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GENUS OF COMMUTING GRAPHS OF CERTAIN FINITE GROUPS

P. BHOWAL AND R. K. NATH*

ABSTRACT. The commuting graph of a finite group G is a graph whose vertex set
is the set of non-central elements of G and two distinct vertices are adjacent if they
commute. In this article, we compute genus of commuting graphs of certain classes
of finite non-abelian groups and characterize those groups such that their commuting
graphs have genus 4,5 and 6.

1. INTRODUCTION

Let G be any finite non-abelian group with center Z(G). The commuting
graph of G, denoted by C(G), is a simple undirected graph whose vertex set
is G\ Z(G), and two vertices g and h are adjacent if gh = hg. The origin
of this graph lies in a work of Brauer and Fowler [6]. A lot of work has been
done on commuting graphs of finite groups over the years.

In 2015, Afkhami, Farrokhi and Khashyarmanesh [I] and in 2016, Das
and Nongsiang [7] have characterized finite non-abelian groups such that
their commuting graphs are planar or toroidal. Recently, Nongsiang [19] has
characterized groups G such that C(G) is double-toroidal or triple-toroidal.
It is worth recalling that “the genus of a graph is the smallest non-negative
integer k such that the graph can be embedded on the surface obtained by
attaching k£ handles to a sphere”. If «(I') denotes the genus of a graph T,
having a subgraph I'y, then it can be easily visualized that

Y1) = ~v(To). (1.1)
Also, [22, Theorem 6-38] yields

Y(K,) = [(n — ?2;” —~ ﬂ . (1.2)

“A graph is called planar, toroidal, double-toroidal and triple-toroidal if its
genus is 0, 1,2 and 3 respectively”.
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2 BHOWAL AND NATH

In this article, we compute v(C(G)) for the classes of finite groups such
that their central quotient, % = Zy X Zg (where ¢ is a prime throughout
this article), Da,, = (f,g : f™ = ¢*> = 1,9fg ! = f~1) (where m > 2) or
S2(2) = (f,g: f° =g =1,9g7'fg = f?). Also, we find conditions such
that v(C(G)) = 4,5 or 6 for the above mentioned groups. Consequently, we

characterize groups of order ¢%, the meta-abelian groups
Moy = (f,9: [" =97 =1,9fg7" = [71),
Doy Qun = (fr9: f*" =1,9° = f",gfg”" = f~') and
Un=(f9: f"=¢"=1,f"g9f=g7")
such that their commuting graphs have genus 4,5 or 6. Spectral aspects of
C(QG) for these classes of groups have been described in [8, 9, 11, 10, 12, 14,

, 21].
2. MAIN RESULTS

To prove the subsequent theorems, the following lemma is useful.

Lemma 2.1. [3, Corollary 2] If I is the disjoint union of K,, and K,, then
V(F) - ’V(Km) + V(Kn)
Theorem 2.2. If G % = 7y X Ly, then v(C(G)) =0 or
Y(C(@) = (a+1) [F((g = Dn —3)((¢ — Dn — 4)]
according as (¢ — 1)n <2 or (¢ — 1)n > 3, where n = |Z(G)].

Proof. Note that [9, Theorem 2.1] yields C(G) = (q + 1)K(4_1),. Therefore,
v(C(G)) =0 when n(q — 1) < 2. If (¢ — 1)n > 3, then by (1.2) and Lemma
2.1, we get
Y(C(G) = (¢+ Dy(Kug-1) = (¢+1) [5((g = Dn = 3)(n(g — 1) = 4)].
[
Corollary 2.3. If |G| = ¢3, then v(C(G)) =0 or
Y(C(G) = (a+1) [35((¢ = 1)a = 3)((a — 1)g — 4)]
according as ¢ =2 or q > 3.

