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A SUBCLASS OF BAER IDEALS AND ITS APPLICATIONS

Z. GHARABAGI AND A. TAHERIFAR∗

Abstract. An ideal I of a ring R is called a right strongly Baer ideal if r(I) = r(e),
where e is an idempotent, and there are right semicentral idempotents ei (1 ≤ i ≤ n)
with ReR = Re1R ∩ Re2R ∩ ... ∩ RenR and each ideal ReiR is maximal or equals
R. In this paper, we provide a topological characterization of this class of ideals in
semiprime (resp., semiprimitive) rings. By using these results, we prove that every
ideal of a ring R is a right strongly Baer ideal if and only if R is a semisimple ring.
Next, we give a characterization of right strongly Baer-ideals in 2-by-2 generalized
triangular matrix rings, full and upper triangular matrix rings, and semiprime rings.
For a semiprimitive commutative ring R, it is shown that Soc(R) is a right strongly
Baer ideal if and only if the set of isolated points of Max (R) is dense in it if and
only if Socm(R) is a right strongly Baer ideal. Finally, we characterize strongly Baer
ideals in C(X) (resp., C(X)F ).

1. Introduction
Throughout this paper, all rings are assumed to have an identity element.

In [4] and [3], Azarpanah provides a topological characterization of essential
ideals in the ring of continuous functions, denoted as C(X). It is proven that
an ideal I of C(X) is essential if and only if int

∩
Z[I] = ∅. This motivates

the following question: What kind of ideal I satisfies int
∩

Z[I] being a finite
subset of X? It is observed that this is equivalent to r(I) = r(e) for some
idempotent e of C(X) and the existence of idempotents e1, e2, ..., en such that
e = e1 × e2 × ... × en, where each ideal C(X)ei = ⟨ei⟩ is either maximal or
equals C(X). This motivates the extension of this concept to any associate
ring.

In Section 2, we establish that an ideal I of a semiprime (resp., semiprimi-
tive) ring R is a right strongly Baer ideal if and only if intS V (I) (intM M(I))
is a finite subset of Max (R)∩I(Spec (R)) (resp., Max (R)), where I(Spec (R))
denotes the set of isolated points of the space Spec (R). Furthermore, we
prove that every ideal of a ring R is a right strongly Baer ideal if and only
if R is a semiprime ring and Spec (R) = Max (R) is finite if and only if R is
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2 GHARABAGI AND TAHERIFAR

a semisimple ring if and only if R is semiprime and the set of right strongly
Baer ideals of R, denoted as SB(R), forms a Boolean algebra when partially
ordered by inclusion. We conclude that for any ring R, every ideal of R/N(R)
is right strongly Baer if and only if Max (R) = Spec (R) is finite.

In Section 3, we characterize right strongly Baer ideals in 2-by-2 generalized
triangular matrix rings, full and upper triangular matrix rings. We show that
if J = Mn(I) is a right strongly Baer ideal of Mn(R), then I is a right strongly
Baer ideal of R. By using these results, we obtain some well-known results
about the semisimplicity of 2-by-2 generalized triangular matrix rings, full,
and upper triangular matrix rings.

Section 4 focuses on commutative reduced (resp., semiprimitive) rings. For
a semiprimitive ring R, it is demonstrated that Soc(R) is strongly Baer if
and only if Socmax(R) is strongly Baer if and only if the set of isolated points
of Max (R) is dense in it. We also show that whenever R is a reduced ring,
every intersection of essential minimal prime ideals of R is a strongly Baer
ideal if and only if the set of isolated points of Min (R) is dense in it.

In Section 5, we investigate strongly Baer ideals in C(X) (resp., C(X)F ).
We prove that an ideal I of C(X) (resp., C(X)F ) is strongly Baer if and
only if int

∩
Z[I] (resp., Fr

∩
Z[I]) is a finite subset of X. Furthermore, we

demonstrate that the ideal CK(X) is a strongly Baer ideal if and only if the
set of points of X with compact neighborhoods, denoted as XL, is dense in
it.

For any subset S of R, l(S) and r(S) denote the left and right annihilators
of S in R, respectively. The ring of n-by-n (upper triangular) matrices over
R is denoted by Mn(R) (Tn(R)). An idempotent e of a ring R is called
left semicentral (resp., right semicentral) if ae = eae (resp., ea = eae) for all
a ∈ R. It can be easily checked that an idempotent e of R is left semicentral if
and only if eR is an ideal (resp., 1−e is right semicentral if and only if Re is an
ideal). See [5] and [7] for a more detailed account of semicentral idempotents.
For a left (right) ideal I of a ring R, if l(I) = l(e) (resp., r(I) = r(e)) with
an idempotent e, then e is left (right) semicentral, since l(e) (resp., r(e)) is
an ideal. We use Sl(R) (Sr(R)) to denote the set of left (right) semicentral
idempotents of R. An ideal I of R is a Baer ideal if r(I) = eR for some
idempotent e of R, see [21]. It is well known that every ideal of R is a Baer
ideal if and only if R is a quasi-Baer ring.

For a ∈ R, let supp(a) = P ∈ Spec (R) : a ̸∈ P . Shin [19, Lemms 3.1]
proved that for any R, supp(a) : a ∈ R forms a basis of open sets in the
Zariski topology on Spec (R). We use V (I) (V (a)) to denote the set of all
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P ∈ Spec (R) such that I ⊆ P (a ∈ P ). Note that V (I) = ∩a∈IV (a) and
V (a) = Spec (R) \ supp(a). Max(R) is the set of all maximal ideals of R.
For a ∈ R, let M(a) = M ∈ Max(R) : a ∈ M . It is easy to see that for any
ring R, the set D(a) : a ∈ R (where D(a) = Max(R) \M(a)) forms a basis
of open sets in the Zariski topology on Max(R). We say R is a semiprimitive
ring if J(R) = 0, where J(R) is the intersection of all maximal right ideals
of R. In the sequel, we denote intS V (I) (resp., intM M(I)) as intSpec (R) V (I)
(resp., intMax (R)M(I)).

Recall that for any ring R with identity, the socle of R, denoted as Soc(R),
is the sum of all simple right ideals of R, and it is also the intersection of
all essential right ideals of R, see [17]. Similarly, in [12], Socm(R) is used to
denote the intersection of all essential maximal ideals of a commutative ring
R. We denote the socle of C(X) by CF (X); it is the set of all functions which
vanish everywhere except on a finite number of points of X.

2. Preliminary results and examples
Definition 2.1. An ideal I of a ring R is called a right strongly Baer ideal
if r(I) = r(e), where e is an idempotent, and there are right semisentral
idempotents ei (1 ≤ i ≤ n) with ReR = Re1R ∩Re2R ∩ ... ∩RenR and each
ideal ReiR is maximal or equals R.

Since e1, e2, ..., en ∈ Sr(R), we have
Re1R ∩Re2R ∩ ... ∩RenR = Re1 × e2 × ...× en.

Thus I is a right strongly Baer ideal if r(I) = r(e) , where e is idempotent,
and there are right semisentral idempotents ei (1 ≤ i ≤ n) with

Re = Re1 × e2 × ...× en
and each ideal ReiR is maximal or equals R.

Example 2.2. (1) Trivially every left dense ideal (i.e., the ideal which its
right annihilator is zero) is a right strongly Baer ideal.

