clean if for each  $r \in R$ , there exists a nilpotent n and an idempotent e such that r = n + e and ne = en.
- 2. nil-clean if every element can be expressed as a sum of a nilpotent and an idempotent.
- 3. strongly weakly nil-clean if each element  $r \in R$  can be represented as either r = n + e or r = n - e, ne = en where n is nilpotent and e is idempotent.
- 4. weakly nil-clean ring if every element can be written as either a sum or a difference of a nilpotent and an idempotent.
- 5. clean if every element can be written as a sum of a unit and an idempotent.

The following hold: Strongly nil-clean  $\Rightarrow$  nil-clean  $\Rightarrow$  weakly nil-clean  $\Rightarrow$  clean.

It is observed that every element can be represented as a sum of a certain element and an idempotent element in all the above-said rings. It is quite natural to ask whether the representation can be generalized or not. In any

Published online: 15 October 2024

 $<sup>\</sup>operatorname{MSC}(2020)$ : Primary: 16N40; Secondary: 16N20, 16N99.

Keywords: Weakly nil-clean rings; Weak idempotent nil-clean rings; Clean rings.

Received: 27 May 2023, Accepted: 13 September 2023.

<sup>\*</sup>Corresponding author.

ring R, if  $a^4 = a^2$  then such a is called weak idempotent element. Clearly, every idempotent is weak idempotent but not conversely. For instance, consider the ring of integers modulo 4. Clearly, every element is a weak idempotent element but 2 is not idempotent. In view of these observations, is it possible to replace the idempotent element with a weak idempotent element in the above-said classes of rings? To some extent the answer is affirmative. In this context, we introduce the notion of weak idempotent nil-clean rings which is a subclass of the class of clean rings and a wider class to the class of weakly nil-clean rings.

In this paper, we introduce the notion of weak idempotent nil-clean rings (for short, win-clean rings) and furnish certain examples. Further, we obtain some basic results concerning weak idempotent nil-clean rings. In the next section, we prove R/Nil(R) is a reduced win-clean ring if and only if R is a commutative win-clean ring. Also, we characterize the win-clean ring in Proposition 2.23. The main result of this paper is that every win-clean ring R is isomorphic to a direct product of win-clean rings  $R_1$  and  $R_2$  where  $2 \in J(R_1)$  and  $3 \in J(R_2)$ .

# 2. Main results

**Definition 2.1.** Let R be a ring. An element  $a \in R$  is called weak idempotent nil-clean if a = n + w for some nilpotent n and some weak idempotent w. R is said to be weak idempotent nil-clean if every element of R is weak idempotent nil-clean.

Remark 2.2. We denote the set of all weak idempotent elements by wi(R) and weak idempotent nil-clean ring by win-clean ring.

**Example 2.3.** Let  $R = M_2(\mathbb{Z}_3)$ . Then R is win-clean ring.

**Example 2.4.** Let  $R = \mathbb{Z}_3 \times \mathbb{Z}_3$ . Then R is win-clean ring.

Remark 2.5. If R is a ring and w is a weak idempotent element, then

(1) 
$$w^{2n} = w^2$$
, and  $w^{2n+1} = w^3$ .

(2) 
$$Id(R) \cup -Id(R) \subseteq wi(R)$$
.

We can easily verify that every weakly nil-clean ring is a win-clean ring using remark 2.5 (2) but the converse is not true. For instance,  $\mathbb{Z}_3 \times \mathbb{Z}_3$  is win-clean ring but not weakly nil-clean, since (2, 1) cannot be expressed as a sum or a difference of any nilpotent and any idempotent element in  $\mathbb{Z}_3 \times \mathbb{Z}_3$ .

**Theorem 2.6.** Let R be a ring. If  $w \in R$  is weak idempotent, then

(1)  $w^k$  is a weak idempotent element, i.e,  $w^{2k} = w^{4k}$  where  $k \in \mathbb{N}$ . (2)  $w^2$  and  $1 - w^2$  are idempotent elements. (3)  $2w^2 - 1$  and  $w - 1 + w^2$  are units. (4)  $w^n - w^{n+2}$  is nilpotent for every  $n \in \mathbb{N}$ . (5)  $(1 - w^2)w^2 = 0$ (6) w is clean.

*Proof.* It is straightforward.

**Definition 2.7.** Let R be a ring and I be an ideal of R. Then the weak idempotents can be lifted modulo I if there exists  $w \in wi(R)$  for a given  $a \in R$  with  $a^4 - a^2 \in I$  such that  $w - a \in I$ .