Proof. Evidently |Z(G)| = ¢ and % = Zy X Zy. Therefore, q(¢ — 1) =2 or
q(qg — 1) > 6 according as ¢ = 2 or ¢ > 3. Hence, Theorem 2.2 leads to the

conclusion. ]

Corollary 2.4. For any 4-centralizer finite group G, v(C(G)) =0 or
Y(C(G)) =3 [55(n = 3)(n —4)]



GENUS OF COMMUTING GRAPHS OF FINITE GROUPS 3

according as n < 2 orn > 3, where n = |Z(G)].

Proof. Theorem 2 [1] yields % = Zo X Zy. Hence, Theorem 2.2 leads to the
conclusion. ]

Corollary 2.5. If G is any (q + 2)-centralizer and |G| = ¢ (where m € N),
then v(C(G)) =0 or

Y(C(G) = (q+1) [5((g = )n —=3)((g — L)n — 4)]
according as (¢ — 1)n <2 or (¢ — 1)n > 3, where n = |Z(G)].

Proof. Note that [2, Lemma 2.7] yields % = 7, % Z,. Hence, Theorem 2.2

leads to the conclusion. ]

Corollary 2.6. For any finite 5-centralizer group G, v(C(G)) =0 or
1(C(G)) =4[5 (2n — 4)(2n - 3)]

according as n =1 or n > 2, where n = |Z(G)].

Proof. Note that [1, Theorem 4] yields %G) = Zs X Z3. Hence, Theorem 2.2
leads to the conclusion. ]

Corollary 2.7. If q is the smallest prime divisor of the order of G and
Pr(G) = %‘3{_1, then v(C(G)) =0 or

Y(C(G) = (¢+1) [5((a—1)n—3)((q— 1)n —4)]
according as (¢ — 1)n <2 or (¢ — 1)n > 3, where n = |Z(G)].

Proof. Note that [15, Theorem 3] yields % is isomorphic to Z, x Z,. Hence,
Theorem 2.2 leads to the conclusion. ]

Theorem 2.8. [f% = Doy (m > 2), then

)

0, whenn=1m=2,3 andm=n =2
[13((m = 1)n = 3)((m —1)n —4)],
Y(C(G)) = 1 whenn=1,m >4 andn=2,m >3

[13((m = 1)n = 3)((m — Dn = 4)] +m [35(n = 3)(n — 4)] ,
when n > 3, m > 2,

\

where n = |Z(G)].
Proof. Note that [9, Theorem 2.5] yields C(G) = K(,—1), UmK,. Therefore,
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KiU2K;, whenn=1and m=2
C(G) =< KoU3K;, whenn=1andm=3
KyU2Ky, whenn=m=2

and so v(C(G)) = 0 in these cases. We also have

C(G) = K,, 1 UmK;, when n =1 and m >4
B Kom-1yUmKs, whenn=2andm > 3.

In these cases, (m — 1)n > 3 and so (1.2) and Lemma 2.1 yields

Y(C(G)) = [3z((m = 1)n = 3)((m — 1)n — 4)].

If n >3 and m > 2, then (m — 1)n > 3. Therefore, by (1.2) and Lemma 2.1
we get the required expression for v(C(G)). O]

Corollary 2.9. Let G = Moy, where m > 2 and n > 1. If 2 | m, then

(

0, whenn=1,m =3
[15((m = 1)n = 3)((m — )n — 4)],
Y(C(G)) = < whenn =1m>5orn=2m >3

(

(m—=1)n—-3)((m—1)n— 4)] +m [%(n —4)(n — 3)} ,
when n > 3, m > 3.

ol=

\

If 2 | m, then
(O, whenn=1m =4
[15((m = 2)n = 3)((m —2)n — 4)],
Y(C(G)) = < whenn=1,m > 6

(1—12((m —2)n—3)((m —2)n — 4)_‘ + 5 (1—12(271 —3)(2n — 4)] ,
when n > 2, m > 4.

