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GENUS OF COMMUTING GRAPHS OF CERTAIN FINITE GROUPS

P. Bhowal and R. K. Nath∗

Abstract. The commuting graph of a finite group G is a graph whose vertex set
is the set of non-central elements of G and two distinct vertices are adjacent if they
commute. In this article, we compute genus of commuting graphs of certain classes
of finite non-abelian groups and characterize those groups such that their commuting
graphs have genus 4, 5 and 6.

1. Introduction
Let G be any finite non-abelian group with center Z(G). The commuting

graph of G, denoted by C(G), is a simple undirected graph whose vertex set
is G \ Z(G), and two vertices g and h are adjacent if gh = hg. The origin
of this graph lies in a work of Brauer and Fowler [6]. A lot of work has been
done on commuting graphs of finite groups over the years.

In 2015, Afkhami, Farrokhi and Khashyarmanesh [1] and in 2016, Das
and Nongsiang [7] have characterized finite non-abelian groups such that
their commuting graphs are planar or toroidal. Recently, Nongsiang [19] has
characterized groups G such that C(G) is double-toroidal or triple-toroidal.
It is worth recalling that “the genus of a graph is the smallest non-negative
integer k such that the graph can be embedded on the surface obtained by
attaching k handles to a sphere”. If γ(Γ) denotes the genus of a graph Γ,
having a subgraph Γ0, then it can be easily visualized that

γ(Γ) ≥ γ(Γ0). (1.1)

Also, [22, Theorem 6-38] yields

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
. (1.2)

“A graph is called planar, toroidal, double-toroidal and triple-toroidal if its
genus is 0, 1, 2 and 3 respectively”.
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In this article, we compute γ(C(G)) for the classes of finite groups such
that their central quotient, G

Z(G)
∼= Zq × Zq (where q is a prime throughout

this article), D2m = ⟨f, g : fm = g2 = 1, gfg−1 = f−1⟩ (where m ≥ 2) or
Sz(2) = ⟨f, g : f 5 = g4 = 1, g−1fg = f 2⟩. Also, we find conditions such
that γ(C(G)) = 4, 5 or 6 for the above mentioned groups. Consequently, we
characterize groups of order q3, the meta-abelian groups

M2mn = ⟨f, g : fm = g2n = 1, gfg−1 = f−1⟩,
D2m, Q4m = ⟨f, g : f 2m = 1, g2 = fm, gfg−1 = f−1⟩ and

U6n = ⟨f, g : f 2n = g3 = 1, f−1gf = g−1⟩
such that their commuting graphs have genus 4, 5 or 6. Spectral aspects of
C(G) for these classes of groups have been described in [8, 9, 11, 10, 12, 14,
18, 21].

2. Main results
To prove the subsequent theorems, the following lemma is useful.

Lemma 2.1. [3, Corollary 2] If Γ is the disjoint union of Km and Kn, then
γ(Γ) = γ(Km) + γ(Kn).

Theorem 2.2. If G G
Z(G)

∼= Zq × Zq, then γ(C(G)) = 0 or
γ(C(G)) = (q + 1)

⌈
1
12((q − 1)n− 3)((q − 1)n− 4)

⌉
according as (q − 1)n ≤ 2 or (q − 1)n ≥ 3, where n = |Z(G)|.

Proof. Note that [9, Theorem 2.1] yields C(G) = (q + 1)K(q−1)n. Therefore,
γ(C(G)) = 0 when n(q − 1) ≤ 2 . If (q − 1)n ≥ 3, then by (1.2) and Lemma
2.1, we get

γ(C(G)) = (q + 1)γ(Kn(q−1)) = (q + 1)
⌈

1
12((q − 1)n− 3)(n(q − 1)− 4)

⌉
.
□

Corollary 2.3. If |G| = q3, then γ(C(G)) = 0 or
γ(C(G)) = (q + 1)

⌈
1
12((q − 1)q − 3)((q − 1)q − 4)

⌉
according as q = 2 or q ≥ 3.

Proof. Evidently |Z(G)| = q and G
Z(G)

∼= Zq × Zq. Therefore, q(q − 1) = 2 or
q(q − 1) ≥ 6 according as q = 2 or q ≥ 3. Hence, Theorem 2.2 leads to the
conclusion. □
Corollary 2.4. For any 4-centralizer finite group G, γ(C(G)) = 0 or

γ(C(G)) = 3
⌈

1
12(n− 3)(n− 4)

⌉
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according as n ≤ 2 or n ≥ 3, where n = |Z(G)|.

