- M. R. Ahmadi Zand, An algebraic characterization of Blumberg spaces, Quaest. Math.,
33 (2010), 1–8.
- A. R. Aliabad, N. Tayarzadeh and A. Taherifar, α-Baer rings and some related concepts
via C(X), Quaest. Math., 39(3) (2016), 401–419.
- F. Azarpanah, Essential ideals in C(X), Period. Math. Hungar., 31 (1995), 105–112.
- F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc., 125
(1997), 2149–2154.
- G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra, 11
(1983), 567–580.
- G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an
annihilator ideal?, Comm. Algebra, 43 (2015), 2690–2702.
- G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, Triangular matrix repre
sentations, J. Algebra, 230 (2000), 558–595.
- G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the
fully invariant extending property, Rocky Mountain J. Math., 32(4) (2002), 1299–1319.
- W. Dietrich, On the ideal structure of C(X), Trans. Amer. Math. Soc., 152 (1970), 61–77.
- T. Dube and A. Taherifar, On the lattice of annihilator ideals and its applications,
Comm. Algebra, 49(6) (2021), 2444–2456.
- Z. Gharebaghi, M. Ghirati and A. Taherifar, On the rings of functions which are discon
tinuous on a finite set, Houston J. Math., 44(2) (2018), 721–739.
- M. Ghirati and A. Taherifar, Intersection of essential (resp., free) maximal ideals of
C(X), Topology Appl., 167 (2014), 62–68.
- L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, 1976.
- I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
- T. Y. Lam, A First Course in Non-Commutative Rings, New York, springer, 1991.
- T. Y. Lam, Lecture on Modules and Rings, Springer, New York, 1999.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, New York, 1987.
- K. Samei, On the maximal spectrum of commutative semiprimitive rings, Colloq. Math.,
83(1) (2000), 5–13.
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer.
Math. Soc. Transactions, (1973), 43–60.
- S. A. Steinberg, Lattice-ordered ring and module, New York, Springer, 2010.
- A. Taherifar, A characterization of Baer-ideals, J. Algebr. Syst., 2(1) (2014), 37–51.
- A. Taherifar, Annihilator conditions related to the quasi-Baer condition, Hacet. J. Math.
Stat., 45(1) (2016), 95–105.
- A. Taherifar, Intersections of essential minimal prime ideals, Comment. Math. Univ.
Carol., 55(1) (2014), 121–130.
- A. Taherifar, On the socle of a commutative ring and Zariski topology, Rocky Mountain J. Math., 50(2) (2020), 707–717.