\

Proof. Note that [9, Proposition 2.8] yields 22w 22 Dy or D,, depending

Z(Man)
on m odd or even respectively also |Z(Msp,)| = n or 2n for m odd or even
respectively. Hence, Theorem 2.8 leads to the conclusion. [
Corollary 2.10. If G = Dy, (m > 3), then
0, when m = 3,4

Y(C(G)) =4 [H(m—4)(m—5)] when2{m and m >5

[ 5(m —5)(m—6)] when2|m and m > 6.

—_

—_
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Proof. Since Mo, = Do, for n = 1, Corollary 2.9 leads to the conclusion. [
Corollary 2.11. Let G = Quy, (m > 2). Then

0 when m = 2
C(G)) =1,
(&) {[%(2771 —5)(2m —6)|, when m > 3.
Proof. We have |Z(Qun)| = 2 and Z%Zlm) = Dy,,. Hence, Theorem 2.8 leads
to the conclusion. ]
Corollary 2.12. For G = Ug,,
0 whenn =1,2
C G — Y Y
(C(E) {3 [L(n—3)(n—4)] + [5(2n —3)(2n — 4)], when n > 3.
Proof. We have Z(Us,) = (a®) and Zﬁg ; = Dg. Hence, Theorem 2.8 leads to
the conclusion. O
Corollary 2.13. If Pr(G 154, %, %, %, g, 176} then
1
’WWGDE{QL2ﬁJ§@n—UBn—2ﬂ+7H2( —3)(n—4)],
1 1
[5(n=1)(dn = 3)] +5[5(n = 3)(n —4)],
1 1
30— D)0 — 4] + 470~ 3)(n — 4)],

[£(n—2)(2n —3)] +3[5(n — )0 — 4],
30— 3)(n — 4)],4[5(n — 220 - 3)]},
where Pr(G) is the commuting probability 0f G andn=1Z(G)| > 3.

12(
Proof. If Pr(G) € 154,%,%,%,2, 176} then [20, pp. 246] and [17, pp. 451]
yields %) >~ Dg, Dg, D1, D14, Zs X Zo or Zs X Zs.

If %G) = Dg, then considering m = 3 in Theorem 2.8, we get v(C(G)) =0
whenever n = 1. For n = 2, v(C(G)) = [§(n—2)(2n —3)] = 0. Forn > 3
we get

v(C(G)) = (%(n —2)(2n — 3)] +3 [%(n —4)(n — 3)}

If -&- = Dy, then considering m = 4 in Theorem 2.8, we get

Z(@)
Y(C(G)) = [5(3n —3)(3n — 4)],
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if n = 1,2. Therefore, v(C(G)) = 0 or 1 according as n =1 or 2. For n > 3,
Y(C(G) = [3(n = D)Bn -] +4[5(n—3)(n - 4)].

If % = Dy, then considering m = 5 in Theorem 2.8, we get

Y(C(G)) = [5(4n = 3)(4n — 4)],
if n = 1,2. Therefore, 7(C(G)) = 0 or 2 according as n = 1 or 2. For n > 3
we get

v(C(@)) = %(471 —3)(n — 1)] +5 [%(n —3)(n — 4)}

If L) = D14, then considering m = 7 in Theorem 2.8, we get

1(C(G)) = [(6n — 3)(6n — 4)].
if n = 1,2. Therefore, v(C(G)) = 1 or 6 according as n = 1 or 2. For n > 3
we get
Y(C(G) = [52n = 1)(3n = 2)| + 7 [35(n = 3)(n — 4)].
If % = 7o X Lo, then considering ¢ = 2 in Theorem 2.2 we get v(C(G)) =0
if n=1,2. For n > 3 we get v(C(G)) =3[ £(n —4)(n —3)].
If Z(G & = = Z3xZs, then considering ¢ = 3 in Theorem 2.2 we get v(C(G)) =

if n=1or 2. If n >3, then we get v(C(G)) =4 [¢(n — 2)(2n — 3)]. ]

Theorem 2.14. If % = 52(2), then

Y(C(G)) = [5(n = 1)(dn = 3)[ +5[1(n — 1)(3n — 4)],
where n = |Z(G)].