(2) If M is a left maximal ideal of R which is not left essential, then MR is
a right strongly Baer ideal. For, if M is not a left essential ideal, then there
is a non-zero left ideal I of R such that I ∩M = 0. As I +M = R, we have
M = Re for some idempotent e of R. We have MR = R or MR = M . If
MR = R, then r(MR) = r(R) = r(1). If M = MR (i.e., M is an ideal of
R), then r(MR) = r(M) = r(e) and ReR = M .

(3) Let R =

(
F F
0 F

)
, where F is a field. Then every non-zero ideal

of R is a right strongly Baer ideal. For, the only non-zero ideals of R are
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I1 =

(
F F
0 0

)
, I2 =

(
0 F
0 F

)
and I3 =

(
0 F
0 0

)
, and we have rR(I1) = 0,

rR(I2) = rR(I3) = I1, where I2 is a maximal ideal generated by idempotent(
0 1
0 1

)
. But we can see that the zero-ideal is not a right strongly Baer

ideal. In this ring, we have I1, I3 are right strongly Baer ideals which are not
essential as right ideals and I2 is not essential as a left ideal. For, consider
J =

(
0 0
0 F

)
. Then J is a right ideal of R and I3 ∩ J = I1 ∩ J = 0. Also,

put K =

(
F 0
0 0

)
. Then K is a left ideal and I2 ∩K = 0.

Lemma 2.3. [6, Lemma 4.2] Let R be a semiprime ring.
(1) For any a ∈ R and any ideal I of R, supp(a) ∩ supp(I) = supp(Ia).
(2) If I and J are two ideals of R, then r(I) ⊆ r(J) if and only if

intS V (I) ⊆ intS V (J)
(3) A ⊆ Spec (R) is a clopen subset if and only if there exists a central

idempotent e ∈ R such that A = V (e).

Similar to the above lemma we have the following result.

Lemma 2.4. Let R be a semiprimitive ring.
(1) For any a ∈ R and any ideal I of R, D(a) ∩D(I) = D(Ia).
(2) If I and J are two ideals of R, then r(I) ⊆ r(J) if and only if

intM M(I) ⊆ intM M(J)

For a subset A of Spec (R) (resp., Max (R)), put OA = {a ∈ R : A ⊆ V (a)}
(resp., {a ∈ R : A ⊆ M(a)}) . Then it is easy to see that OA =

∩
P∈A P

(resp.,
∩

M∈AM) and V (OA) = clSA (resp., M(OA) = clMA), where clSA
(resp., clMA) is the closure of A in the space Spec (R) (resp., Max (R)). It is
easy to see that for A,B ⊆ Spec (R) (resp., Max (R)), OA = OB if and only
if clS A (resp., clM(A)) = clS(B) (resp., clM(B)).

Lemma 2.5. The following statements hold.
(1) A maximal ideal M of a semiprime ring R is generated by a right

semicentral idempotent if and only if M is an isolated point in the
space Spec (R).

(2) A maximal ideal M of a semiprimitive ring R is generated by a right
semicentral idempotent if and only if M is an isolated point in the
space Max (R).
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Proof. (1) We assume M = ReR for some right semicentral idempotent e
of R. Then eR(1 − e) = 0. This implies supp(1 − e) = {M}. Thus {M}
is open in Spec (R). Conversely, the set {M} is open in Spec (R). Thus
Spec (R) \ {M} is closed in Spec (R). Therefore

I =
∩

P∈Spec (R)\{M} P = OSpec (R)\{M}

is a non-zero ideal of R. In fact, whenever OSpec (R)\{M} = 0, then
OSpec (R)\{M} = OSpec (R).

By comments before lemma, this shows Spec (R) \ {M} = Spec (R), which is
a contradiction. By semiprime hypothesis, I ∩M = 0 and by maximality of
M , I +M = R. Thus M = eR for some idempotent e of R. Since M is an
ideal of R, e is a right semicentral idempotent.

(2) This follows from (1). □
Similar to the commutative case we have the following result.

Lemma 2.6. The following statements hold.
(1) An ideal I of a semiprime ring R is an essential right ideal if and only

if intS V (I) = ∅.
(2) An ideal I of a semiprimitive ring R is an essential right ideal if and

only if intM M(I) = ∅.

Proof. (1) First assume I is an essential right ideal and P ∈ intSV (I). Then
there is a non-zero element a ∈ R such that

P ∈ supp(a) = supp(RaR) ⊆ V (I).
This implies

supp(RaR ∩ I) = supp(RaR) ∩ supp(I) = ∅,
i.e., RaR∩I = 0. This is a contradiction. Next, suppose J is a non-zero right
ideal of R such that I ∩ J = 0. Thus V (I) ∪ V (J) = V (I ∩ J) = Spec (R).
This says Spec (R) \ V (J) is a non-empty open set contained in V (I), which
is a contradiction.

(2) The proof is similar to the (1). □
Lemma 2.7. The following statements hold.

(1) An ideal I of a semiprime ring R is a right strongly Baer ideal if and
only if intS V (I) is a finite subset of Max (R) ∩ I(Spec (R)).

(2) An ideal I of a semiprimitive ring R is a right strongly Baer ideal if
and only if intM M(I) is a finite subset of Max (R).
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Proof. (1) Let I be a right strongly Baer ideal of R. Then there exists an
idempotent e ∈ R such that r(I) = r(e) and ReR = Re1R∩Re2R∩...∩RenR,
where each ideal ReiR (1 ≤ i ≤ n) is maximal or each ei = 1. Now let for
each 1 ≤ i ≤ n, Mi = ReiR is maximal. By Lemmas 2.3 and 2.5 we have;

intS V (I) = intS V (ReR) = intS(V (Re1R) ∪ ... ∪ V (RenR)) = {M1, ...,Mn}.

Hence intS V (I) is a finite subset of Max (R) ∩ I(Spec (R)). If each ei = 1
(1 ≤ i ≤ n), then intS V (I) = ∅.
Conversely, suppose that intS V (I) = {P1, ..., Pn} is a finite subset of
Max (R) ∩ I(Spec (R)). Then for each 1 ≤ i ≤ n, the ideal Pi is a maximal
ideal and each Pi is an isolated point of Spec (R). By Lemma 2.5, for each
1 ≤ i ≤ n there is a right semicentral idempotent fi such that Pi = RfiR.
This implies that;

intS V (I) = intS(V (Rf1R) ∪ ... ∪ V (RfnR)) = intS V (Rf1R ∩ ... ∩RfnR).

Now consider e = f1 · f2 · ... · fn. Then by [22, Lemma 2.3], e is a right
semicentral idempotent and we can see that

ReR = Rf1R ∩Rf2R ∩ ... ∩RfnR.

By Lemma 2.3, we have r(I) = r(ReR) = r(e) and each ideal RfiR
(1 ≤ i ≤ n) is maximal. If intS V (I) = ∅, then r(I) = r(1). Therefore I
is a right strongly Baer ideal.

(2) Let I be a right strongly Baer ideal. Then r(I) = r(ReR), where
ReR = Re1R ∩ Re2R ∩ ... ∩ RenR and each ideal ReiR (i = 1, ..., n) is
maximal or each ei = 1(i = 1, ..., n). Now let for each 1 ≤ i ≤ n, ReiR = Mi,
where Mi is a maximal ideal. Then by Lemma 2.4, we have

intM M(I) = intMM(ReR)

= intM(M(Re1R) ∪ ... ∪M(RenR)))

= {M1, ...,Mn}.

