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ON THE NILPOTENT DOT PRODUCT GRAPH OF A COMMUTATIVE
RING

A. ALI∗ AND B. AHMAD

Abstract. Let B be a commutative ring with 1 ̸= 0, 1 ≤ m < ∞ be an integer and
R = B×B×···×B (m times). In this paper, we introduce two types of (undirected)
graphs, total nilpotent dot product graph denoted by TND(R) and nilpotent dot
product graph denoted by ZND(R), in which vertices are from R∗ = R\{(0, 0, ..., 0)}
and ZN (R)

∗ respectively, where ZN (R)
∗
= {w ∈ R∗|wz ∈ N (R), for some z ∈ R∗}.

Two distinct vertices w = (w1, w2, ..., wm) and z = (z1, z2, ..., zm) are said to be
adjacent if and only if w · z ∈ N (B) (where w · z = w1z1 + · · ·+ wmzm, denotes the
normal dot product and N (B) is the set of nilpotent elements of B). We study about
connectedness, diameter and girth of the graphs TND(R) and ZND(R). Finally, we
establish the relationship between TND(R), ZND(R), T D(R) and ZD(R).

1. Introduction
Let R be a commutative ring with a non-zero identity, and let Z(R) and

N (R) be the sets of zero-divisors and nilpotent elements in R, respectively.
If H is any non-empty subset of a ring R, then H∗ = H \{0}. A ring R is said
to be reduced, if it has no non-zero nilpotent elements. In recent times, there
has been a significant effort to explore the structural properties of a ring in
relation to its zero-divisor graph. The concept of the zero-divisor graph for
commutative rings was originally introduced by Anderson and Livingston[6].
The zero-divisor graph, denoted as Γ(R) for a ring R, is defined as a simple
undirected graph with a vertex set Z(R)∗. In this graph, two distinct vertices
are adjacent if their product is zero. Several graph structures have been
defined on rings and studied by various authors, as referenced in the following
works [1, 4, 7, 5, 10, 12, 18, 20, 21, 22, 23, 25]. One can refer [3] for the
entire literature on graphs from rings. The concept of a nilpotent graph
was introduced by Chen[11]. In which, all the elements of a ring R are
considered as vertices. Two distinct vertices w and z are adjacent if and only
if wz ∈ N (R). In the mentioned paper, Chen[11] studied vertex colouring of
a graph. Motivated by the concept of Chen in 2010 Ai-Hua and Qi-Sheng[16]
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introduced the modified definition of a nilpotent graph denoted by ΓN (R).
In which they considered the collection

ZN (R)∗ = {w ∈ R∗|wz ∈ N (R) for some z ∈ R∗}
to be a set of vertices of ΓN (R) and two distinct vertices of ΓN (R) are
adjacent if wz ∈ N (R). They observe that Γ(R) is a subgraph of ΓN (R) and
studied the basic properties of ΓN (R). Further a lot of work has been done
related to the nilpotent graph in [11, 14, 13, 16, 17, 19, 24].

Let B be a commutative ring with 1 ̸= 0, 1 ≤ m ≤ ∞ be an integer,
and let R = B × · · · × B (m times). In 2015, Badawi[9] introduced the
total dot product graph T D(R) and zero-divisor dot product graph ZD(R)
of a ring R in which vertices are taken from R∗ = R \ {(0, 0, ..., 0)} and
Z(R)∗ = Z(R) \ {(0, 0, ..., 0)} respectively. Two distinct vertices w and z
are adjacent if and only if w · z = 0. Motivated by the idea of Badawi
and concept of Ai-Hua and Qi-Sheng[16], we introduce the total nilpotent
dot product graph TND(R) and nilpotent dot product graph ZND(R) with
vertices from R∗ and ZN (R)∗ = ZN (R) \ {(0, 0, ..., 0)} respectively. Two
distinct vertices w and z are adjacent if and only if w · z ∈ N (B). It can
be observed that TND(R) and ZND(R) are extended graphs of T D(R) and
ZD(R), respectively.