Proof. Note that [1 1, Theorem 2.2] yields C(G) = Ky, U 5Ks3,. Therefore by
(1.2) and Lemma 2.1,

V(C(G)) = Y(Kun) + 57(Ks3n)
L an = 3)an — 4)} +5 P(:’m —~3)(3n - 4)1
19 12

1

= |5 —1)(an - 3)} +5 E(n —1)(3n — 4)} |

Corollary 2.15. If G = Sz(2), then v(C(G)) = 0.

Proof. We have |Z(S2(2))| = 1 and so Theorem 2.14 leads to the conclusion.
[
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Theorem 2.16. If G = Vs, = (f.g: f*" =g' = Lg7 ' fg~ = gfg = f7),
then
0, whenn =1,2
Y(C(G)) =< [$(2n—3)(4n —5)|, whenn >3 and2{n
[5(n—2)(4n—T7)],  whenn>4 and2|n.
Proof. In case 2 { n, [10, Example 2.4] yields C(G) = Ky,-1) U 2nK,. For

n=1,22n—-1)=2and so y(C(G)) =0. If n > 3, then (1.2) and Lemma
2.1 yields

= K4(n71) L nK4. If n = 2,
then (1.2) and Lemma 2.1
)(4n —T7)] . O

Theorem 2.17. If G = QDy = (f, g : f2"*1 =2 =1,gfg ' = f2”*2—1>7
where n > 4, then v(C(G)) = [%(gn—l — 52! — 6)]

Proof. Note that [7, Proposition 4.3] yields C(G) = Kon-1_y Ll 2" 2K,
Therefore by (1.2) and Lemma 2.1,

Y(C(G)) = Y(Kayw1p) + 27 2y(Ks) = [3(2"1 = 5)(2"! = 6)].

Theorem 2.18. If G = SDg,, then

0, when n =1
Y(C(G)) = [%(n —2)(4n — 7)} : whenn >3 and 21 n
[5(2n —3)(4n —5)|, whenn >2 and 2| n.

Proof. If n is odd, then [Line 11, Proof of Theorem 4.2(a)] of [13] yields
C(G) = Kypm-1yUnKy. If n =1, then 4(n — 1) = 0. Therefore 7(C(G)) = 0.
If n > 3, then by (1.2) and Lemma 2.1,
YC(G)) = YKo ) + my(Ke) = [Sn — 2)(an — 7).
If n is even, then [Line 11, Proof of Theorem 4.2(b)] of [13] yields
C(G) = Kyop—1yU2nK,. Therefore by (1.2) and Lemma 2.1,

Y(C(G)) = v(Kaan-1)) + 2n7(K>) = [¢(2n — 3)(4n — 5)].
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3. SOME CONSEQUENCES

Nongsiang and Das [7] characterized the groups whose commuting graphs
are planar and toroidal. Nongsiang [19] characterized the groups whose com-
muting graphs are double-toroidal and triple-toroidal. For a given class of
groups we also find the necessary and sufficient condition for the genus of the
graphs to be 4,5 and 6.

Theorem 3.1. If G is a finite group such that % = Zg X Ly, then

)
(b) v(C(G)) # 5.
(c) 7(C(G)) =6 & ¢=2,]Z(G)| = 8.
(d) v(C(G)) > 7 for ¢ =2,|Z(G)| = 9;q¢ = 3,|Z(G)| > 4;
q>51Z2(G) > 1.

Proof. Theorem 2.2 yields v(C(G)) = (g+1) [5((g — 1)n — 3)((g — L)n — 4) ],
where n = | Z(G)|. For ¢ =2, 7(C(G)) = 3 [5(n — 3)(n — 4)] . Therefore, we
get 7(C(G)) < 3 and v(C(G)) = 6 according as n < 7and n = 8. If n > 9,
then

+(n—=3)(n—4) = 5(n(n—9) +2n+ 12) > 2.