Proof. Theorem 2 [4] yields G
Z(G)

∼= Z2×Z2. Hence, Theorem 2.2 leads to the
conclusion. □

Corollary 2.5. If G is any (q+2)-centralizer and |G| = qm (where m ∈ N),
then γ(C(G)) = 0 or

γ(C(G)) = (q + 1)
⌈

1
12((q − 1)n− 3)((q − 1)n− 4)

⌉
according as (q − 1)n ≤ 2 or (q − 1)n ≥ 3, where n = |Z(G)|.

Proof. Note that [2, Lemma 2.7] yields G
Z(G)

∼= Zq × Zq. Hence, Theorem 2.2
leads to the conclusion. □

Corollary 2.6. For any finite 5-centralizer group G, γ(C(G)) = 0 or
γ(C(G)) = 4

⌈
1
12(2n− 4)(2n− 3)

⌉
according as n = 1 or n ≥ 2, where n = |Z(G)|.

Proof. Note that [4, Theorem 4] yields G
Z(G)

∼= Z3 × Z3. Hence, Theorem 2.2
leads to the conclusion. □

Corollary 2.7. If q is the smallest prime divisor of the order of G and
Pr(G) = q2+q−1

q3 , then γ(C(G)) = 0 or
γ(C(G)) = (q + 1)

⌈
1
12((q − 1)n− 3)((q − 1)n− 4)

⌉
according as (q − 1)n ≤ 2 or (q − 1)n ≥ 3, where n = |Z(G)|.

Proof. Note that [15, Theorem 3] yields G
Z(G) is isomorphic to Zq×Zq. Hence,

Theorem 2.2 leads to the conclusion. □

Theorem 2.8. If G
Z(G)

∼= D2m (m ≥ 2), then

γ(C(G)) =



0, when n = 1,m = 2, 3 and m = n = 2

⌈ 1
12((m− 1)n− 3)((m− 1)n− 4)⌉,

when n = 1,m ≥ 4 and n = 2,m ≥ 3

⌈ 1
12((m− 1)n− 3)((m− 1)n− 4)⌉+m

⌈
1
12(n− 3)(n− 4)

⌉
,

when n ≥ 3,m ≥ 2,

where n = |Z(G)|.

Proof. Note that [9, Theorem 2.5] yields C(G) = K(m−1)n ⊔mKn. Therefore,
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C(G) =


K1 ⊔ 2K1, when n = 1 and m = 2

K2 ⊔ 3K1, when n = 1 and m = 3

K2 ⊔ 2K2, when n = m = 2

and so γ(C(G)) = 0 in these cases. We also have

C(G) =

{
Km−1 ⊔mK1, when n = 1 and m ≥ 4

K2(m−1) ⊔mK2, when n = 2 and m ≥ 3.

In these cases, (m− 1)n ≥ 3 and so (1.2) and Lemma 2.1 yields
γ(C(G)) = ⌈ 1

12((m− 1)n− 3)((m− 1)n− 4)⌉.
If n ≥ 3 and m ≥ 2, then (m− 1)n ≥ 3. Therefore, by (1.2) and Lemma 2.1
we get the required expression for γ(C(G)). □
Corollary 2.9. Let G = M2mn, where m > 2 and n ≥ 1. If 2 | m, then

γ(C(G)) =



0, when n = 1,m = 3⌈
1
12((m− 1)n− 3)((m− 1)n− 4)

⌉
,

when n = 1,m ≥ 5 or n = 2,m ≥ 3⌈
1
12((m− 1)n− 3)((m− 1)n− 4)

⌉
+m

⌈
1
12(n− 4)(n− 3)

⌉
,

when n ≥ 3,m ≥ 3.

If 2 | m, then

γ(C(G)) =



0, when n = 1,m = 4⌈
1
12((m− 2)n− 3)((m− 2)n− 4)

⌉
,

when n = 1,m ≥ 6⌈
1
12((m− 2)n− 3)((m− 2)n− 4)

⌉
+ m

2

⌈
1
12(2n− 3)(2n− 4)

⌉
,

when n ≥ 2,m ≥ 4.