Let G be a simple (undirected) graph with vertex set V (G) and edge set
E(G). We say that a graph G is connected, if there exists a path between any
two distinct vertices of a graph G. The length of the shortest path between
two distinct vertices w, z ∈ V (G) is denoted by d(w, z). If there is no path
between w and z, then d(w, z) = ∞. The diameter of a graph G denoted by
diam(G)=sup{d(w, z) where w, z ∈ V (G)}. The girth of a graph G denoted
by gr(G) is defined as the length of the shortest cycle in G ( gr(G) = ∞, if G
contains no cycle). A complete graph is defined as the graph in which every
two distinct vertices are adjacent. Recall that G is a complete bipartite graph
if the vertex set of G can be partitioned into two vertex sets say V1 and V2

such that for every x ∈ V1 is adjacent to every y ∈ V2 and no distinct vertices
in the same set (i.e, either V1 or V2) are adjacent. A complete bipartite graph
in which atmost one vertex has degree greater than one is called a star graph.
For more definitions related to the graph one can see [26].

Let B be a commutative ring with 1 ̸= 0, 1 ≤ m ≤ ∞ be an integer, and
let R = B × · · · × B (m times). In this paper, we prove that TND(R) is a
connected graph with diam(TND(R)) = 2 for all m ≥ 1, provided that B
is a nonreduced ring. Further, we demonstrate that TND(R) is connected
graph and its diam(TND(R)) ≤ 3, for all m ≥ 3. For the graph ZND(R), we
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show that ZND(R) is connected, diam(ZND(R)) ≤ 3 and gr(ZND(R)) ≤ 4
for all m ≥ 1. Moreover we prove that for m ≥ 2, if girth exists, then
gr(TND(R)) = gr(ZND(R)) = 3. Finally, we establish the relationship
between T D(R), ZD(R), TND(R) and ZND(R).

2. Basic properties of TND(R) and ZND(R)

The purpose of this section is to study about connectedness, diameter, and
girth of the graph TND(R) and ZND(R). The following lemma is trivial.
Lemma 2.1. Let B be a commutative ring with 1 ̸= 0 and

R = B × B × · · · × B

(m times), where 1 ≤ m < ∞. If u, v ∈ R such that uv ∈ N (R), then
u · v ∈ N (B).
Remark 2.2. Converse of the Lemma 2.1 need not be true in general. Let
R = Z6 × Z6. Then for a = (1, 3), b = (3, 1) ∈ R∗, a · b = 0 ∈ N (B).
However ab = (3, 3) /∈ N (R).
Theorem 2.3. Let B be a commutative ring with 1 ̸= 0 and

R = B × B × · · · × B

(m times), where 1 ≤ m < ∞. Then ZND(R) is connected and
diam(ZND(R)) ≤ 3. Moreover, if ZND(R) contains a cycle, then

gr(ZND(R)) ≤ 4.
Proof. By [16, Theorem 2.1], ΓN (R) is connected and diam(ΓN (R)) ≤ 3.
From Lemma 2.1, we can say that ΓN (R) is a subgraph of ZND(R)
and therefore diam(ZND(R)) ≤ diam(ΓN (R)). Hence ZND(R) is con-
nected and diam(ZND(R)) ≤ 3. By assumption, ZND(R) contains a cycle.
Suppose that m ≥ 3. For each i ∈ {1, 2, 3, ...,m}, let ei denote the ele-
ment of R whose i-th coordinate equals 1 and j-th coordinate equals 0 for
all j ∈ {1, 2, ...,m} \ {i}. Note e1 − e2 − e3 − e1 is a cycle of length 3 in
ZND(R). Therefore, gr(ZND(R)) = 3 if m ≥ 3. Assume that m = 2. If
B is not reduced, then there exists c ∈ B \ {0} such that c2 = 0. Observe
that (c, 0) − (0, c) − (1, 0) − (c, 0) is a cycle of length 3 in ZND(R). Hence
gr(ZND(R)) = 3. Suppose that B is reduced. Then either B is an integral
domain or B is not an integral domain. If B is an integral domain, then
ZN (R)∗ = V1 ∪ V2, where V1 = {(a, 0)|a ∈ B∗} and V2 = {(0, c)|c ∈ B∗}.
It is easily seen that ZND(R) = ΓN (R) is a complete bipartite graph with
vertex partition ZN (R)∗ = V1 ∪ V2. Since ZND(R) contains a cycle by as-
sumption, it follows that gr(ZND(R)) = 4. Assume that B is a reduced