Hence, 3 [5(n — 3)(n —4)] > 6. For ¢ = 3,
1520 = 3)(2n = )] = 4[3(n = 2)(2n - 3)].

4
Evidently, 7(C(G)) < 3 whenever n < 2. For n = 3, we have 7(C(G)) = 4. If
n > 4, then

t(n—=2)2n—-3)=3(2n(n —4) +n+6) > 1.
Hence, 4 [¢(2n — 3)(n —2)| > 8.
If ¢ =5, then C(G) = 6Ky, and so y(C(G)) = 0 when n = 1. If n > 2, then
6Ky, has a subgraph 6 Ks. Since v(6Ks) > 7, therefore by (1.1), v(C(G)) > 7.
If ¢ > 7, then C(G)) = (p + 1)Ks, which has a subgraph 8K for n > 1.

Since v(8Kg) > 7, therefore by (1.1), v(C(G)) > 7. [

Corollary 3.2. If |G| = ¢3, then
(a) 7(C(G)) =4 & q=3.
(b) ¥(C(G)) > 7 whenever g > 5.

Corollary 3.2 can be proved by taking the fact that “if G is a non-abelian
group of order ¢, then |Z(G)| = ¢ and % = Z, x Z,". Hence, Theorem 3.1
leads to the conclusion.
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Theorem 3.3. ]f% = Ds,,, where m > 2, then
(a) ¥(C(G)) =4 < m =6,|2(G)| =2;m =11,[Z(G)| = 1.

(b) ¥(C(G)) # 5.
() 7(C(G)) = 6 & m =

Z(G)| = bm = 5[Z(G)] = 4m = 6,]Z(G)] =

Z(G)| = 3m = 8(Z(G)] = 23m = 9,|Z(G)| > 2;m = 10,
1Z(G)] > 2m = 11,|Z(G)] > 2;m = 12,|Z(G)| > 2;m = 13,
1Z(G)] > 2;m > 14,|Z(G)| > 1.

Proof. Note that Theorem 2.8 yields
v(C(@)) = (%((m —1)n—3)((m—1)n — 4)} +m (%(n —3)(n — 4)}

We look at the following scenarios.
Case 1. If m = 2, then we have

1E(O) = [ 1ytn =30 = 9| 42| (= 3)n - 1)

=3 %(n —3)(n— 4)} .

Clearly, 7v(C(G)) < 3 whenever n < 7; and v(C(G)) = 6 when n = 8. If
n > 9, then

L(n=3)(n—4) = L(n*—Tn+12) = L(n(n —9) + 2n + 12) > 2.

Hence, 3 [5(n — 3)(n — 4)] > 6.
Case 2. If m = 3, then we have

H(C(@)) = %(zn _ 4)(2n — 3)} 43 %(n 3 (n— 4)}

é(n —2)(2n — 3)} +3 [é(n —3)(n — 4)} :

For n <4, it is apparent that v(C(G)) < 3. For n > 5,

Ln—2)(2n—3) = L(2n? - Tn+6) = 205 4 02 5 g,

alson —3 > 0 and n — 4 > 0, which gives $;(n — 3)(n — 4) > 0. Therefore

[4(n = 2)(2n = 3)] +3 [5(n —3)(n —4)] > 7.

Case 3. If m = 4, then we have
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Y(C(G)) = [5Bn =3)Bn -4 +4[5(n—3)(n-4)].
For n < 3, it is apparent that (C(G)) < 3. For n = 4, we have v(C(G)) = 6.
If n > 5, then

LBn—=3)3n—4) =130 - Tn+4) =203 4 (9p 1) > 11.