**Proposition 2.8.** Let I be a nil ideal of a ring R. If  $\bar{w}$  is a weak idempotent element in R/I, then  $\bar{w}$  can be lifted to a weak idempotent in R.

Proof. Let  $\bar{w} \in R/I$  be a weak idempotent and w be any pre-image for  $\bar{w}$ . Then  $\bar{w}^2 = \bar{w}^4$  implies that  $w^2 - w^4 \in I$  or  $w^2 \equiv w^4 (modI)$  where  $w^2$  and  $w^4$  are pre-images of  $\bar{w}^2$  and  $\bar{w}^4$ , in R/I respectively. Let  $z = 1 - w^2$ . Then (a)  $w^2z = zw^2$  and (b)  $w^2 + z \equiv 1 (modI)$ .

Now  $w^2 z = w^2 - w^4 \in I$ . Then  $0 = (w^2 z)^k = w^{2k} z^k$  for some positive integer k. Also,  $w^{2k}$  is a pre-image of  $\overline{w}$ , since  $w^{2k} \equiv w^2 (modI)$ . Conditions (a) and (b) are preserved when w and z are replaced by  $w^{2k}$  and  $z^k$ . Moreover, condition (c)  $w^2 z = zw^2 = 0$  is also preserved.

From condition (b), we have  $x = 1 - w^2 - z \in I$ . Then  $(1 - w^2 - z)^m = 0$ for some positive integer m. Thus  $1 = 1 - x^m = (1 - x)(1 + x + \dots + x^{m-1})$ and it follows that 1 - x has an inverse  $u = 1 + x + \dots + x^{m-1}$ . u commutes with w and z as x commutes with w and z.

Since  $x \in I$ ,  $u \equiv 1 \pmod{I}$ . We can replace w and z with  $uw^2$  and uz, in this case w is again a pre-image for  $\bar{w}$  and also conditions (a), (b), and (c) hold true. Further, it is true that  $(d) w^2 + z = 1$ . By condition (c), we have  $w^2z = 0$ , so it gives that  $w^2 = w^2(w^2 + z) = w^4 + w^2z = w^4$ . Therefore,  $\bar{w}$  lifted to the weak idempotent w in R.

**Proposition 2.9.** The homomorphic image of any win-clean ring is winclean.

*Proof.* It is straightforward.

Remark 2.10. The converse of Theorem 2.9 is not true. For instance, consider the canonical epimorphism  $\alpha : \mathbb{Z} \to \mathbb{Z}/(3)$  given by  $\alpha(n) = n + (3)$ . Then  $\mathbb{Z}_3 \cong \mathbb{Z}/(3)$  is a win-clean ring, but  $\alpha^{-1}(\mathbb{Z}/(3)) = \mathbb{Z}$  is not a win-clean ring.

 $\square$ 

 $\square$ 

Let R be a ring and M a left R-module. Consider the idealization of R and M given by  $R(M) = R \oplus M$ . For  $(r, m), (s, t) \in R(M)$ , product and sum defined as follows:

$$(r,m)(s,t) = (rs, rt + sm); (r,m) + (s,t) = (r + s, m + t).$$

Then R(M) is the ring.

**Theorem 2.11.** Let R be a ring and M be a left R-module. Then R is win-clean if and only if R(M) is win-clean.

Proof. Assume that R is win-clean ring and  $(r,m) \in R(M)$  where  $r \in R$ and  $m \in M$ . Then r = n + w for  $n \in Nil(R)$  and  $w \in wi(R)$ . Thus  $n^k = 0$  for  $k \in \mathbb{N}$ . So  $(n,m)^{k+1} = (n^{k+1}, (k+1)n^km) = (0,0)$  which implies that (r,m) = (n+w,m) = (n,m) + (w,0) is win-clean expression of (r,m). Hence, R(M) is win-clean. Conversely,  $R \cong R(M)/(0 \oplus M)$  is homomorphic image of R(M). So by Theorem 2.9, R is win-clean ring.

**Proposition 2.12.** Let R be a ring. Then weak idempotent elements in J(R) are nilpotents.

Proof. Let  $w \in J(R)$  be a weak idempotent element. Then  $w^2 \in J(R)$  and also  $1 - w^2$  is an idempotent element. Again,  $w^2 \in J(R)$  implies that  $1 - w^2 \in U(R)$ . So  $1 - w^2$  is both idempotent and unit. Thus  $1 - w^2 = 1$ , since 1 is the only unit and idempotent element. This implies that  $w^2 = 0$ . Hence w is nilpotent element.