Hence intM M(I) is finite. If each ei = 1 (1 ≤ i ≤ n), then intM M(I) = ∅.
Conversely, suppose that intM M(I) = {M1, ...Mn} is a finite subset of
Max (R). Then for each 1 ≤ i ≤ n, the point Mi is an isolated point of
Max (R), so by Lemma 2.5, for each 1 ≤ i ≤ n there is a right semicentral
idempotent ei such that Mi = ReiR. Thus

intM M(I) = intM(M(Re1R) ∪ ... ∪M(RenR))

= intM M(Re1R ∩Re2R ∩ ... ∩RenR).
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Now put e = e1 · ... · en. Then we have ReR = Re1R∩Re2R∩ ...∩RenR and
r(I) = r(ReR), by Lemma 2.4. If intM M(I) = ∅, then r(I) = 0 = r(1). So
we are done. □

Lemma 2.8. A ring R is semiprime if and only if for any two ideals I, J of
R, r(IJ) = r(I ∩ J).

Proof. First, assume R is semiprime and I, J are two ideals of R. We must
prove that r(IJ) = r(I ∩ J). Evidently r(I ∩ J) ⊆ r(IJ). Now suppose
that x ∈ r(IJ) and a ∈ I ∩ J . Then RxR ⊆ r(IJ), RaRaR ⊆ IJ and
we have (RaRxR)2 = RaRxRaRxR ⊆ RaR.RaR.RxR = 0. By hypothesis,
RaRxR = 0. Thus ax = 0, i.e., r(IJ) ⊆ r(I∩J). So we are done. Conversely,
suppose I is an ideal of R and I2 = 0. Then by hypothesis,

r(I) = r(I ∩ I) = r(I2) = R.

This implies I = 0, i.e., R is semiprime. □

Proposition 2.9. Let R be a semiprime ring.
(1) The intersection of two right strongly Baer ideals of R is a right strongly

Baer ideal.
(2) The sum of a right strongly Baer ideal and any other ideal of R is a

right strongly Baer ideal.
(3) Every ideal of R which is an essential right ideal is a right strongly

Baer ideal.
(4) For every right maximal ideal M of R, RM is a right strongly Baer

ideal.

Proof. (1) Let I and J be two right strongly Baer ideals of R. Then there
are two idempotents e, f ∈ R such that r(I) = r(e), r(J) = r(f) and e, f
satisfy in our definition. Then we have r(I) + r(J) = r(e) + r(f) = r(fe).
As e, f ∈ Sr(R), we claim that r(fe) = r(IJ) and hence by lemma 2.8,
r(I ∩ J) = r(fe), where, RefR = ReR ∩ RfR. This says I ∩ J is a right
strongly Baer ideal. To prove our claim, let x ∈ r(fe). Then fex = 0. This
implies ex ∈ r(f) = r(J). Thus Jex = 0 and so eJex = 0, i.e., eJx = 0.
This says Jx ∈ r(e) = r(I). Therefore IJx = 0, i.e., x ∈ r(IJ). Now assume
x ∈ r(IJ). Then IJx = 0. Thus Jx ⊆ r(I) = r(e). Hence eJx = 0. This
shows (JRexR)2 = JRexRJRexR ⊆ JeJxR = 0. By semiprime hypothesis,
JRexR = 0. Thus Jex = 0, i.e., ex ∈ r(J) = r(f). Hence fex = 0. This
says x ∈ r(fe), so r(fe) = r(IJ).
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(2) Let I be a right strongly Baer ideal and J be an ideal in R. Then Lemma
2.7 implies intS V (I) is finite, so we have intS V (I+J) = intSV (I)∩intSV (J)
is finite. Hence by Lemma 2.7, I + J is a right strongly Baer ideal.

(3) This follows from Lemmas 2.6 and 2.7.
(4) If M is essential as the right ideal, then by part (3) we are done.

Otherwise, M = eR, for some idempotent e. We may have RM = R or
RM = M = eR (i.e., e ∈ Sl(R)). When RM = R, it is a right strongly Baer
ideal. For the second case, by semiprime hypothesis, e is a central idempotent
and hence M = Re. Thus r(M) = r(e) and M = ReR. □

Put SB(R) = {I : I is a right strongly Baer ideal of R}. Then by Proposi-
tion 2.9, whenever R is a semiprime ring, SB(R) partially ordered by inclu-
sion is a complete sub-lattice of the lattice of ideals with I ∨ J = I + J and
I ∧ J = I ∩ J .

Let L be a lattice with a least element 0 and a greatest element 1. A
complemented of the element a ∈ L is an element b ∈ L such that a ∧ b = 0
and a ∨ b = 1. If each element in a lattice L has a complement, then L is
said to be complemented. A Boolean algebra is a complemented distributive
lattice, see [20]. A ring R is called semisimple if R is a direct sum of minimal
right ideals. It is well-known that R is semisimple if and only if every right
ideal of R is a direct summand of R.

Theorem 2.10. For any ring R the following statements are equivalent.
(1) Every ideal of R is a right strongly Baer ideal.
(2) Every Baer ideal of R is a right strongly Baer ideal.
(3) The zero ideal is a right strongly Baer ideal.
(4) R is a semiprime ring and Spec (R) = Max (R) is finite.
(5) R is a semisimple ring.
(6) R is a semiprime ring and SB(R) is a Boolean algebra.

Proof. (1)⇒(2) Trivial.
(2)⇒(3) The zero-ideal is a Baer ideal and hence is a right strongly Baer

ideal, by hypothesis.
(3)⇒(4) The zero ideal is right strongly Baer. Thus R = r(0) = r(e),

where ReR = Re1R ∩ Re2R ∩ ... ∩ RenR and each ideal ReiR (1 ≤ i ≤ n)
is maximal or equals R. There is a 1 ≤ j ≤ n such that RejR is maximal.
Thus Re1R ∩Re2R ∩ ... ∩RenR = 0. This equality shows

Spec R = Max (R) = {Re1R,Re2R, ..., RenR}.
Thus N(R) =

∩n
i=1ReiR = 0, i.e., R is semiprime.
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(4)⇒(5) Trivially R is a finite product of fields. Hence R is a semisimple
ring.

(5)⇒(6) The ring R is semisimple, so is a semiprime ring and there are di-
vision rings D1, D2, ..., Dn such that R ∼= Mn1

(D1)×Mn2
(D2)× ...×Mnk

(Dk).
Thus every ideal of R is generated by an idempotent and it is a finite inter-
section of maximal ideals and any of these maximal ideals is generated by an
idempotent. Hence every ideal of R is right strongly Baer. Now let I be an
ideal of R. Then I = eR for some idempotent e of R. Put J = (1 − e)R.
Then J is a right strongly Baer ideal, I ∧ J = 0 and I ∨ J = R, i.e., J is a
complement of I. It is enough to show SB(R) is a distributive lattice. To see
this, first, we note that since R is semiprime and every ideal of R is a right
annihilator ideal, it is a semiprime ideal. Next, let I, J and K be three ideals
of R. Always we have I ∩J + I ∩K ⊆ I ∩ (J +K). Suppose x ∈ I ∩ (J +K).
Then x2 ∈ I ∩K + I ∩ J . As I ∩ J and I ∩K are two right strongly Baer
ideals, I ∩ J + I ∩ K is a semiprime ideal, so x ∈ I ∩ J + I ∩ K. Thus
I ∩ (J +K) = I ∩ J + I ∩K.