Proof. Note that [9, Proposition 2.8] yields M2mn

Z(M2mn)
∼= D2m or Dm depending

on m odd or even respectively also |Z(M2mn)| = n or 2n for m odd or even
respectively. Hence, Theorem 2.8 leads to the conclusion. □
Corollary 2.10. If G = D2m (m ≥ 3), then

γ(C(G)) =


0, when m = 3, 4⌈

1
12(m− 4)(m− 5)

⌉
when 2 ∤ m and m ≥ 5⌈

1
12(m− 5)(m− 6)

⌉
when 2 | m and m ≥ 6.
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Proof. Since M2mn = D2m for n = 1, Corollary 2.9 leads to the conclusion. □
Corollary 2.11. Let G = Q4m (m ≥ 2). Then

γ(C(G)) =

{
0, when m = 2⌈

1
12(2m− 5)(2m− 6)

⌉
, when m ≥ 3.

Proof. We have |Z(Q4m)| = 2 and Q4m

Z(Q4m)
∼= D2m. Hence, Theorem 2.8 leads

to the conclusion. □
Corollary 2.12. For G = U6n,

γ(C(G)) =

{
0, when n = 1, 2

3
⌈

1
12(n− 3)(n− 4)

⌉
+
⌈

1
12(2n− 3)(2n− 4)

⌉
,when n ≥ 3.

Proof. We have Z(U6n) = ⟨a2⟩ and U6n

Z(U6n)
∼= D6. Hence, Theorem 2.8 leads to

the conclusion. □
Corollary 2.13. If Pr(G) ∈

{
5
14 ,

2
5 ,

11
27 ,

1
2 ,

5
8 ,

7
16

}
, then

γ(C(G)) ∈
{
0, 1, 2, 6, ⌈1

2
(2n− 1)(3n− 2)⌉+ 7⌈ 1

12
(n− 3)(n− 4)⌉,

⌈1
3
(n− 1)(4n− 3)⌉+ 5⌈ 1

12
(n− 3)(n− 4)⌉,

⌈1
4
(n− 1)(3n− 4)⌉+ 4⌈ 1

12
(n− 3)(n− 4)⌉,

⌈1
6
(n− 2)(2n− 3)⌉+ 3⌈ 1

12
(n− 3)(n− 4)⌉,

3⌈ 1

12
(n− 3)(n− 4)⌉, 4⌈1

6
(n− 2)(2n− 3)⌉

}
,

where Pr(G) is the commuting probability of G and n = |Z(G)| ≥ 3.

Proof. If Pr(G) ∈
{

5
14 ,

2
5 ,

11
27 ,

1
2 ,

5
8 ,

7
16

}
, then [20, pp. 246] and [17, pp. 451]

yields G
Z(G)

∼= D6, D8, D10, D14,Z2 × Z2 or Z3 × Z3.
If G

Z(G)
∼= D6, then considering m = 3 in Theorem 2.8, we get γ(C(G)) = 0

whenever n = 1. For n = 2, γ(C(G)) =
⌈
1
6(n− 2)(2n− 3)

⌉
= 0. For n ≥ 3

we get
γ(C(G)) =

⌈
1
6(n− 2)(2n− 3)

⌉
+ 3

⌈
1
12(n− 4)(n− 3)

⌉
.

If G
Z(G)

∼= D8, then considering m = 4 in Theorem 2.8, we get

γ(C(G)) =
⌈

1
12(3n− 3)(3n− 4)

⌉
,
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if n = 1, 2. Therefore, γ(C(G)) = 0 or 1 according as n = 1 or 2. For n ≥ 3,
γ(C(G)) =

⌈
1
4(n− 1)(3n− 4)

⌉
+ 4

⌈
1
12(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= D10, then considering m = 5 in Theorem 2.8, we get

γ(C(G)) =
⌈

1
12(4n− 3)(4n− 4)

⌉
,

if n = 1, 2. Therefore, γ(C(G)) = 0 or 2 according as n = 1 or 2. For n ≥ 3
we get

γ(C(G)) =
⌈
1
3(4n− 3)(n− 1)

⌉
+ 5

⌈
1
12(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= D14, then considering m = 7 in Theorem 2.8, we get

γ(C(G)) =
⌈

1
12(6n− 3)(6n− 4)

⌉
,

if n = 1, 2. Therefore, γ(C(G)) = 1 or 6 according as n = 1 or 2. For n ≥ 3
we get

γ(C(G)) =
⌈
1
2(2n− 1)(3n− 2)

⌉
+ 7

⌈
1
12(n− 3)(n− 4)

⌉
.

If G
Z(G)

∼= Z2×Z2, then considering q = 2 in Theorem 2.2 we get γ(C(G)) = 0

if n = 1, 2. For n ≥ 3 we get γ(C(G)) = 3
⌈

1
12(n− 4)(n− 3)

⌉
.