**Proposition 2.13** ([8]). Let R be a ring and  $a, b \in R$  such that  $ab \neq ba$ . Then

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} + \sum_{k=0}^{n} D_{k} b^{n-k}$$

where  $d_a(x) = ax - xa$  and  $D_k = D_k(b, a) = (a + d_b)^n 1 - a^n$ ,  $D_0(b, a) = 0$ ,  $D_{n+1}(b, a) = d_b a^n + (A + d_b) D_n(b, a)$ .

**Proposition 2.14.** Let R be a win-clean ring, then  $J(R) \subseteq Nil(R)$ .

*Proof.* Let  $a \in J(R)$ . Then a = n + w, where  $n \in Nil(R)$  and  $w \in wi(R)$ . Then  $(a - w)^k = 0$  for some  $k \in \mathbb{N}$ . So  $(w - a)^k \in J(R)$ . Now

$$(w-a)^k = \sum_{k=0}^n \binom{n}{k} w^k a^{n-k} + \sum_{k=0}^n D_k a^{n-k}$$

implies that  $(w-a)^k - [\sum_{k=0}^{n-1} {n \choose k} w^k a^{n-k} + \sum_{k=0}^n D_k a^{n-k}] = w^k \in J(R) \cap wi(R)$ . Since J(R) does not contain units and non-zero idempotents, w must be nilpotent. Now  $a - w, w \in Nil(R)$  which in turn implies that  $a \in Nil(R)$ . Hence  $J(R) \subseteq Nil(R)$ . **Corollary 2.15.** If R is a win-clean ring, then J(R) is nil.

*Remark* 2.16. A reduced win-clean ring is a ring in which all the elements are weak idempotents.

**Proposition 2.17.** Let R be a commutative ring. Then R is win-clean if and only if R/Nil(R) is a reduced win-clean ring.

*Proof.* Assume that R is win-clean ring. Let  $\bar{x} = x + Nil(R) \in R/Nil(R)$  for some  $x \in R$ . Now write

$$\bar{x} = (n+w) + Nil(R) = (n+Nil(R)) + (w+Nil(R)) = w + Nil(R)$$

and  $w + Nil(R) \in wi(R/Nil(R))$ . This implies that  $\bar{x}$  is weak idempotent element in R/Nil(R). Since  $\bar{x}$  is arbitrary, R/Nil(R) is reduced win-clean ring. Conversely, assume that R/Nil(R) is win-clean ring and let  $r \in R$ . Since R/Nil(R) is reduced,  $Nil(R/Nil(R)) = \{0\}$  and r + Nil(R) = w + Nil(R) for some  $w + Nil(R) \in wi(R/Nil(R))$ . Then  $w^4 - w^2 \in Nil(R)$ . By Proposition 2.12, the weak idempotent w + Nil(R)can be lifted to a weak idempotent  $w \in wi(R)$  such that r - w = n for some  $n \in Nil(R)$ , i.e., r = n + w. This shows that r is win-clean. Hence R is win-clean ring.

**Corollary 2.18.** Let R be a commutative ring. Then R is win-clean if and only if R/N(R) is win-clean ring.

*Proof.* It is obvious.

**Proposition 2.19.** Let I be a nil ideal of a ring R. R is win-clean if and only if R/I is win-clean.

*Proof.* ( $\implies$ ) It is obvious.

( $\Leftarrow$ ) Let  $r \in R$ . Then  $\bar{r} = r + I \in R/I$ . We can write  $\bar{r} = \bar{n} + \bar{w}$  where  $\bar{n} \in Nil(R/I)$  and  $\bar{w} \in wi(R/I)$  implies that r + I = (n + w) + I. The nilpotent  $\bar{n}$  in R/I lift to a nilpotent n in R. To see this,  $\bar{n}^k = 0$  for  $k \ge 1$  in R/I implies that  $n^k \in I$ . Since I is nil,  $(n^k)^m = 0$ . So  $n^{km} = 0$  for  $m \ge 1$ . We know that weak idempotents lift modulo any nil ideal, this allows us to assume that w is a weak idempotent in R. Moreover,  $r - n - w \in I$ . It follows that r - w = n + d where  $d \in I$ . Since  $n^m = 0$  for some  $m \in \mathbb{N}$ , we have  $(n + d)^k \in I$  because I is ideal of R. Thus  $(n + d)^{mk} = 0$  for some  $m \in \mathbb{N}$  as I is nil ideal. So n + d is nilpotent. Therefore, R is win-clean, as desired.  $\Box$ 

**Corollary 2.20.** A ring R is win-clean if and only if R/J(R) is win-clean and J(R) is nil.

*Proof.* Since J(R) is nil, the proof follows from Proposition 2.19.