(6)⇒(1) As in a distributive lattice complements are unique, and R is a
right strongly Baer ideal, so the complement of R which is zero ideal is a right
strongly Baer ideal. Thus r(0) = r(e), where ReR = Re1R∩Re2R∩...∩RenR
and each ideal ReiR (1 ≤ i ≤ n) is maximal or equals R. This implies
Re1R ∩Re2R ∩ ...∩RenR = 0 and each ideal ReiR is maximal. At least one
of them is maximal. This equality shows that Spec (R) = Max (R) is finite.
By Lemma 2.7, every ideal of R is a right strongly Baer ideal. □

For the proof of (5)⇒(6) of the above theorem we can give an alterna-
tive proof. As R is semisimple, every ideal of R is a right annihilator ideal.
Also, every ideal of R is generated by an idempotent and it is a finite in-
tersection of maximal ideals and any of these maximal ideals is generated
by an idempotent. Hence every ideal of R is right strongly Baer. Thus
SB(R) = rAnn(id(R)). Now, Theorem 1.1 of [10] implies SB(R) is a Boolean
algebra.

Corollary 2.11. Every ideal of R/N(R) is right strongly Baer if and only if
Spec (R) = Max (R) is finite.

Proof. (1) If every ideal of R/N(R) is strongly Baer, then by Theorem 2.10, we
have Spec (R/N(R)) = Max (R/N(R)) is finite and hence Spec (R) is finite.
Now let P ∈ Spec (R). Then P/N(R) ∈ Max (R/N(R). So we must have
P ∈ Max (R), i.e., Spec (R) = Max (R) is finite. Conversely, the finiteness
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of Spec (R) = Max (R), implies Spec (R/N(R)) = Max (R/N(R)) is finite.
Thus by Theorem 2.10, we are done. □
Lemma 2.12. The following statements hold.

(1) If I is an ideal of R containing J(R), then
intM M(I) = {M : M ∈ intM M(I)},

where I = I/J(R).
(2) If I is an ideal of R containing N(R), then

intS V (I) = {P : P ∈ intS V (I)},
where I = I/N(R).

Proof. (1) It is easy to see that aI ⊆ M if and only if aI ⊆ M . Thus
D(aI) = ∅ if and only if D(aI) = ∅. Hence we have M ∈ intM M(I)
if and only if M ∈ D(a) ⊆ M(I) for some a ∈ R/J(R) if and only if
D(aI) = D(aI) = ∅, and M ∈ D(a) for some a ∈ R. This is equivalent to
the D(aI) = ∅ for some a ∈ R and M ∈ D(a), i.e., M ∈ D(a) ⊆ M(I), for
some a ∈ R. So we are done.

(2) The proof is similar to the proof of (1). □
Lemma 2.12 implies the next result.

Corollary 2.13. Let I be an ideal of a semiprime ring R containing J(R).
Then I is right strongly Baer in R if and only if I is right strongly Baer in
R/J(R).

The above result together with Theorem 2.10 imply the next result.
Corollary 2.14. For a semiprime ring R the following statements are
equivalent.

(1) Every ideal of R/J(R) is right strongly Baer.
(2) Max (R) is finite.
(3) J(R) is a right strongly Baer ideal.

3. Right strongly Baer ideals in extension rings
In this section T will denote a 2-by-2 generalized (or formal) triangu-

lar matrix ring
(
S M
0 R

)
, where R and S are rings and M is an (S,R)-

bimodule. Whenever N is an (S,R)-submodule of M (briefly, SNR ≤S MR),
AnnRN = {r ∈ R : Nr = 0} and AnnSN = {s : sN = 0}, see [16] . In this
section we use the results of Birkenmeier, Kim, and Park in [8] and charac-
terize right strongly Bear-ideals of 2-by-2 generalized triangular matrix rings.
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Also, we characterize right strongly Baer-ideals in full and upper triangular
matrix rings. By using these results, we obtain the well-known results about
T and Mn(R), as a semisimple ring. We use the notation [aij] for the square
matrix whose (i, j)th position is aij.

Theorem 3.1. An ideal J of Mn(R) is a right strongly Baer-ideal if and
only if J = Mn(I), for some right strongly Baer-ideal I of R.

Proof. Let J be a right strongly Baer-ideal of Mn(R). By [15, Theorem
3.1], J = Mn(I), for some ideal I of R. We claim that I is a right strongly
Baer-ideal. By hypothesis, there exists an idempotent E ∈ Mn(R) such that
r(J) = r(E) and
Mn(R)EMn(R) = Mn(R)E1Mn(R)∩Mn(R)E2Mn(R)∩ ...∩Mn(R)EMn(R),
where for each 1 ≤ i ≤ n, Ei ∈ Sr(Mn(R)) and each ideal Mn(R)EiMn(R) is
maximal or it is Mn(R). By [6, Lemma 3.1], rMn(R)(J) = Mn(rR(I)). If for
each 1 ≤ i ≤ n, the ideal Mn(R)EiMn(R) equals Mn(R), then
rMn(R)(J) = rMn(R)(Mn(R)) = 0, and hence rR(I) = 0 = r(R), so we are done.
We assume the next case. Then there is l ∈ N such that for each 1 ≤ i ≤ l,
there is a maximal ideal Hi in R such that Mn(R)EiMn(R) = Mn(Hi). By
[22, Theorem 3.3], in each matrix Ek (1 ≤ k ≤ l), (ek)ij = (ek)ij(ek)11,
where (ek)ij is the (i, j)-position in the matrix Ek. Thus, it is easy to see
that, for each 1 ≤ k ≤ l, Hk = R(ek)11R. We claim that rR(I) = rR(e11)
and Re11R = H1 ∩H2 ∩ ... ∩Hl, where e11 is the (1, 1)-th position in E. Let
x ∈ rR(I). Then A ∈ Mn(rR(I)) = rMn(R)(J) = rMn(R)(E), where a11 = x and
zero elsewhere. This implies EA = 0, and hence e11x = 0, i.e., x ∈ rR(e11).
Now let z ∈ rR(e11). By [22, Theorem 3.3], in matrix E we have eij = eije11,
for each 1 ≤ i, j ≤ n. Then EB = 0, where b11 = z and zero elsewhere.
This shows B ∈ rMn(R)(J) = Mn(rR(I)). Thus z ∈ rR(I). For the proof of
other our claim, we know that C ∈ Mn(R)EMn(R), where c11 = e11 and zero
elsewhere. Thus C ∈ Mn(Hi), for each 1 ≤ i ≤ l. This implies e11 ∈ Hi, for
each 1 ≤ i ≤ l. Thus Re11R ⊆ H1 ∩ H2 ∩ ... ∩ Hl. For the converse of the
inclusion, consider x ∈ H1 ∩H2 ∩ ... ∩Hl. Then

A ∈ Mn(R)E1Mn(R) ∩Mn(R)E2Mn(R) ∩ ... ∩Mn(R)ElMn(R),
where a11 = x and zero elsewhere. Thus A ∈ Mn(R)EMn(R). This implies
x ∈ Re11R, so H1 ∩H2 ∩ ... ∩Hl ⊆ Re11R.