If G
Z(G)

∼= Z3×Z3, then considering q = 3 in Theorem 2.2 we get γ(C(G)) = 0

if n = 1 or 2. If n ≥ 3, then we get γ(C(G)) = 4
⌈
1
6(n− 2)(2n− 3)

⌉
. □

Theorem 2.14. If G
Z(G)

∼= Sz(2), then
γ(C(G)) =

⌈
1
3(n− 1)(4n− 3)

⌉
+ 5

⌈
1
4(n− 1)(3n− 4)

⌉
,

where n = |Z(G)|.
Proof. Note that [11, Theorem 2.2] yields C(G) = K4n ⊔ 5K3n. Therefore by
(1.2) and Lemma 2.1,

γ(C(G)) = γ(K4n) + 5γ(K3n)

=

⌈
1

12
(4n− 3)(4n− 4)

⌉
+ 5

⌈
1

12
(3n− 3)(3n− 4)

⌉
=

⌈
1

3
(n− 1)(4n− 3)

⌉
+ 5

⌈
1

4
(n− 1)(3n− 4)

⌉
.

□
Corollary 2.15. If G = Sz(2), then γ(C(G)) = 0.
Proof. We have |Z(Sz(2))| = 1 and so Theorem 2.14 leads to the conclusion.

□
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Theorem 2.16. If G = V8n = ⟨f, g : f 2n = g4 = 1, g−1fg−1 = gfg = f−1⟩,
then

γ(C(G)) =


0, when n = 1, 2⌈
1
6(2n− 3)(4n− 5)

⌉
, when n ≥ 3 and 2 ∤ n⌈

1
3(n− 2)(4n− 7)

⌉
, when n ≥ 4 and 2 | n.

Proof. In case 2 ∤ n, [16, Example 2.4] yields C(G) = K2(2n−1) ⊔ 2nK2. For
n = 1, 2(2n − 1) = 2 and so γ(C(G)) = 0. If n ≥ 3, then (1.2) and Lemma
2.1 yields

γ(C(G)) = γ(K2(2n−1)) + 2nγ(K2) =
⌈
1
6(2n− 3)(4n− 5)

⌉
.

If n is even, then [16, Example 2.4] yields C(G) = K4(n−1) ⊔ nK4. If n = 2,
then 4(n − 1) = 4 and so γ(C(G)) = 0. If n ≥ 4, then (1.2) and Lemma 2.1
yields γ(C(G)) = γ(K4(n−1)) + nγ(K4) =

⌈
1
3(n− 2)(4n− 7)

⌉
. □

Theorem 2.17. If G = QD2n = ⟨f, g : f 2n−1

= g2 = 1, gfg−1 = f 2n−2−1⟩,
where n ≥ 4, then γ(C(G)) =

⌈
1
12(2

n−1 − 5)(2n−1 − 6)
⌉
.

Proof. Note that [7, Proposition 4.3] yields C(G) = K2n−1−2 ⊔ 2n−2K2.
Therefore by (1.2) and Lemma 2.1,

γ(C(G)) = γ(K2n−1−2) + 2n−2γ(K2) =
⌈

1
12(2

n−1 − 5)(2n−1 − 6)
⌉
.

□

Theorem 2.18. If G = SD8n, then

γ(C(G)) =


0, when n = 1⌈
1
3(n− 2)(4n− 7)

⌉
, when n ≥ 3 and 2 ∤ n⌈

1
6(2n− 3)(4n− 5)

⌉
, when n ≥ 2 and 2 | n.

Proof. If n is odd, then [Line 11, Proof of Theorem 4.2(a)] of [13] yields
C(G) = K4(n−1) ⊔ nK4. If n = 1, then 4(n− 1) = 0. Therefore γ(C(G)) = 0.
If n ≥ 3, then by (1.2) and Lemma 2.1,

γ(C(G)) = γ(K4(n−1)) + nγ(K4) =
⌈
1
3(n− 2)(4n− 7)

⌉
.

If n is even, then [Line 11, Proof of Theorem 4.2(b)] of [13] yields
C(G) = K2(2n−1) ⊔ 2nK2. Therefore by (1.2) and Lemma 2.1,

γ(C(G)) = γ(K2(2n−1)) + 2nγ(K2) =
⌈
1
6(2n− 3)(4n− 5)

⌉
.

□
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3. Some consequences
Nongsiang and Das [7] characterized the groups whose commuting graphs

are planar and toroidal. Nongsiang [19] characterized the groups whose com-
muting graphs are double-toroidal and triple-toroidal. For a given class of
groups we also find the necessary and sufficient condition for the genus of the
graphs to be 4, 5 and 6.