4 ALI AND AHMAD

ring but not an integral domain. Then there exist r, s ∈ B \ {0} such that
rs = 0. Then r ̸= s and (r, 0)− (s, 0)− (0, r)− (r, 0) is a cycle of length 3 in
ZND(R). Hence, gr(ZND(R)) = 3. Therefore, if ZND(R) contains a cycle,
then gr(ZND(R)) ≤ 4. □
Theorem 2.4. Let B be a commutative ring with 1 ̸= 0 and

R = B × B × · · · × B

(m times), where 2 ≤ m < ∞. Then ZND(R) is a star graph if and only if
m = 2 and B ∼= Z2.

Proof. First, we have to show that m = 2. On contrary suppose that m ≥ 3
and let u = (1, 0, 0, ..., 0), v = (0, 1, 0, ..., 0) and w = (0, 0, 1, ..., 0) in ZN (R)∗.
Then ZND(R) have a cycle, a contradiction. Hence m = 2.
It remains to prove that |B|= 2. On contrary suppose that |B| > 2. Then
there exists 0 ̸= a ∈ B such that u = (1, 0), v = (a, 0), w = (0, a) and
z = (0, 1) are in ZN (R)∗. Clearly u−w−v−z−u forms a cycle in ZND(R),
a contradiction. Hence m = 2 and B ∼= Z2.

Conversely, if m = 2 and B ∼= Z2, then a simple calculation leads to the
desired result. □
Lemma 2.5. Let B be a commutative ring with 1 ̸= 0 and

R = B × B × ...× B,
(m times), where 2 ≤ m < ∞. Then the following hold:

(i) If w − z is a path(edge) of T D(R), then w − z is also a path(edge) of
TND(R), where w, z ∈ R∗.

(ii) If a − b is a path(edge) of ZD(R), then a − b is also a path(edge) of
ZND(R), where a, b ∈ Z(R)∗.

Proof. (i) If w − z is an edge of T D(R), then w · z = 0. This implies that
w · z = 0 ∈ N (B). Therefore, w− z is also an edge of TND(R). Similarly, if
w − z is a path in T D(R), then w − z is also a path in TND(R).
(ii) We can prove it in the similar manner.

□
Remark 2.6. The converse of Lemma 2.5 need not be true in general. Let
R = Z16 × Z16. Then for a = (1, 3), b = (3, 1) ∈ Z(R)∗ (or R∗), we have
a · b = 6 ∈ N (B) but a · b = 6 ̸= 0. Therefore, a− b is an edge in ZND(R)
(or TND(R)) but not in ZD(R) (or T D(R)).

Remark 2.7. Let B be a ring with 1 ̸= 0 and R = B × · · · × B (m times),
where 2 ≤ m < ∞. It is shown in Lemma 2.5 that T D(R) (respectively,
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ZD(R)) is a subgraph of TND(R) (respectively, ZND(R)). Assume that B
is a reduced ring. Let w, z ∈ R∗ be such that w − z is an edge of TND(R).
Then w · z ∈ N (B). Since B a is reduced ring, then N (B) = {0}. Thus,
w − z is an edge of T D(R). Hence, TND(R) is a subgraph of T D(R) and
so, TND(R) = T D(R). Similarly, ZND(R) is a subgraph of ZD(R) and so,
ZND(R) = ZD(R). Thus if B is a reduced ring, then TND(R) = T D(R)
and ZND(R) = ZD(R).

Remark 2.8. Let B be a nonreduced ring with 1 ̸= 0 and R = B × · · · × B
(m times), 1 ≤ m < ∞. Then by definition ZN (R)∗ = R∗. Hence
ZND(R) = TND(R).