Now suppose that I is a strongly right Baer ideal of R. Then rR(I) = 0 or
rR(I) = rR(e), for some idempotent e of R and there are right semicentral
idempotents e1, e2, ..., el of R such that ReR = Re1R ∩ Re2R ∩ ... ∩ RelR
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and each ideal ReiR is maximal in R. Put J = Mn(I). Then by [6, Lemma
3.1], rMn(R)(J) = Mn(rR(I)). If rR(I) = 0, then rMn(R)(J) = 0 = rMn(R)(1).
Assume I satisfies in the next case. We have

rMn(R)(J) = Mn(rR(I)) = Mn(rR(e)).
We claim that Mn(rR(e)) = rMn(R)(E), and
Mn(R)EMn(R)= Mn(R)E1Mn(R) ∩Mn(R)E2Mn(R) ∩ ... ∩Mn(R)ElMn(R)

= Mn(Re1R) ∩Mn(Re2R) ∩ ... ∩Mn(RelR),

where for each 1 ≤ k ≤ l in matrix Ek, the (i, i)-th position equals ek and
elsewhere is zero and in matrix E for each 1 ≤ i ≤ n, eii = e and eij = 0 for
all j ̸= i (1 ≤ j ≤ n). To see this, first assume A = [aij] ∈ Mn(rR(e)). Then
for each 1 ≤ i, j ≤ n, aij ∈ rR(e). Thus EA = 0, i.e., A ∈ rMn(R)(E). Now
let B = [bij] ∈ rMn(R)(E). Then ebij = 0 for each 1 ≤ i, j ≤ n. This says
bij ∈ rR(e) for each 1 ≤ i, j ≤ n, i.e., B ∈ Mn(rR(e)). Trivially, the equality

Mn(R)E1Mn(R) ∩Mn(R)E2Mn(R) ∩ ... ∩Mn(R)ElMn(R)

= Mn(Re1R) ∩Mn(Re2R) ∩ ... ∩Mn(RelR)

holds. We have E ∈ Mn(Re1R) ∩Mn(Re2R) ∩ ... ∩Mn(RelR). Thus
Mn(R)EMn(R) ⊆ Mn(Re1R) ∩Mn(Re2R) ∩ ... ∩Mn(RelR).

Now let A = [akj] ∈ Mn(Re1R) ∩ Mn(Re2R) ∩ ... ∩ Mn(RelR). Then
akj ∈

∩l
i=1ReiR = ReR, for each 1 ≤ k, j ≤ n. Thus A ∈ Mn(R)EMn(R).

On the other hand, since for each 1 ≤ k ≤ l, ek ∈ Sr(R), hence
Ek ∈ Sr(Mn(R)). So this completes the proof. □

From Theorems 2.10 and 3.1, we conclude the following well-known result.

Corollary 3.2. A ring R is semisimple if and only if Mn(R) is semisimple.

For every I ⊴Tn(R), there are ideals Jik of R, 1 ≤ i, k ≤ n such that

I =


J11 J12 J13 . . . J1n
0 J22 J23 . . . J2n
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . 0 Jnn

 , Jik ⊆ Jik+1

and Ji+1k ⊆ Jik, see Part 1 of Theorem 3.2 in [21]. Trivially, if I is a maximal
ideal of Tn(R), then all Jij = R (1 ≤ i, j ≤ n) except one of Jii which is
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a maximal ideal. Now, we want to give a characterization of strongly Baer
ideals in an upper triangular matrices ring.

Theorem 3.3. If an ideal I of Tn(R) is a right strongly Baer ideal, then
each J1k (1 ≤ k ≤ n) is a right strongly Baer-ideal of R.

Proof. Let I be a right strongly Baer ideal of Tn(R). By comments before of
the theorem,

I =


J11 J12 J13 . . . J1n
0 J22 J23 . . . J2n
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . 0 Jnn

 , Jik ⊆ Jik+1 and Ji+1k ⊆ Jik.

By hypothesis, rTn(R)(I) = 0 or there is an E ∈ Sr(Tn(R)) with
rTn(R)(I) = rTn(R)(E), and there are E1, E2, ..., El ∈ Sr(Tn(R)) such that;

Tn(R)ETn(R) = Tn(R)E1Tn(R) ∩ Tn(R)E2Tn(R) ∩ ... ∩ Tn(R)ElTn(R),(1)

and for each 1 ≤ i ≤ l, the ideal Tn(R)EiTn(R) is maximal. We have,

r
Tn(R)

(I) =


rR(J11) rR(J11) . . . rR(J11)

0 rR(J12) . . . rR(J12)
. . . . . .
. . . . . .
. . . . . .
0 0 . . . rR(J1n)

 .

Thus for each 1 ≤ j ≤ n, rR(J1j) = rR(ejj), where ejj is the (j, j)-position
in the matrix E. Let

Ek =


(ek)11 (ek)12 . . . (ek)1n
0 (ek)22 . . . (ek)2n
. . . . . .
. . . . . .
. . . . . .
0 0 . . . (ek)nn

 ,
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for each 1 ≤ k ≤ l. By [22, Theorem 3.3], for each 1 ≤ k ≤ l, we have,

Tn(R)EkTn(R) =


R(ek)11R R(ek)22R . . . R(ek)nnR

0 R(ek)22R . . . R(ek)nnR
. . . . . .
. . . . . .
. . . . . .
0 0 . . . R(ek)nnR

 .

As for each 1 ≤ k ≤ l, Tn(R)EkTn(R) is a maximal ideal, so all R(ek)ijR
(1 ≤ k ≤ l, 1 ≤ i, j ≤ n and i ≥ j) equal R except one of (ek)ii which is
a maximal ideal. Thus, by the Equality (1), for each 1 ≤ k ≤ l we have
RekkR = R or it is a finite intersection of maximal ideals which any of them
is generated by a right semicentral idempotent of R. So we are done. □

The converse of the above result is not true. If we consider the field R,
then the zero-ideal is a right strongly Baer ideal. However, the zero-ideal in
T2(R) is not a right strongly Baer ideal. Since T2(R) is not semisimple.

We are including the following lemma for completeness since it is used in
the next result. Its proof is easy and get from Proposition 1.17 in [15].

Lemma 3.4. An ideal J =

(
I N
0 L

)
of T =

(
S M
0 R

)
is a maximal ideal if

and only if
(i) N = M .
(ii) I = S and L is a maximal ideal of R

or L = R and I is a maximal ideal of S.

As e ∈ Sr(R) if and only if 1− e ∈ Sl(R), from Lemma 2.3 in [8], we have
the following result.

Lemma 3.5. Let e =

(
e1 k
0 e2

)
be an idempotent element of T =

(
S M
0 R

)
.

Then e ∈ Sr(T ) if and only if
(i) e1 ∈ Sr(S);
(ii) e2 ∈ Sr(R);
(iii) ke2 = k; and
(iv) e1me2 = e1m, for all m ∈ M .
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Lemma 3.6. [8, Lemma 3.1]. Let J =

(
I N
0 L

)
be an ideal of T =

(
S M
0 R

)
.

Then

r(J) =

(
rS(I) rM(I)
0 rR(L) ∩ AnnR(N)

)
and

l(J) =

(
lS(I) ∩ AnnS(N) lM(L)

0 lR(L)

)
.

The next result gives a characterization of right strongly Baer ideals in a
2-by-2 generalized triangular matrix ring.