Theorem 3.1. If G is a finite group such that G
Z(G)

∼= Zq × Zq, then
(a) γ(C(G)) = 4 ⇔ q = 3, |Z(G)| = 3.
(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ q = 2, |Z(G)| = 8.
(d) γ(C(G)) ≥ 7 for q = 2, |Z(G)| ≥ 9; q = 3, |Z(G)| ≥ 4;

q ≥ 5, |Z(G)| ≥ 1.

Proof. Theorem 2.2 yields γ(C(G)) = (q+1)
⌈

1
12((q − 1)n− 3)((q − 1)n− 4)

⌉
,

where n = |Z(G)|. For q = 2, γ(C(G)) = 3
⌈

1
12(n− 3)(n− 4)

⌉
. Therefore, we

get γ(C(G)) ≤ 3 and γ(C(G)) = 6 according as n ≤ 7 and n = 8. If n ≥ 9,
then

1
12(n− 3)(n− 4) = 1

12(n(n− 9) + 2n+ 12) > 2.
Hence, 3

⌈
1
12(n− 3)(n− 4)

⌉
> 6. For q = 3,

γ(C(G)) = 4
⌈

1
12(2n− 3)(2n− 4)

⌉
= 4

⌈
1
6(n− 2)(2n− 3)

⌉
.

Evidently, γ(C(G)) ≤ 3 whenever n ≤ 2. For n = 3, we have γ(C(G)) = 4. If
n ≥ 4, then

1
6(n− 2)(2n− 3) = 1

6(2n(n− 4) + n+ 6) > 1.

Hence, 4
⌈
1
6(2n− 3)(n− 2)

⌉
≥ 8.

If q = 5, then C(G) = 6K4n and so γ(C(G)) = 0 when n = 1. If n ≥ 2, then
6K4n has a subgraph 6K8. Since γ(6K8) ≥ 7, therefore by (1.1), γ(C(G)) ≥ 7.

If q ≥ 7, then C(G)) = (p + 1)K6n which has a subgraph 8K6 for n ≥ 1.
Since γ(8K6) ≥ 7, therefore by (1.1), γ(C(G)) ≥ 7. □
Corollary 3.2. If |G| = q3, then

(a) γ(C(G)) = 4 ⇔ q = 3.
(b) γ(C(G)) ≥ 7 whenever q ≥ 5.

Corollary 3.2 can be proved by taking the fact that “if G is a non-abelian
group of order q3, then |Z(G)| = q and G

Z(G)
∼= Zq ×Zq”. Hence, Theorem 3.1

leads to the conclusion.
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Theorem 3.3. If G
Z(G)

∼= D2m, where m ≥ 2, then
(a) γ(C(G)) = 4 ⇔ m = 6, |Z(G)| = 2;m = 11, |Z(G)| = 1.
(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ m = 2, |Z(G)| = 8;m = 4, |Z(G)| = 4;m = 5,

|Z(G)| = 3;m = 7, |Z(G)| = 2;m = 13, |Z(G)| = 1.
(d) γ(C(G)) ≥ 7 for m = 2, |Z(G)| ≥ 9;m = 3, |Z(G)| ≥ 5;m = 4,

|Z(G)| ≥ 5;m = 5, |Z(G)| ≥ 4;m = 6, |Z(G)| ≥ 3;m = 7,
|Z(G)| ≥ 3;m = 8, |Z(G)| ≥ 2;m = 9, |Z(G)| ≥ 2;m = 10,
|Z(G)| ≥ 2;m = 11, |Z(G)| ≥ 2;m = 12, |Z(G)| ≥ 2;m = 13,
|Z(G)| ≥ 2;m ≥ 14, |Z(G)| ≥ 1.

Proof. Note that Theorem 2.8 yields
γ(C(G)) =

⌈
1
12((m− 1)n− 3)((m− 1)n− 4)

⌉
+m

⌈
1
12(n− 3)(n− 4)

⌉
.

We look at the following scenarios.
Case 1. If m = 2, then we have

γ(C(G)) =

⌈
1

12
(n− 3)(n− 4)

⌉
+ 2

⌈
1

12
(n− 3)(n− 4)

⌉
= 3

⌈
1

12
(n− 3)(n− 4)

⌉
.