Theorem 2.9. Let B be a nonreduced commutative ring with 1 ̸= 0 and
R = B×B×· · ·×B (m times), 1 ≤ m < ∞. Then TND(R) is a connected
graph and diam(TND(R)) = 2.

Proof. Since B is a non-reduced ring, then there exists
n = (c, c, ..., c) ∈ N (R)∗,

where c ∈ N (B)∗. Let a = (a1, a2, ..., am) ∈ R∗. Then
n · a = na1 + na2 + · · ·+ nam ∈ N (B).

Therefore, n is adjacent to all the vertices of TND(R). Hence, we obtain that
TND(R) is connected and diam(TND(R)) ≤ 2. As c ∈ N (B)∗, it follows
that 1 + c ∈ B× and 1 + c ̸= 1. Let x = (1, 0, ..., 0) and y = (1 + c, 0, ..., 0).
Then it is clear that x · y = 1 + c /∈ N (B) and so, x and y are not adjacent
in TND(R). Hence, diam(TND(R)) ≥ 2 and so, diam(TND(R)) = 2. □
Theorem 2.10. Let B be a reduced commutative ring with 1 ̸= 0 which is
not an integral domain and R = B × B. Then

(i) TND(R) is connected and diam(TND(R)) = 3.
(ii) ZND(R) is connected and diam(ZND(R)) = 3.
(iii) gr(TND(R)) = gr(ZND(R)) = 3.

Proof. By hypothesis, B is a reduced ring but not an integral domain. We
know from Remark 2.7 that TND(R)= T D(R) and ZND(R)= ZD(R).
(i) This follows from [9, Theorem 2.3(1)].
(ii) This follows from [9, Theorem 2.3(2)].
(iii) This follows from [9, Theorem 2.3(3)]. □

Theorem 2.11. Let B be a commutative ring with 1 ̸= 0 and
R = B × B × · · · × B
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(m times), where 3 ≤ m < ∞. Then TND(R) is connected and
diam(TND(R)) = 2.

Proof. By [9, Theorem 2.4], T D(R) is connected and diam(T D(R)) = 2.
From Lemma 2.5, T D(R) is a subgraph of TND(R). Therefore, TND(R)
is connected and diam(TND(R)) ≤ diam(T D(R)) = 2. Now, it remains
to demonstrate that diam(TND(R)) = 2. For this, let u, v ∈ R∗ such that
u = (1, 1, 1, 0, ..., 0), v = (1, 0, 0, 0, ..., 0) ∈ R∗. Then u · v /∈ N (B) and hence
d(u, v) > 1. Also, we have d(u, v) ≤ 2. We conclude that d(u, v) = 2 and
hence the result. □

The immidiate consequence of Theorem 2.9, Theorem 2.10(i) and Theorem
2.11 is the following:
Corollary 2.12. Let B be a commutative ring with 1 ̸= 0, which is not an
integral domain and R = B×B×···×B (m times), where 2 ≤ m < ∞.Then
TND(R) is connected and diam(TND(R)) = 2 or 3.
Theorem 2.13. Let B be a reduced commutative ring with 1 ̸= 0 and
R = B × B × B. Then the following statements hold:

(i) If diam(ZND(R)) = 3, then B is an integral domain.
(ii) If diam(ZND(R)) = 2, then B is not an integral domain.

Proof. We know from Theorem 2.3 that diam(ZND(R)) ≤ 3. Let
w = (1, 1, 0) and z = (0, 1, 1). It is clear that w, z ∈ ZN (R)∗ with w ̸= z.
Observe that w · z /∈ N (B). Therefore, d(w, z) ≥ 2 in ZND(R). Hence,
diam(ZND(R)) ≥ 2.
(i) Since B is an integral domain, then by Remark 2.7, ZND(R) = ZD(R).