The converse of Proposition 2.14 is not true. Consider example 1.2 in [7]. If we take a simple domain  $F = \mathbb{Z}_5$ , then  $A = M_2(\mathbb{Z}_5)$  is a ring of  $2 \times 2$  matrices over integer modulo 5, and  $B = D_2(\mathbb{Z}_5)$  is a ring of  $2 \times 2$  diagonal matrices over integer modulo 5 such that  $Nil(B) = \begin{pmatrix} 0 & \mathbb{Z}_5 \\ 0 & 0 \end{pmatrix}$ . Define  $R = B + A[[x]]_x$ , where A[[x]] denotes the formal power series ring with an indeterminate xover a ring R. Then  $Nil(R) \subsetneq J(R) = Nil(B) + A[[x]]$  and  $R/J(R) \cong \mathbb{Z}_5$ . But  $\mathbb{Z}_5$  is not win-clean and hence R/J(R) is not win-clean. Therefore, By Corollary 2.20, R is not win-clean ring.

Remark 2.21. It is clear that if  $x \in R$  a non-zero central nilpotent, then  $1 - xr \in U(R)$  for all  $r \in R$ . Hence  $x \in J(R)$ , i.e., the non-zero central nilpotents are contained in Jacobson radical, J(R).

**Corollary 2.22.** Let R be a win-clean ring such that the weak idempotents are central. Then C(R), the center of R, is a win-clean ring.

**Proposition 2.23.** The following are equivalent for a ring R:

- (1) R is win-clean.
- (2) 12 is nilpotent and R/12R is win-clean.
- (3) R/J(R) is win-clean and J(R) is nil.

*Proof.* (1)  $\implies$  (2). If 12 = 0, then we are done. Assume that  $12 \neq 0$ . As R is a ring with 1,  $1 + 1 = 2 \in R$  is the least non-unit central element of R. Then there exist a weak idempotent w and a nilpotent n such that 2 = n + w. Thus  $(2 - n)^2 = (2 - n)^4 \implies 2^2 - 4n + n^2 = 2^4 - 32n + 24n^2 - 8n^3 + n^4$ . So  $n(-n^3 + 8n^2 - 23n + 28) = 12$ . Hence, 12 is nilpotent. Since R is win-clean, R/12R is win-clean by Proposition 2.19.

(2)  $\implies$  (1) follows from Proposition 2.19 and (1)  $\iff$  (3) obtained immediately from Corollary 2.20.

**Proposition 2.24** ([5]). Let R be a ring, and let I be any nil-ideal of R. Then R is nil-clean if and only if R/I is nil-clean.

**Proposition 2.25.** A ring R is nil-clean if and only if R is win-clean and  $2 \in J(R)$ .

*Proof.* ( $\implies$ ) Suppose R is nil-clean and  $r \in R$ . Then r = n + e where  $n \in Nil(R)$  and  $e \in Id(R)$ . Thus  $e \in wi(R)$ . So r is win-clean and hence R is win-clean. Also, 2 = n + e implies that n = 2. Thus 2 is central nilpotent. This implies that  $2 \in J(R)$ .

( $\Leftarrow$ ) Assume R is win-clean. Then J(R) is nil. As  $2 \in J(R)$ ,

$$2 + J(R) = 0 + J(R).$$

We know that a nilpotent modulo nil ideal lifted to nilpotent in R. So we have 2 = 0, i.e., char(R/J(R)) = 2. Thus for all  $r \in R$  we have  $2\bar{r} = \bar{0}$  and  $1 - 2\bar{r} = \bar{1}$ . So R/J(R) is Boolean. Hence R/J(R) is nil-clean. By Proposition 2.24, R is nil-clean.

**Proposition 2.26.** A ring R is weakly nil-clean if and only if R is win-clean and  $2 \in J(R)$  or  $3 \in J(R)$ .

*Proof.* ( $\implies$ ) Obviously R is win-clean. Assume that  $2 \notin J(R)$ . Then  $2 \in U(R)$  and  $6^n = 0$  for some positive integer n as 6 is nilpotent element in R ([3], Theorem 2). Thus  $2^n 3^n = 0$  implies that  $3^n = 0$ . Hence  $3 \in J(R)$ .