Clearly, γ(C(G)) ≤ 3 whenever n ≤ 7; and γ(C(G)) = 6 when n = 8. If
n ≥ 9, then

1
12(n− 3)(n− 4) = 1

12(n
2 − 7n+ 12) = 1

12(n(n− 9) + 2n+ 12) > 2.
Hence, 3

⌈
1
12(n− 3)(n− 4)

⌉
> 6.

Case 2. If m = 3, then we have

γ(C(G)) =

⌈
1

12
(2n− 4)(2n− 3)

⌉
+ 3

⌈
1

12
(n− 3)(n− 4)

⌉
=

⌈
1

6
(n− 2)(2n− 3)

⌉
+ 3

⌈
1

12
(n− 3)(n− 4)

⌉
.

For n ≤ 4, it is apparent that γ(C(G)) ≤ 3. For n ≥ 5,
1
6(n− 2)(2n− 3) = 1

6(2n
2 − 7n+ 6) = 2n(n−5)

6 + n+2
2 > 3,

also n − 3 > 0 and n − 4 > 0, which gives 1
12(n − 3)(n − 4) > 0. Therefore⌈

1
6(n− 2)(2n− 3)

⌉
+ 3

⌈
1
12(n− 3)(n− 4)

⌉
> 7.

Case 3. If m = 4, then we have
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γ(C(G)) =
⌈

1
12(3n− 3)(3n− 4)

⌉
+ 4

⌈
1
12(n− 3)(n− 4)

⌉
.

For n ≤ 3, it is apparent that γ(C(G)) ≤ 3. For n = 4, we have γ(C(G)) = 6.
If n ≥ 5, then

1
12(3n− 3)(3n− 4) = 1

4(3n
2 − 7n+ 4) = 3n(n−5)

4 + (2n+ 1) ≥ 11.

Case 4. If m = 5, then we have
γ(C(G)) =

⌈
1
12(4n− 3)(4n− 4)

⌉
+ 5

⌈
1
12(n− 3)(n− 4)

⌉
.

For n ≤ 2, it is apparent that γ(C(G)) ≤ 3. For n = 3, we have γ(C(G)) = 6.
If n ≥ 4, then

1
12(4n− 3)(4n− 4) = 1

6(6n
2 − 14n+ 6) = 6n(n−4)

6 + 10n+6
6 ≥ 23

3 .
Case 5. If m = 6, then we have

γ(C(G)) =
⌈

1
12(5n− 3)(5n− 4)

⌉
+ 6

⌈
1
12(n− 3)(n− 4)

⌉
.

It is apparent that γ(C(G)) = 1 or 4 according as n = 1 or 2. If n ≥ 3, then
1
12(5n− 3)(5n− 4) = 1

12(25n
2 − 35n+ 12) = 25n(n−3)

12 + 40n+12
12 ≥ 11.

Case 6. If m = 7, then we have
γ(C(G)) =

⌈
1
12(6n− 3)(6n− 4)

⌉
+ 7

⌈
1
12(n− 4)(n− 3)

⌉
.

It is apparent that γ(C(G)) = 1 or 6 according as n = 1 or 2. If n ≥ 3, then
1
12(6n− 3)(6n− 4) = 6n2−7n+2

2 = 6n(n−3)+11n+2
2 ≥ 35

2 .

Case 7. If m = 8, then we have
γ(C(G)) =

⌈
1
12(7n− 3)(7n− 4)

⌉
+ 8

⌈
1
12(n− 3)(n− 4)

⌉
.

Evidently, γ(C(G)) = 1 for n = 1. If n ≥ 2, then
1
12(7n− 3)(7n− 4) = 1

12(49n
2 − 49n+ 12) = 49n(n−2)

12 + 49n+12
12 ≥ 55

6 .

Case 8. If m = 9, then we have
γ(C(G)) =

⌈
1
12(8n− 3)(8n− 4)

⌉
+ 9

⌈
1
12(n− 4)(n− 3)

⌉
.

Obviously, γ(C(G)) = 2 when n = 1. If n ≥ 2, then
1
12(8n− 3)(8n− 4) = 1

12(64n
2 − 56n+ 12) = 64n(n−2)

12 + 72n+12
12 ≥ 13.

Case 9. If m = 10, then we have
γ(C(G)) =

⌈
1
12(9n− 3)(9n− 4)

⌉
+ 10

⌈
1
12(n− 3)(n− 4)

⌉
.