Case 4. If m = 5, then we have

Y(C(G)) = |5(4n = 3)(4n —4)| +5 [55(n — 3)(n — 4)].
For n < 2, it is apparent that v(C(G)) < 3. For n = 3, we have v(C(G)) = 6.
If n > 4, then

n(n—4 n
L(4n — 3)(dn — 4) = 1(6n* — 14n + 6) = 0= 4 10046 > 23

Case 5. If m = 6, then we have
Y(C(G)) = [55(5n = 3)(5n —4)] + 6 [5(n —3)(n —4)] .
It is apparent that v(C(G)) =1 or 4 according as n =1 or 2. If n > 3, then

25n(n—3 n
L(5n —3)(5n — 4) = (2502 — 35n + 12) = 2= 4 d0nkl2 >

Case 6. If m = 7, then we have
Y(C(G)) = [15(6n —3)(6n —4)] + 7 [15(n —4)(n — 3)] .
It is apparent that v(C(G)) = 1 or 6 according as n =1 or 2. If n > 3, then

n’—1mn 6n(n—3)+11n+2
L(6n — 3)(6n — 4) = o=Tnt2 _ Onln3)HlInd2 o 35

Case 7. If m = 8, then we have
Y(C(G)) = [5(Tn = 3)(Tn — )| + 8 [55(n = 3)(n — 4)].
Evidently, v(C(G)) =1 for n = 1. If n > 2, then

L(Tn — 3)(Tn — 4) = 5 (49n> — 49n + 12) = 20ln=2) 4 290412 > 55,

Case 8. If m =9, then we have
Y(C(G)) = [5(8n = 3)(8n —4)| +9[FH(n —4)(n —3)].
Obviously, v(C(G)) = 2 when n = 1. If n > 2, then
L(8n —3)(8n — 4) = L (64n? — 56n + 12) = Mo 4 T2etl2 > g3,
Case 9. If m = 10, then we have
Y(C(G)) = [5(9n—3)(9In —4)] + 10 [L(n — 3)(n —4)] .
Obviously, v(C(G)) = 3 when n = 1. If n > 2, then
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L(9n — 3)(9n — 4) = L(81n2 — 63n + 12) = nli=2) 4 990412 > 35,
Case 10. If m = 11, then we have
Y(C(G)) = |5(10n — 3)(10n — 4)| + 11 [ (n — 4)(n — 3)].
Obviously, v(C(G)) =4 for n = 1. If n > 2, then
L(10n — 3)(10n — 4) = £(100n% — 70n + 12) = 20nn=2) | 1300412 > 68
Case 11. If m = 12, then we have
Y(C(GR)) = [5(11n — 3)(11ln — 4)| + 12 [L(n — 4)(n — 3)].
Obviously, v(C(G)) =5 for n = 1. If n > 2, then
L(11n — 3)(11n — 4) = L(121n? — 77n + 12) = 22 4 160412 > 55,
Case 12. If m = 13, then we have
Y(C(G)) = |15(12n — 3)(12n — 4)| + 13 [F(n — 4)(n — 3)].
Obviously, v(C(G)) = 6 for n = 1. If n > 2, then
L(12n —3)(12n —4) =120 — Tn+ 1 = 12n(n — 2) + 17n + 1 > 35.

Case 13. If m > 14, then we get C(G)) = Kyy-1), U mK,. Therefore
K13 U 14K is a subgraph of K(,_1), UmIk, for every n > 1. We know that
the genus of Kj3 L 14K is equal to 8. Hence by (1.1), v(C(G)) > 8. O

Corollary 3.4. If G = Ms,,,, where m > 2, then
(a) v(C(G)) =4 m=11,n=1m=12,n = 1.
(b) v(C(G)) # 5.

(c)v(C(G) =6 m=4n=4m=5n=3;m="7n=2;m=28,
n=2m=13,n=1m=14,n=1.

(d) v(C(G)) > 7 form =3,n>5m=4,n>5m=>5mn>4,m = 6,
n>3m=7n2>3m=8n2>3m=9n>2;m=10,n > 2;
m = 11,n > 2;m = 12,n > 2:m = 13,n > 2;m = 14,n > 2;

m > 15,n > 1.

Corollary 3.4 can be proved by noting the fact that if G = Ms,,,, then

Z?ﬁj") = Dy, or D,, depending on m odd or even respectively also
| Z(Mamy)| = n or 2n for m odd or even respectively. Hence, Theorem 3.3

leads to the conclusion.