Hence, we obtain from [9, Theorem 2.5(1)] that diam(ZND(R)) = 3.
(ii) By assumption B is not an integal domain. Then from [9, Theorem

2.5(2)], diam(ZD(R)) = 2. Also, from Remark 2.7, ZND(R) = ZD(R).
Therefore, diam(ZND(R)) = diam(ZD(R)) = 2. Hence the result. □

Using Remark 2.8 and Theorem 2.9, we can prove the following:
Corollary 2.14. Let B be a nonreduced commutative ring with 1 ̸= 0 and
R = B × B × · · · × B (m times), where 1 ≤ m < ∞. Then ZND(R) is
connected and diam(ZND(R)) = 2.

3. Relation between T D(R), ZD(R), TND(R) and ZND(R)

The purpose of this section is to establish the relationship between TND(R),
T D(R), ZND(R) and ZD(R). Additionally, we aim to demonstrate some
corollaries to relate ZND(R) to ΓN (R).
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Theorem 3.1. Let B be a nonreduced commutative ring with 1 ̸= 0 and
R = B × B × · · · × B (m times), where 2 ≤ m < ∞. Then the followings
hold:

(i) T D(R) ̸= TND(R).
(ii) ZD(R) ̸= ZND(R).

Proof. (i) Since B is a nonreduced commutative ring, then there exists
0 ̸= c ∈ N(B). Let w = (c, 0, 0, ..., 0), z = (1, 0, 0, ..., 0) ∈ R∗. Then
w · z = c ∈ N(B) but w · z ̸= 0. Therefore, w− z is adjacent in TND(R) but
not in T D(R). Hence T D(R) ̸= TND(R).
(ii) We can prove similarly. □

Corollary 3.2. Let B be an integral domain and R = B × B. Then the
followings hold:

(i) ΓN (R) = ZND(R).
(ii) TND(R) is disconnected.

Proof. (i) Using Remark 2.7, we have ZD(R) = ZND(R). By [9, Theorem
2.1] Γ(R) = ZD(R). Since R is a reduced ring, we have Γ(R) = ΓN (R).
Therefore, ΓN (R) = ZND(R).
(ii) By Remark 2.7, we have T D(R) = TND(R) and using [9, Theorem 2.1],

we have T D(R) is disconnected. Therefore, TND(R) is disconnected. □

Corollary 3.3. Let B be a reduced ring with 1 ̸= 0 and R = B×B×· · ·×B
(m times), where 2 ≤ m < ∞. Then ZND(R) = ΓN (R) if and only if
R ∼= Z2 × Z2 × Z2 or m = 2 and B is an integral domain.

Proof. Since B is a reduced ring by hypothesis, ZD(R) = ZND(R) by Re-
mark 2.7. Since R is a reduced ring, then it is easy to see that Γ(R) = ΓN (R).
Thus, ZND(R) = ΓN (R) if and only if ZD(R) = Γ(R). Hence, we obtain
from [9, Theorem 2.2], that ZND(R) = ΓN (R) if and only if R ∼= Z2×Z2×Z2

or m = 2 and B is an integral domain. □

Corollary 3.4. Let B be a nonreduced commutative ring with 1 ̸= 0 and
R = B × B × · · · × B (m times), where 2 ≤ m < ∞. Then the following
hold:

(i) ZND(R) = TND(R)
(ii) TND(R) ̸= T D(R).

Proof. (i) It follows from Remark 2.8.
(ii) It follows from Theorem 3.1. □
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We end this section by giving an example of a ring by which we can
distinguish the graph TND(R) with T D(R) and ZND(R) with ZD(R).
Example 3.5. Let B ∼= Z12 and R = B × B. For (1, 3), (3, 1) ∈ R∗ and
(1, 3) · (3, 1) = 6 ̸= 0 ∈ N (B), (1, 3) − (3, 1) is adjacent in TND(R) but
not in T D(R). Hence TND(R) ̸= T D(R). Also (1, 0), (6, 0) ∈ ZN (R) and
(1, 0) · (6, 0) = 6 ∈ N (B) but (1, 0) · (6, 0) ̸= 0. Therefore, (1, 0) − (6, 0) is
adjacent in ZND(R) but not in ZD(R). Thus ZND(R) ̸= ZD(R).
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