Obviously, γ(C(G)) = 3 when n = 1. If n ≥ 2, then
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1
12(9n− 3)(9n− 4) = 1

12(81n
2 − 63n+ 12) = 81n(n−2)

12 + 99n+12
12 ≥ 35

2 .
Case 10. If m = 11, then we have

γ(C(G)) =
⌈

1
12(10n− 3)(10n− 4)

⌉
+ 11

⌈
1
12(n− 4)(n− 3)

⌉
.

Obviously, γ(C(G)) = 4 for n = 1. If n ≥ 2, then
1
12(10n− 3)(10n− 4) = 1

12(100n
2 − 70n+ 12) = 100n(n−2)

12 + 130n+12
12 ≥ 68

3 .
Case 11. If m = 12, then we have

γ(C(G)) =
⌈

1
12(11n− 3)(11n− 4)

⌉
+ 12

⌈
1
12(n− 4)(n− 3)

⌉
.

Obviously, γ(C(G)) = 5 for n = 1. If n ≥ 2, then
1
12(11n− 3)(11n− 4) = 1

12(121n
2 − 77n+ 12) = 121n(n−2)

12 + 165n+12
12 ≥ 55

2 .
Case 12. If m = 13, then we have

γ(C(G)) =
⌈

1
12(12n− 3)(12n− 4)

⌉
+ 13

⌈
1
12(n− 4)(n− 3)

⌉
.

Obviously, γ(C(G)) = 6 for n = 1. If n ≥ 2, then
1
12(12n− 3)(12n− 4) = 12n2 − 7n+ 1 = 12n(n− 2) + 17n+ 1 ≥ 35.

Case 13. If m ≥ 14, then we get C(G)) = K(m−1)n ⊔ mKn. Therefore
K13 ⊔ 14K1 is a subgraph of K(m−1)n ⊔mKn for every n ≥ 1. We know that
the genus of K13 ⊔ 14K1 is equal to 8. Hence by (1.1), γ(C(G)) ≥ 8. □
Corollary 3.4. If G = M2mn, where m > 2, then

(a) γ(C(G)) = 4 ⇔ m = 11, n = 1;m = 12, n = 1.
(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ m = 4, n = 4;m = 5, n = 3;m = 7, n = 2;m = 8,

n = 2;m = 13, n = 1;m = 14, n = 1.
(d) γ(C(G)) ≥ 7 for m = 3, n ≥ 5;m = 4, n ≥ 5;m = 5, n ≥ 4;m = 6,

n ≥ 3;m = 7, n ≥ 3;m = 8, n ≥ 3;m = 9, n ≥ 2;m = 10, n ≥ 2;
m = 11, n ≥ 2;m = 12, n ≥ 2;m = 13, n ≥ 2;m = 14, n ≥ 2;
m ≥ 15, n ≥ 1.

Corollary 3.4 can be proved by noting the fact that if G = M2mn, then
M2mn

Z(M2mn)
∼= D2m or Dm depending on m odd or even respectively also

|Z(M2mn)| = n or 2n for m odd or even respectively. Hence, Theorem 3.3
leads to the conclusion.

Corollary 3.5. If G = D2m, then
(a) γ(C(G)) = 4 ⇔ m = 11, 12.
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(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ m = 13, 14.
(d) γ(C(G)) ≥ 7 for m ≥ 15.

Corollary 3.5 can be proved by taking the fact that M2mn = D2m if n = 1.
Hence, Corollary 3.4 leads to the conclusion.
Corollary 3.6. If G = Q4m, then

(a) γ(C(G)) = 4 ⇔ m = 6.
(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ m = 7.
(d) γ(C(G)) ≥ 7 for m ≥ 8.

Corollary 3.6 can be proved by noting the fact that if G = Q4m, then
|Z(Q4m)| = 2 and Q4m

Z(Q4m)
∼= D2m. Hence, Theorem 3.3 leads to the

conclusion.
Corollary 3.7. If G = U6n, then γ(C(G)) ̸= 4, 5, 6 also γ(C(G)) ≥ 7 for
n ≥ 5.
Corollary 3.7 can be proved by noting the fact that if G = U6n, then
|Z(U6n)| = n and U6n

Z(U6n)
∼= D6. Hence, Theorem 3.3 leads to the

conclusion.
Theorem 3.8. If G

Z(G)
∼= Sz(2), then γ(C(G)) ̸= 4, 5, 6 also γ(C(G)) ≥ 7 for

n ≥ 2.
Proof. Theorem 2.14 yields

γ(C(G)) =
⌈
1
3(4n− 3)(n− 1)

⌉
+ 5

⌈
1
4(n− 1)(3n− 4)

⌉
,

where n = |Z(G)|. Clearly, γ(C(G)) = 0 when n = 1. If n ≥ 2, then
1
3(4n− 3)(n− 1) = 4n(n−2)

3 + n+3
3 > 1,

also n− 1 > 0 and 3n− 4 > 0, so 1
2(n− 1)(3n− 4) > 0. Therefore⌈

1
3(4n− 3)(n− 1)

⌉
+ 5

⌈
1
4(3n− 4)(n− 1)

⌉
> 7.