Theorem 3.7. Let J =

(
I N
0 L

)
be an ideal of T =

(
S M
0 R

)
.

Then J is a right strongly Baer-ideal of T if and only if
(i) I is a right strongly Baer-ideal of S;
(ii) rM(I) = (rS(I))M ; and
(iii) rR(L) ∩ AnnR(N) = rR(a), for some a2 = a ∈ R and there are

a1, a2, ..., an ∈ Sr(R) such that each ideal RaiR is a maximal ideal of R
or equals R, RaR = Ra1R ∩Ra2R ∩ ... ∩RanR and Mai = M

Proof. Let J be a right strongly Baer-ideal of T . Then there exists an idem-
potent e ∈ T such that rT (J) = rT (e) and there are e1, e2, ..., en ∈ Sr(T )
with

TeT = Te1T ∩ Te2T ∩ ... ∩ TenT,
(1)

and each ideal TeiT is maximal or equals T . By Lemma 3.5, e =
(
e11 k
0 e22

)
,

and ei =

(
(ei)11 ki
0 (ei)22

)
, where e11, (ei)11 ∈ Sr(S), e22, (ei)22 ∈ Sr(R) and

k, ki ∈ M , for each 1 ≤ i ≤ n. By Part 4 of Lemma 2.3 in [8], we can see that

rT (e) =

(
rS(e11) rS(e11)M

0 rR(e22)

)
.

Thus by the equality rT (J) = rT (e), we have rS(I) = rS(e11),
rM(I) = rS(I)M and rR(L) ∩ AnnR(N) = rR(e22). On the other hand,
by Lemma 3.5, for each 1 ≤ i ≤ n, ki = ki(ei)22. Thus

Ski = Ski(ei)22 ⊆ M(ei)22.



16 GHARABAGI AND TAHERIFAR

For each 1 ≤ i ≤ n, this implies;

TeiT = Tei =

(
S(ei)11 Ski +M(ei)22

0 R(ei)22

)
=

(
S(ei)11 M(ei)22

0 R(ei)22

)
.

This together with equality (1) shows that Se11S = Se11 =
∩n

i=1 S(ei)11 and
Re22R = Re22 =

∩n
i=1R(ei)22. By Lemma 3.4, the maximality of each TeiT

(1 ≤ i ≤ n) implies each ideal S(ei)11 (resp., R(ei)22) is maximal or equals S
(resp., R) and M(ei)22 = M . So we are done.

Conversely, by hypothesis, there are e ∈ Sr(S) and a2 = a ∈ R such that
rS(I) = rS(e) and rR(L)∩AnnR(N) = rR(a). Also, there are ei ∈ Sr(S) and
aj ∈ Sr(R) (1 ≤ i ≤ n, 1 ≤ j ≤ k) such that SeS = Se = Se1∩Se2∩ ...∩Sen
and Ra = Ra1 ∩ Ra2 ∩ ... ∩ Rak and Maj = M . Since AnnR(N)⊴ R, hence

a ∈ Sr(R). By (ii), rM(I) = (rS(I))M = rS(e)M . Now let E =

(
e 0
0 a

)
.

Then we can see that;

rS(E) =

(
rS(e) rS(e)M
0 rR(a)

)
=

(
rS(I) rM(I)
0 rR(L) ∩ AnnR(N)

)
.

By this equality and Lemma 3.5, rT (J) = rT (E). Now for each 1 ≤ i ≤ n

and 1 ≤ j ≤ k, put Ei =

(
ei 0
0 1

)
and Aj =

(
1 0
0 aj

)
. Then by hypoth-

esis (Maj = M) and Lemma 3.5, for each 1 ≤ i ≤ n and 1 ≤ j ≤ k,
Ei, Aj ∈ Sr(T ) and we have;

TEi =

(
Sei M
0 R

)
, TAj =

(
S Maj
0 Raj

)
.

The Lemma 3.4 shows that TEi and TAj are maximal ideals of T , for each
1 ≤ i ≤ n and 1 ≤ j ≤ k. On the other hand, it is easily seen that
TET = ET = (

∩n
i=1EiT ) ∩ (

∩k
j=1AjT ). This completes the proof. □

From Theorems 2.10 and 3.7 we have the following result.

Corollary 3.8. Let T =

(
S M
0 R

)
, where M is an (S,R)-bimmodule. Then

T is semisimple if and only if
(i) S is semisimple;
(ii) For every ideal I of S, rS(I) = rM(I)S;
(iii) For every ideal L of R and every submodule N of M ,

rR(L) ∩ AnnR(N) = rR(a),
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for some a2 = a ∈ R and there are a1, a2, ..., an ∈ Sr(R) such that each ideal
RaiR is a maximal ideal of R or equals R, RaR = Ra1R ∩ Ra2 ∩ ... ∩ RanR
and Mai = M .

4. Soc(R) (resp., Socmax(R)) as strongly Baer ideal in
commutative rings

In this section all rings are commutative. The intersection of all essential
maximal ideals of a commutative ring R is denoted by Socmax(R), see [12]
and [24]. Now in the next results, we give a point-wise characterization of
Soc(R) (resp., Socmax(R)), whenever R is a commutative semiprimitive ring.

Theorem 4.1. Let R be a commutative semiprimitive ring.
(1) Soc(R) = {a ∈ R : Max (R) \M(a) is a finite subset of I(Max (R))}.
(2) Socmax(R) = {a ∈ R : ∀b ∈ R,M(1 − ab) is a finite subset of

I(Max (R))}.

Proof. (1) See Theorem 2.3 in [18].
(2) Let a ∈ Socmax(R). For each b ∈ R, we have M(1 − ab) ∩ M(a) = ∅.

Thus M(1− ab) ⊆ Max (R) \M(a) ⊆ I(Max (R)), by Lemma 3.2 in [12]. As
Max (R) is compact, hence M(1−ab) is a compact subset of I(Max (R)). Thus
it must be finite. Now, assume M(1 − ab) is a finite subset of I(Max (R))
for each b ∈ R, and M is an essential maximal ideal with a ̸∈ M . Then
M + Ra = R. So there exists c ∈ R such that 1 − ca ∈ M . This shows
M ∈ M(1 − ca). Thus M must be an isolated point of Max (R), which is a
contradiction, by Lemma 2.6. This shows a ∈ Socmax(R). □

Proposition 4.2. Let R be a commutative semiprimitive ring. The following
statements are equivalent.

(1) Soc(R) is an essential ideal.
(2) Soc(R) is a strongly Baer ideal.
(3) The set of isolated points of Max (R) is dense in it.

Proof. The equivalency of (1) and (3) is proved in Proposition 3.3 of [12]. It
is enough to prove the equivalency of (2) and (3).

(2)⇒(3) First we claim that M(Soc(R)) = Max (R) \ I(Max (R)). To see
this, assume M is a maximal ideal containing Soc(R) and {M} is an isolated
point of Max (R). Then by Lemma 2.5, M = Re, for some idempotent e ∈ R.
This implies R(1− e) is a minimal ideal of R and hence

R(1− e) ⊆ Soc(R) ⊆ M ,
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a contradiction. Next, let M ∈ Max (R)\I(Max (R)). Then M is an essential
ideal and hence M containing Soc(R). The hypothesis and Lemma 2.7 imply
intM(Max (R) \ I(Max (R)) is finite. As Max (R) is a T1-space, the finiteness
of intM(Max (R) \ I(Max (R))) implies each x ∈ intM(Max (R) \ I(Max (R)))
is an isolated point, i.e., x ∈ I(Max (R)), a contradiction. Thus we must
have intM(Max (R) \ I(Max (R))) = ∅, i.e., I(Max (R)) is dense in Max (R).