( $\Leftarrow$ ) Assume that R is win-clean. Then R/J(R) is win-clean and J(R) is nil by Corollary 2.20. If  $2 \in J(R)$ , then by Proposition 2.25, R is nil-clean. So R is weakly nil-clean. Again, if  $3 \in J(R)$ , then 3 + J(R) = 0 + J(R) and also 2 is invertible in R. we can assume 3 = 0, so that char(R/J(R)) = 3. So  $\overline{2}$  is unit in R/J(R). Moreover,  $3\overline{r} = \overline{0}$ ,  $\overline{1} - 3\overline{r} = \overline{1}$  and  $\overline{2} - 3\overline{r} = \overline{2}$  for all  $r \in R$ . Thus  $R/J(R) \cong \mathbb{Z}_3$  and hence R/J(R) is weakly nil-clean. Therefore, R is weakly nil-clean.

**Proposition 2.27.** A finite direct product  $R = \prod R_{\alpha}$  of rings is win-clean ring if and only if each  $R_{\alpha}$  is win-clean ring.

*Proof.* It is straightforward.

**Proposition 2.28.** Let R be a ring. Then R is win-clean ring if and only if  $R \cong R_1 \times R_2$  where  $R_1$  is win-clean with  $2 \in J(R_1)$  and  $R_2$  is 0 or a win-clean ring with  $3 \in J(R_2)$ .

*Proof.* ( ⇒ ) Suppose *R* is win-clean ring. Then 12 is nilpotent element in *R*, so that  $(12)^n = 0$  for some positive integer *n*. Then  $4^n R \cap 3^n R = 0$ and  $4^n R + 3^n R = R$ . Thus  $R \cong (R/2^{2n}R) \times (R/3^n R)$  by Chinese remainder theorem. By Proposition 2.27,  $R_1 = R/2^{2n}R$  and  $R_2 = R/3^n R$  are win-clean rings. Thus 2 is central nilpotent in  $R_1$ . So  $2 \in J(R_1)$ . We can assume  $R_2 \neq 0$ . Then 3 is central nilpotent in  $R_2$  and hence  $3 \in J(R_2)$ . (⇐) It is obvious.

**Corollary 2.29.** The following are equivalent for a ring R.

(1) R is a win-clean ring with central weak idempotent elements.

- (2)  $R \cong R_1 \times R_2$ , where  $R_1$  is win-clean with weak idempotents are central and  $J(R_1)$  nil such that  $R_1/J(R_1)$  is Boolean, and  $R_2$  is 0 or  $R_2/J(R_2) \cong \mathbb{Z}_3$  with  $J(R_2)$  nil.
- (3) R is win-clean ring with central weak idempotent elements, J(R) is nil, and R/J(R) is isomorphic to either a Boolean ring, or to  $\mathbb{Z}_3$ , or to the direct product of two such rings.

Proof. (1)  $\implies$  (2) Using Proposition 2.28, we can write  $R \cong R_1 \times R_2$ , where  $R_1$  is win-clean ring with central weak idempotents and  $2 \in J(R_1)$ ; and  $R_2$  is 0 or win-clean ring with central weak idempotents and  $3 \in J(R_2)$ . Thus  $char(R_1/J(R_1)) = 2$  which in turn implies that  $\bar{x} = -\bar{x}$  for all  $\bar{x} \in R_1/J(R_1)$ . Hence,  $R_1/J(R_1)$  is Boolean. Assume  $R_2 \neq 0$ . As  $R_2$  is win-clean and  $3 \in J(R_2)$ ,  $R_2/J(R_2)$  is win-clean and  $char(R_2/J(R_2)) = 3$ . Also, 2 is unit in  $R_2$ , since  $2 \notin J(R_2)$ . From this, we conclude that

$$R_2/J(R_2) = \{3R_2, 1 - 3R_2, 2 - 3R_2\},\$$

so that every element of  $R_2/J(R_2)$  is nilpotent or invertible. Therefore,  $R_2/J(R_2) \cong \mathbb{Z}_3$ . Furthermore, by Corollary 2.20,  $J(R_1)$  and  $J(R_2)$  are nil ideals.

(2)  $\implies$  (3) and (3)  $\implies$  (1) are straightforward.

**Theorem 2.30.** Let R be a reduced commutative ring. The following statements are equivalent.

- (1) R = wi(R).
- (2) R is isomorphic to either a Boolean ring B or  $\mathbb{Z}_3$ , or  $B \times \mathbb{Z}_3$ .
- (3) For all  $x \in R$ ,  $x^4 = x^2$ .
- (4) R is win-clean.

*Proof.* For a reduced ring R,  $(1) \iff (3) \iff (4)$ . Thus, it remains to show the equivalence of (1) and (2).