Corollary 3.5. If G = Dy, then
(a) v(C(G)) =4 < m =11,12.
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(b) v(C(G)) # 5.

(c) v(C(G)) =6 & m =13, 14.

(d) v(C(G)) > T for m > 15.
Corollary 3.5 can be proved by taking the fact that Ms,,, = Do, if n = 1.
Hence, Corollary 3.4 leads to the conclusion.

Corollary 3.6. If G = Qy4,, then

(a) v(C(G)) = 4 < m = 6.
(b) 7(C(G)) #

() (())—6@m—7
(d) v(C(G)) > 7 for m > 8.

Corollary 3.6 can be proved by noting the fact that if G = (Q4,, then

|Z(Qun)] = 2 and Z(%;”) = Dsy,. Hence, Theorem 3.3 leads to the

conclusion.

Corollary 3.7. If G = Us,, then v(C(G)) # 4,5,6 also v(C(G)) > 7 for
n > 5.

Corollary 3.7 can be proved by noting the fact that if G = Ug,, then

|Z(Usn)| = n and ZEJT%) = Ds. Hence, Theorem 3.3 leads to the
conclusion.

Theorem 3.8. ]f% = S2(2), then v(C(G)) # 4,5,6 also v(C(G)) > 7 for
n > 2.

Proof. Theorem 2.14 yields
Y(C(G)) = [3(4n—=3)(n—1)| +5 [1(n — 1)(3n — 4)]
where n = |Z(G)|. Clearly, v(C(G)) = 0 when n = 1. If n > 2, then
%(477, —3)(n—1)= 4”(7;)_2) + ";3 > 1,
alson —1>0and 3n —4 >0, so 5(n — 1)(3n — 4) > 0. Therefore

[5(4n =3)(n = 1) +5[3(3n —4)(n —1)] > 7.

Theorem 3.9. If G = V4, then

)
(b) 7(C(G)) # 5.
(¢) 7(C(G)) =6 & n =
(d) v(C(G)) > 18 whenever n > 5
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Proof. Note that Theorem 2.16 yields v(C(G)) = 0 for n = 1, 2.
Case 1. n is odd. In this case, Theorem 2.16 yields

Y(C(G)) = [¢(4n —5)(2n — 3)| whenever n > 3.
Obviously, v(C(G)) = 4 when n = 3. For n > 5 then

(@) = | an - 5)(2n - 3)]

6

3
> 18.

— _1(8n(n —5)+18n + 15)—‘

Case 2. n is even. In this case, Theorem 2.16 yields
Y(C(G)) = [3(4n — T)(n — 2)| whenever n > 4.
Clearly, v(C(G)) = 6 for n = 4. If n > 6, then
Y(C(G)) = [3(4n —T)(n —2)| = [5(4n(n — 6) + 9In + 14)] > 22.
O]

Theorem 3.10. If G = @Dy or SDsg,, then v(C(G)) # 4,5,6 also
v(C(G)) > 7 forn > 5 orn > 4 respectively.

Proof. It G = (QDsn, then Theorem 2.17 gives

V(C(G) = |2 =52 = 6)].

Obviously, v(C(G)) = 1 when n = 4. If n > 5, then (2”71 —5) > 11 and
(2771 — 6) > 10. So (2" ! —5)(2""' — 6) > L. Therefore

[zt =5)2" !t —6)] > 10
and the result follows. If G = S Ds,, then Theorem 2.18 yields

(C(G)) = (1—}(471 — 7)(4n — 8)] %f n ?s odd
|55(4n — 5)(4n — 6)| if n is even.
Obviously, v(C(G)) < 3 when n =1,3. If n > 5 and n is odd, then
L(4n — 7)(4n — 8) = L(16n(n — 5) + 20n + 56) > 13.
Again for n = 2 we get 7(C(G)) = 1. Finally, if n is even and n > 4, then
5 (4n — 5)(4n — 6) = 75(16n(n — 4) + 20n + 30) > 2.