(3)⇒(2) As M(Soc(R)) = Max (R) \ I(Max (R)), the hypothesis implies
that intM M(Soc(R)) = intM(Max (R) \ I(Max (R))) = ∅. So by Lemma 2.7,
Soc(R) is a strongly Baer ideal. □

Proposition 4.3. Let R be a commutative semiprimitive ring. The following
statements are equivalent.

(1) Socmax(R) is an essential ideal.
(2) Socmax(R) is a strongly Baer ideal.
(3) The set of isolated points of Max (R) is dense in it.

Proof. (1)⇒(2) This follows from Proposition 2.9.
(2)⇒(3) We know that Socmax(R) is the intersection of all essential maximal

ideals. By Lemma 2.5, every essential maximal ideal is a non-isolated point
of Max (R). Thus Socmax(R) = OMax (R)\I(Max (R)). The Lemma 2.7 implies
that intM M(Socmax(R)) = intM(Max (R) \ I(Max (R)) is finite. As Max (R)
is a T1-space, the finiteness of intM(Max (R) \ I(Max (R))) implies each
x ∈ intM(Max (R) \ I(Max (R))) is an isolated point, i.e., x ∈ I(Max (R)),
a contradiction. Thus we must have intM(Max (R) \ I(Max (R))) = ∅, i.e.,
I(Max (R)) is dense in Max (R).

(3)⇒(1) As M(Socmax(R)) = Max (R)\I(Max (R)). The hypothesis implies
intM M(Socmax(R)) = ∅. So by Lemma 2.6, Socmax(R) is a essential ideal. □

As a subspace of Spec (R), the space of minimal prime ideals, is denoted
by Min (R). Thus the set {D(a) : a ∈ R} is a base for open sets in this space,
where D(a) = Min (R) \m(a) and m(a) = {P ∈ Min (R) : a ∈ P}. For an
open subset A of Min (R), OA is the intersection of all minimal prime ideals
in A. For a subset H of Min (R), we denote by intMH, the interior of H in
Min (R).

Proposition 4.4. Let R be a commutative reduced ring.
(1) Every intersection of essential minimal prime ideals is an essential ideal.
(2) Every intersection of essential minimal prime ideals is a strongly Baer

ideal.
(3) The set of isolated points of Min (R) is dense in it.



A SUBCLASS OF BAER IDEALS 19

Proof. (1)⇒(2) This follows from Proposition 2.9.
(2)⇒(3) By hypothesis and Lemma 3.2 in [23], OMin (R)\I(Min (R)) is a strongly

Baer ideal. Hence
intMm(OMin (R)\I(Min (R))) = intM(Min (R) \ I(Min (R)))

is a finite subset of Min (R). As Min (R) is a Hausdorff space, every point of
intM(Min (R) \ I(Min (R))) (since it is finite) is an isolated point of Min (R),
which is a contradiction. Thus intM(Min (R) \ I(Min (R))) is an empty set.
This shows I(Min (R)) is dense in Min (R).

(3)⇒(1) See Proposition 3.3 in [23]. □

5. strongly Baer ideals in C(X) and C(X)F

In this section, we investigate strongly Baer ideals in C(X) (resp., C(X)F ).
We denote by C(X) (resp., C(X)F ), the ring of all real-valued continuous
functions on a completely regular Hausdorff space X (resp., the ring of func-
tions which have at most a finite number of non-continuous points). We note
that C(X) (resp., C(X)F ) is a reduced ring. For any f ∈ C(X),

Z(f) = {x ∈ X : f(x) = 0}
is called a zero-set. For f ∈ C(X), the ideal generated by f is denoted by
< f >. A maximal ideal in C(X) is of the for Mp, where p ∈ βX. If p ∈ X,
it is denoted by Mp. For A ⊂ βX, MA (resp., OA) is all f ∈ C(X), with
A ⊆ clβX Z(f) (resp., A ⊆ intβX clβX Z(f)). For more details about C(X)
the reader ie referred to [13]. We need the following well-known results in the
sequel.
Lemma 5.1. For p ∈ X, the following statements hold.

(1) The ideal Mp is a principal ideal of C(X) if and only if p is an isolated
point of X.

(2) If p ∈ I(X), then (χ{p}) = MX\{p} and (χ
X\{p}) = Mp.

We recall that Z[I] = {Z(f) : f ∈ I}.
Lemma 5.2. For ideals I and J of C(X), r(I) ⊆ r(J) if and only if

int
∩
Z[I] ⊆ int

∩
Z[J ].

Below we use the above lemma and give a topological characterization of
strongly Baer ideals in C(X).
Lemma 5.3. An ideal I of C(X) is strongly Baer if and only if int∩Z[I] is
finite (hence is a finite subset of isolated points of X).
Proof. Let I be a strongly Baer ideal. Then r(I) = r(e), where
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< e >=< e1 > ∩ < e2 > ∩...∩ < en >

and each ideal < ei > (1 ≤ i ≤ n) is maximal or each ei = 1. Now, lemma
5.1 implies that there is pi ∈ I(X) such that ei = χ

X\{pi}
for each 1 ≤ i ≤ n.

Thus we have

int∩Z[I] = intZ(e) = int(Z(e1) ∪ ... ∪ Z(en)) = {p1, ..., pn}.

Conversely, suppose that int∩Z[I] = {p1, ..., pn}. Then for each 1 ≤ i ≤ n,
{pi} = Z(χ

X\{pi}
). For each 1 ≤ i ≤ n, put ei = χ

X\{pi}
. Then

int∩Z[I] = intZ(e1 · ... · en).

Therefore r(I) = r(e), where e = e1 · ... · en. It is clear that if int∩Z[I] = ∅,
then r(I) = 0 = r(1). □

Corollary 5.4. Every ideal of C(X) is strongly Baer if and only if X is
finite.

Example 5.5. (1) It is easy to see that for every prime ideal P of C(X), we
have int∩Z[P ] is ∅ or one point, so every prime ideal of C(X) is a strongly
Baer ideal.

(2) For each p ∈ βX, the ideal Op = {f ∈ C(X) : p ∈ intβXclβXZ(f)} is a
strongly Baer ideal. So if we take p ∈ I(X), then Op is a strongly Baer ideal
which is not essential.

(3) Let A be an infinite proper clopen subset of X (e.g., X be an infinite
disconnected space). Then MA is a Bear ideal which is not a strongly Baer
ideal.

As many famous ideals of C(X) are of the form MA or OA (e.g.,
CK(X) = OβX\X , CF (X) = MβX\I(X), the intersection of all free maxi-
mal ideals and the intersection of all essential maximal ideals), so this is
important to know when is OA (MA) a Baer (resp., strongly Baer) ideal?

Lemma 5.6. Let A be a closed subset of βX. Then the following are equiv-
alent.

(1) The ideal OA is a Baer-ideal.
(2) The ideal MA is a Baer-ideal.
(3) int(A ∩X) is a closed subset of X.