(1)  $\implies$  (2) Suppose R = wi(R). If  $y \in R$ ,  $y^2$  is an idempotent. If R is indecomposable, then either  $y^2 = 0$  or  $y^2 = 1$  for any  $y \in R$ . This implies that y = 0 or  $y^2 = 1$  for all  $y \in R$ . Thus, each nonzero element of R is a unit and hence R is a field. Hence, R is isomorphic to either  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$ .

Next, assume R is not indecomposable. Let  $R = S \times T$  and  $s \in S$ , where S and T are coprime ideals of R, that is, S + T = R. Then, (s, 0) is not a unit implies that either (s, 0) = (0, 0), or  $(s, 0)^2 = (0, 0)$ , or  $(s, 0)^2 = (s, 0)$ , or  $(s, 0)^2 = (s, 0)^4$  and  $(s, 0)^2 \neq (1, 0)$ . If (s, 0) = (0, 0) or  $(s, 0)^2 = (0, 0)$ , then (s, 0) = (0, 0) since S is reduced. In this case, S is a field. So, S is isomorphic to  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$ . If  $(s, 0)^2 = (s, 0)$ , then  $s \in Id(S) \cup [-Id(S)]$  and

hence  $S = Id(S) \cup [-Id(S)]$ . By [4, Theorem 1.13], S is isomorphic to either a Boolean ring, or  $\mathbb{Z}_3$ , or  $B \times \mathbb{Z}_3$ , where B is a Boolean ring. The same holds for T. As a direct product of two Boolean rings is a Boolean ring we get R is isomorphic to a Boolean ring  $B, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_3 \times B$ , or  $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ If  $(s,0)^2 = (s,0)^4$  and  $(s,0)^2 \neq (1,0)$ , then let y = (s,0). Now  $R = R(y^2) \oplus R(1-y^2)$  is the decomposition of R.

Assume  $R(y^2)$  is not a Boolean ring. Then, we show that  $R(1-y^2)$  is Boolean. Suppose  $ry^2$  is not idempotent. Then, for any  $s \in R$ ,  $ry^2 + (-s)(1-y^2)$  is not idempotent. Thus,  $-(ry^2 + (-s)(1-y^2)) = -ry^2 + s(1-y^2)$  is idempotent. So, each  $s(1-y^2)$  is idempotent. Thus,  $R(1-y^2)$  is Boolean and also  $2R(1-y^2) = 0$ . Hence, for each  $y \in R$ , either  $2y^2 = 0$  or  $2(1-y^2) = 0$ .

If  $(0:2) = \{y \in R \mid 2y^2 = 0\} = R$ , then char(R) = 2. Hence, R = wi(R) = Id(R) and so R is Boolean. Now assume  $(0:2) \neq R$ . Then, we claim that (0:2) is a maximal ideal of R. Suppose there is a maximal ideal M such that  $(0:2) \subseteq M$ . Let  $y^2 \in M - (0:2)$ . Then,  $y^2 \in wi(R) = R$  and  $y^2 \notin (0:2)$ . Thus,  $2y^2 \neq 0$  and hence  $2(1-y^2) = 0$ . So,  $1-y^2 \in (0:2) \subseteq M$ , a contradiction. Hence, (0:2) is a maximal ideal. So,  $\overline{R} = R/(0:2)$  is an indecomposable ring with  $\overline{R} = wi(\overline{R})$ . By the idea in the first part of this proof, we have that  $\overline{R}$  is isomorphic to  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$ .

Next we show that  $2R \cap (0:2) = 0$ . Assume that  $y \in 2R \cap (0:2)$ . Then, y = 2s and  $2y^2 = 0$ . But then  $y^2 = y^4 = (2s)^4 = 2(2s)^2(2s)^2 = 2y^2 = 0$ . If 2R = 0, then R is Boolean.

Now assume that  $2R \neq 0$ . If 2R = R, then (0:2) = 0 is a maximal ideal of R. Thus, R is a field and hence by the first paragraph of this proof, it is isomorphic to  $\mathbb{Z}_3$ . If  $2R \neq R$ , then  $R = 2R \oplus (0:2)$ , where (0:2) is a Boolean ring and  $2R \cong R/(0:2)$  is isomorphic to  $\mathbb{Z}_3$  since  $2R \cong \mathbb{Z}_2$  or  $\mathbb{Z}_3$  by the first paragraph of this proof and  $2R \nsubseteq (0:2)$ . Therefore, R is isomorphic to either a Boolean ring, or  $\mathbb{Z}_3$ , or  $B \times \mathbb{Z}_3$ , or  $\mathbb{Z}_3 \times \mathbb{Z}_3$ , or  $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ , where B is a Boolean ring.