Hence the result follows. ]
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It is observed that v(C(G)) # 5 for all the groups considered in our study.
It may be interesting to provide examples of groups G such that v(C(G)) = 5.
In general we pose the following question:

“Which positive integers can be realized as genus of commuting graphs of
some finite non-abelian groups?”

Acknowledgments

The authors appreciate the referees’ insightful comments. This paper is a
part of the first author’s Ph.D. thesis submitted to Tezpur University. The
first author expresses gratitude to Council of Scientific & Industrial Research
(CSIR) for the fellowship “File No. 09/796(0094)/2019-EMR-1".

REFERENCES

1. M. Afkhami, M. D. G. Farrokhi and K. Khashyarmanesh, Planar, toroidal, and projective
commuting and noncommuting graphs, Comm. Algebra, 43 (2015), 2964-2970.

2. A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7
(2000), 139-146.

3. J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph,
Bull. Amer. Math. Soc., 68 (1962), 565-568.

4. S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag.,
67 (1994), 366-374.

5. A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Com-
bin. Theory Ser. B., 24 (1978), 24-33.

6. R. Brauer and K. A. Fowler, On groups of even order, Ann. Math., 62 (1955), 565-583.

7. A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian
groups, Int. Electron. J. Algebra, 19 (2016), 91-109.

8. P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite
nonabelian groups, Khayyam J. Math., 6 (2020), 27-45.

9. J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, Mat.
Vesnik., 69 (2017), 226-230.

10. J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting
graphs of finite groups, Khayyam J. Math., 4 (2018), 77-87.

11. J. Dutta and R. K. Nath, Spectrum of commuting graphs of some classes of finite groups,
Matematika, 33 (2017), 87-95.

12. P. Dutta and R. K. Nath, Various energies of commuting graphs of some super integral
groups, Indian J. Pure Appl. Math., 52 (2021), 1-10.

13. W. N. T. Fasfous and R. K. Nath, Inequalities involving energy and Laplacian en-
ergy of non-commuting graphs of finite groups, Indian J. Pure Appl. Math., (2023),
https://doi.org/10.1007/s13226-023-00519-7.

14. W. N. T. Fasfous, R. Sharafdini and R. K. Nath, Common neighborhood spectrum of
commuting graphs of finite groups, Algebra Discrete Math., 32 (2021), 33-48.

15. D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58
(1974), 199-202.



GENUS OF COMMUTING GRAPHS OF FINITE GROUPS 15

16. M. Mirzargar and A. R. Ashrafi, Some distance-based topological indices of a non-
commuting graph, Hacet. J. Math. Stat., 41 (2012), 515-526.

17. R. K. Nath, Commutativity degree of a class of finite groups and consequences, Bull.
Aust. Math. Soc., 88 (2013), 448-452.

18. R. K. Nath, W. N. T. Fasfous, K. C. Das and Y. Shang, Common neighborhood energy
of commuting graphs of finite groups, Symmetry, 13 (2021), 1651 (12 pages).

19. D. Nongsiang, Double-toroidal and triple-toroidal commuting graph, Hacet. J. Math.
Stat., 53 (2024), 735-747.

20. D. J. Rusin, What is the probability that two elements of a finite group commute?,
Pacific J. Math., 82 (1979), 237-247, .

21. R. Sharafdini, R. K. Nath and R. Darbandi, Energy of commuting graph of finite AC-
groups, Proyecciones J. Math., 41 (2022), 263-273.

22. A. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, no. 8.,
American Elsevier Publishing Co., Inc., New York, 1973.

Parthajit Bhowal
Department of Mathematics, Cachar College, Silchar-788001, Assam, India.
Email: bhowal.parthajit8@gmail.com

Rajat Kanti Nath
Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.
Email: rajatkantinath@yahoo.com



	1. Introduction
	2. Main results
	3. Some consequences
	References