Proof. (1)⇔(3) By Lemma 1.6 in [9],
∩

f∈OA clβXZ(f) = A. Hence

int(
∩

f∈OA Z(f)) = int(A ∩X).
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Hence by Proposition 4.5 in [21], OA is a Baer ideal if and only if int(A∩X)
is a closed subset of X.

(2)⇔(3) This is similar to the (1)⇔(3). □
Lemma 5.7. Let A be a closed subset of βX. Then the following are
equivalent.

(1) The ideal OA is a strongly Baer ideal.
(2) The ideal MA is a strongly Baer ideal.
(3) int(A ∩X) is a finite subset of X.

Proof. (1)⇔(3) By Lemma 1.6 in [9],
∩

f∈OA clβXZ(f) = A. Hence
int(

∩
f∈OA Z(f)) = int(A ∩X).

By Lemma 5.3, OA is a strongly Baer ideal if and only if int(A ∩ X) is a
finite subset of X.

(2)⇔(3) This is similar to the (1)⇔(3). □
The Lemma 5.6 and [23, Theorem 3.6] imply the following result.

Proposition 5.8. The following statements are equivalent.
(1) Socm(C(X)) is a Baer-ideal.
(2) clXI(X) is an open subset of X.
(3) CF (X) is a Baer-ideal.

As I(Max (C(X))) = I(βX) = I(X). Proposition 4.3 implies the following
result. Also, this could obtain from Lemma 5.7.

Lemma 5.9. The following statements are equivalent.
(1) Socm(C(X)) is a strongly Baer ideal.
(2) The set of isolated points of X is dense in it.
(3) CF (X) is a strongly Baer ideal.

We denote by XL the set of all points of X with compact nhods. In fact,
we have X is locally compact if and only if X = XL. It also is well known
that XL = intβXX. Recall from [13] that CK(X) is the set of all f ∈ C(X)
with clX(X \ Z(f)) is a compact subset of X. It is clear that CK(X) is an
ideal of C(X). It is also well known that the intersection of all free maximal
ideals of C(X) is MβX\X .

Proposition 5.10. The following statements are equivalent.
(1) CK(X) is strongly Baer.
(2) XL is dense in X.



22 GHARABAGI AND TAHERIFAR

(3) The intersection of all free maximal ideals is a strongly Baer ideal.
Proof. (1)⇔(2) It is well known that CK(X) = OβX\X , by 7.E in [13]. So we
have M(CK(X)) = clMax (C(X))(βX \ X) = clβX(βX \ X). Now Lemma 2.7
implies CK(X) is strongly Baer if and only if intβX clβX(βX \ X)
is a finite subset of I(βX). If we have p ∈ I(βX) = I(X) and
p ∈ clβX(βX \ X), then we must have (βX \ X) ∩ I(X) ̸= ∅, which is a
contradiction. Therefore intβX clβX(βX \ X) = ∅. This is equivalent to
clβX(XL) = βX, i.e., clX(XL) = X.

(2)⇔(3) The proof is similar to (1)⇔(2). □
Let T ′ = {f : f |D ∈ C(D), for some dense subset D of X}. It is well

known that T ′(X) is a regular ring, see [1]. As we recalled in the first of the
section for a topological space X, we have
C(X)F = {f ∈ RX : f has at most a finite number of discontinuous points}.
It is manifest that C(X)F is a sub-ring of T ′(X) containing C(X). For
terminology and notations, the reader is referred to [11].
Lemma 5.11. [11, Lemma 4.11] For ideals I, J of C(X)F (resp., T ′(X)),
r(I) ⊆ r(J) if and only if

∩
Z[I] ⊆

∩
Z[J ].

For any subset A of a space X the boundary of A is denoted by FrA and
equals to the clX(A)∩clX(X\A). In the next result, we give a characterization
of idempotents in C(X)F (resp., T ′(X)).
Lemma 5.12. An element e ∈ C(X)F (resp., T ′(X)) is idempotent if and
only if e = χA for some subset A of X with FrA = Fr(X \A) is finite (resp.,
closed and nowhere dense).
Proof. Suppose that e is an idempotent of C(X)F (resp., T ′(X)). Clearly
e = χA for some subset A of X. It is sufficient to show that FrA = disc(f)
(i.e., the set of points of X which f is discontinuous on them). Let x ∈ disc(f)
such that x ̸∈ FrA. Then there is a neighborhood U of x such that U ⊆ A
or U ⊆ X \ A. Let V be a neighborhood of e(x), clearly e(U) ⊆ V , so f is
continuous at x, a contradiction. This implies that disc(f) ⊆ FrA. Now let
x ∈ FrA \ disc(f). Then every neighborhood U of x has both points of A
and of X \A. It is easy to find a neighborhood V of e(x) such that e(U) ̸⊆ V ,
which is a contradiction. So x ∈ disc(f). □

The next result characterizes the class of Baer ideals and strongly Baer
ideals in C(X)F (resp., T ′(X)).
Proposition 5.13. The following statements hold.
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(1) An ideal I of C(X)F (resp.,T ′
(X)) is a Baer ideal if and only if

Fr
∩
Z(I) is a finite (resp., closed and nowhere dense) subset of X.

(2) An ideal I of C(X)F (resp., T ′
(X)) is a strongly Baer ideal if and only

if
∩

Z[I] is a finite (resp., closed and nowhere dense) subset of X.

Proof. (1) Let I be a Baer-ideal of C(X)F (resp., T ′
(X)). Then there exists

an idempotent e ∈ C(X)F (resp., T ′
(X)) such that r(I) = eR = r(1− e). By

Lemma 5.11,
∩
Z[I] = Z(1− e). This and Lemma 5.12 show that Fr

∩
Z[I]

is a finite (resp., closed nowhere dense) subset of X. Conversely, suppose
Fr

∩
Z[I] is finite. put e = χ

X\
∩

Z[I]
. Then by Lemma 5.12, e is an idempotent

of C(X)F and we have Z(e) =
∩
Z[I]. By Lemma 5.11,

r(I) = r(e) = (1− e)R.
(2) Assume I is a strongly Baer ideal of C(X)F . Then r(I) = r(e1 · ... · en)

and each ideal < ei > (1 ≤ i ≤ n) is maximal or each ei = 1. Let for
each 1 ≤ i ≤ n, the ideal < ei > is maximal, so the ideal < 1 − ei > is
minimal. This and Proposition 4.13 of [11] show there exists αi ∈ X such
that < 1− ei >=< χαi

>. Thus by Lemma 5.11,∩
Z[I] = Z(e1) ∪ Z(e2) ∪ ... ∪ Z(en) = {α1, α2, ..., αn}.

If for each 1 ≤ i ≤ n. ei = 1, then Lemma 5.11 implies
∩

Z[I] = ∅.
Conversely, suppose that

∩
Z[I] = {p1, ..., pn}. Then for each 1 ≤ i ≤ n,

{pi} = Z(χ
X\{pi}

) =. For each 1 ≤ i ≤ n, put ei = χ
X\{pi}

. Proposition 4.13
of [11], shows each ideal < χpi > is minimal and hence each ideal < ei >
is maximal and

∩
Z[I] = Z(e1 · ... · en). Therefore r(I) = Ann(e), where

e = e1 · ... · en. It is clear that if
∩
Z[I] = ∅, then r(I) = r(1).

□
Corollary 5.14. Every ideal of C(X)F (resp., T ′

(X)) is a strongly Baer ideal
if and only if X is finite.
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