(2)  $\implies$  (1) It is obvious.

Recall that a ring is said to be zero dimensional if every prime ideal is maximal ideal.

**Corollary 2.31.** Let R be a commutative ring. The following statements hold.

(1) A reduced indecomposable ring is win-clean if and only if it is isomorphic to either  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$ . In particular, any win-clean domain is isomorphic to either  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$ . (2) A win-clean ring is zero-dimensional.

- Proof. (1) Suppose R is a reduced indecomposable win-clean. Then 0 is the only nilpotent, and its idempotents are only 0 and 1. Let  $w \in wi(R)$ . Then  $w^2 \in Id(R)$  implies that  $w^2 = 0$  or  $w^2 = 1$ . If  $w^2 = 0$ , then w is both weak idempotent and nilpotent. So w = 0. If  $w^2 = 1$ , then w is a unit and weak idempotent. Now we have  $R = \{0, 1, w\}$ . Since R is closed under  $+, w + 1 \in R$  which implies that w + 1 = 0 or w + 1 = 1, or w + 1 = w. If w + 1 = 0, then w = -1. In this case,  $R = \{0, 1, -1\}$  which is isomorphic to  $\mathbb{Z}_3$ . If w + 1 = 1 or w + 1 = w, then w = 0 as  $0 \neq 1$ . Hence  $R = \{0, 1\}$  which is isomorphic to  $\mathbb{Z}_2$ . The converse is straightforward.
  - (2) Let R be a win-clean and P a prime ideal of R. Then R/P is an integral domain. By (1), the quotient R/P is isomorphic to either  $\mathbb{Z}_2$  or  $\mathbb{Z}_3$  and hence P is maximal ideal.

**Proposition 2.32.** Let R be a win-clean ring with central weak idempotent elements and let  $a \in R$ . If aR contains no non-zero idempotent. Then a is the sum of two nilpotent elements.

*Proof.* Suppose aR contains no non-zero idempotent. Choose  $w \in wi(R)$  and  $n \in Nil(R)$  such that a = n + w. Then

$$aw^3 = nw^3 + w^4 = nw^3 + w^2 = (nw+1)w^2.$$

So  $aw^3(nw+1)^{-1} = (nw+1)w^2(nw+1)^{-1}$  in aR. As nw is nilpotent, nw+1 is unit and  $w^2$  is idempotent. Thus  $(nw+1)w^2(nw+1)^{-1}$  is idempotent. Since aR does not contain non-zero idempotent element, we have

$$(nw+1)w^2(nw+1)^{-1} = 0$$

which implies  $w^2 = 0$  and hence w is nilpotent. Therefore, a is a sum of two nilpotent elements.

**Definition 2.33.** Let R be a ring. Then an element x in R is called the square root of idempotent element if there exists an idempotent element e in R such that  $x^2 = e$ .

**Proposition 2.34.** Let R be a win-clean ring with central weak idempotent elements in which,  $2 \in U(R)$ . Then every element of R can be written as a sum of nilpotent and a square root of idempotent element.

 $\square$ 

*Proof.* Let  $a \in R$ . Then a = n + w for some  $n \in Nil(R)$  and  $w \in wi(R)$ . Let  $v = 2w^2 - 1$ . Then  $v^2 = (2w^2 - 1)^2 = 4w^4 - 4w^2 + 1 = 4w^2 - 4w^2 + 1 = 1$ . Thus  $vv^{-1} = (2w^2 - 1)(2w^2 - 1)^{-1} = 1$ . Now  $v = 2w^2 - 1$  implies  $w^2 = (v + 1)/2$  and  $[(v+1)/2]^2 = (v+1)/2$ . Therefore, w is a square root of idempotent. □

Next, we see that a win-clean ring is a subclass of clean rings.