□
Theorem 3.9. If G = V8n, then

(a) γ(C(G)) = 4 ⇔ n = 3.
(b) γ(C(G)) ̸= 5.
(c) γ(C(G)) = 6 ⇔ n = 4.
(d) γ(C(G)) > 18 whenever n ≥ 5.
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Proof. Note that Theorem 2.16 yields γ(C(G)) = 0 for n = 1, 2.
Case 1. n is odd. In this case, Theorem 2.16 yields

γ(C(G)) =
⌈
1
6(4n− 5)(2n− 3)

⌉
whenever n ≥ 3.

Obviously, γ(C(G)) = 4 when n = 3. For n ≥ 5 then

γ(C(G)) =

⌈
1

6
(4n− 5)(2n− 3)

⌉
=

⌈
1

3
(8n(n− 5) + 18n+ 15)

⌉
> 18.

Case 2. n is even. In this case, Theorem 2.16 yields
γ(C(G)) =

⌈
1
3(4n− 7)(n− 2)

⌉
whenever n ≥ 4.

Clearly, γ(C(G)) = 6 for n = 4. If n ≥ 6, then
γ(C(G)) =

⌈
1
3(4n− 7)(n− 2)

⌉
=

⌈
1
3(4n(n− 6) + 9n+ 14)

⌉
> 22.

□
Theorem 3.10. If G = QD2n or SD8n, then γ(C(G)) ̸= 4, 5, 6 also
γ(C(G)) ≥ 7 for n ≥ 5 or n ≥ 4 respectively.

Proof. If G = QD2n, then Theorem 2.17 gives
γ(C(G)) =

⌈
1
12(2

n−1 − 5)(2n−1 − 6)
⌉
.

Obviously, γ(C(G)) = 1 when n = 4. If n ≥ 5, then (2n−1 − 5) ≥ 11 and
(2n−1 − 6) ≥ 10. So 1

12(2
n−1 − 5)(2n−1 − 6) ≥ 110

12 . Therefore⌈
1
6(2

n−1 − 5)(2n−1 − 6)
⌉
≥ 10

and the result follows. If G = SD8n, then Theorem 2.18 yields

γ(C(G)) =

{⌈
1
12(4n− 7)(4n− 8)

⌉
if n is odd⌈

1
12(4n− 5)(4n− 6)

⌉
if n is even.

Obviously, γ(C(G)) ≤ 3 when n = 1, 3. If n ≥ 5 and n is odd, then
1
12(4n− 7)(4n− 8) = 1

12(16n(n− 5) + 20n+ 56) ≥ 13.
Again for n = 2 we get γ(C(G)) = 1. Finally, if n is even and n ≥ 4, then

1
12(4n− 5)(4n− 6) = 1

12(16n(n− 4) + 20n+ 30) ≥ 55
6 .

Hence the result follows. □
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It is observed that γ(C(G)) ̸= 5 for all the groups considered in our study.
It may be interesting to provide examples of groups G such that γ(C(G)) = 5.
In general we pose the following question:

“Which positive integers can be realized as genus of commuting graphs of
some finite non-abelian groups?”
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خاص متناهی گروه های جابه جایی گراف های رده ی

نیت٢ کی. آر. و بهوال١ پی.

هند آسام، سیلچار، کاچار، کالج ریاضی، ١گروه

هند آسام، سونیتپور، ناپام، تزپور، دانشگاه ریاضی، علوم ٢گروه

غیرمرکزی عناصر همه ی آن روئوس مجموعه ی که است گرافی G متناهی گروه یک جابه  جایی گراف
کلاس جابه جایی گراف های رده ی مقاله، این در شوند. جابه جا هرگاه مجاورند متمایز رأس دو و هستند G

رده ی آن ها جابه  جایی گراف های که گروه هایی و می کنیم محاسبه را متناهی غیرآبلی گروه های از خاصی
می کنیم. سازی مشخصه را دارند ۶ و ۵ ،۴

متناهی. گروه رده ، جابه  جایی، گراف کلیدی: کلمات
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