### **Theorem 2.35.** Every win-clean ring is clean.

Proof. Let R be a win-clean ring and  $a \in R$ . Then a = n + w for some nilpotent n and weak idempotent w. So  $a = n + w = (n + w - 1 + w^2) + (1 - w^2)$ . By Theorem 2.6,  $w - 1 + w^2$  is unit and  $1 - w^2 \in Id(R)$ . To see  $n + w - 1 + w^2$  is unit. Let  $u = w - 1 + w^2$ . Then  $n + w - 1 + w^2 = n + u$ . Since n and  $(u^{-1}n)$  are nilpotents, we have  $n^m = 0$  and  $(u^{-1}n)^m = 0$  for some positive integer m. Now

$$(n+u)^{-1} = [u(1+\frac{n}{u})]^{-1} = [1-\frac{n}{u} + (\frac{n}{u})^2 - (\frac{n}{u})^3 + \dots + (-\frac{n}{u})^{m-1}]u^{-1}$$
$$= [1-u^{-1}n + (u^{-1}n)^2 - \dots + (-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1}.$$

and so

$$\begin{aligned} (n+u)(n+u)^{-1} &= (n+u)[1-u^{-1}n+\dots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1} \\ &= n[1-u^{-1}n+\dots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1} \\ &+ u[1-u^{-1}n+(u^{-1}n)^2-\dots+(-1)^{m-1}(u^{-1}n)^{m-1}]u^{-1} \\ &= nu^{-1}-(nu^{-1})^2+(nu^{-1})^3-\dots+(-1)^{m-1}(nu^{-1})^m \\ &+ 1-nu^{-1}+(nu^{-1})^2-\dots+(-1)^{m-1}(nu^{-1})^{m-1} \\ &= 1. \end{aligned}$$

Thus a is clean. Therefore, R is clean.

In general, the converse of Theorem 2.35 does not hold true. For example, integer modulo 5,  $\mathbb{Z}_5$ , is clean but not win-clean.

**Lemma 2.36.** If w is a weak idempotent element in a win-clean ring R and  $2 \in J(R)$ , then  $w \pm w^2$  is nilpotent.

*Proof.* Since  $2 \in J(R)$ , we have  $(w \pm w^2)^2 = 2(w^2 \pm w^3) \in J(R)$ . As J(R) is nil, there exists some positive integer m such that  $2^m = 0$  and also  $(w \pm w^2)^{2m} = 0$ . Hence,  $w \pm w^2$  is nilpotent.

The following proposition sets a condition for which a clean element becomes win-clean.

 $\square$ 

**Proposition 2.37.** Let R be a commutative ring,  $2 \in J(R)$  and x be clean in R with clean decomposition x = u + e. Then x is win-clean if and only if there exists  $w \in wi(R) \cap Nil(R)$  such that 2e - 1 + u is nilpotent.

*Proof.* ( $\implies$ ) Suppose x is win-clean. Then x = n + f for some  $n \in Nil(R)$  and  $f \in wi(R)$ . Now  $x = n + f = (n - 1 + f + f^2) + (1 - f^2)$ . Since  $2 \in J(R)$ ,  $f + f^2$  is nilpotent by Lemma 2.36. Then take  $u = n - 1 + f + f^2$  and  $e = 1 - f^2$ . So

$$2e - 1 + u = 2(1 - f^2) - 1 + (n - 1 + f + f^2) + f^2 = n + f.$$

( $\Leftarrow$ ) We can rewrite x = u + e as  $x = (u + 2e - 1 + w^2) + (1 - e - w^2)$ . Since  $1 - e - w^2$  is weak idempotent, x is win-clean.

#### Acknowledgments

We thank the unknown reviewers for their invaluable suggestions and comments for the improvement of this paper.

#### REFERENCES

- 1. S. Ali, A note on commutative weakly nil clean rings, J. Algebra Appl., 15(10) (2016), Article ID: 1620001.
- 2. D. K. Basnet and J. Bhattacharyya, Weak nil-clean rings, (2015), https://doi.org/10.48550/arXiv.1510.07440.
- S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15(08) (2016), Article ID: 1650148.
- 4. P. V. Danchev and W. W. McGovern, Commutative weakly nil clean unital rings, J. Algebra, 425 (2015), 410–422.
- 5. A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197–211.
- T. Koşan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. pure appl. algebra, 220(2) (2016), 633–646.
- C. I. Lee and S. Y. Park, When nilpotents are contained in Jacobson radicals, J. Korean Math. Soc., 55(5)(2018), 1193–1205.
- 8. W. Wyss, Two non-commutative binomial theorems, (2017), https://doi.org/10.48550/arXiv.1707.03861
- M. I. Zubayda and N. F. Norihan, On weak nil-clean rings, Open Access library journal, 9(e8812) (2022), 2333–9721.

#### **Biadiglign Asmare**

Department of Mathematics, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Email: biadiglign.asmare@aau.edu.et

#### Tilahun Abebaw

Department of Mathematics, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Email: tilahun.abebaw@aau.edu.et

#### Kolluru Venkateswarlu

Department of Computer Science and System Engineering, College of Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India. Email: drkvenkateswarlu@gmail.com