1. S. Albeverio, R. Cianci and A. Khrennikov, On the spectrum of the p-adic position operator, J. Phys. A: Math. Gen., 30(3) (1997), 881–889.
2. S. Albeverio and A. Yu. Khrennikov, p-Adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom, Int. J. Modern Phys., 10(13/14) (1996), 1665–1673.
3. A. Ammar, A. Bouchekoua and A. Jeribi, Pseudospectra in a non-Archimedean Banach space and essential pseudospectra in Eω, Filomat, 33(12) (2019), 3961–3976.
4. A. Ammar, A. Bouchekoua and N. Lazrag, The condition ε-pseudospectra on nonArchimedean Banach space, Bol. de la Soc. Mat. Mex., 28(2) (2022), 1–24.
5. J. Araujo, C. Perez-Garcia and S. Vega, Preservation of the index of p-adic linear operators under compact perturbations, Compos. Math., 118 (1999), 291–303.
6. A. Blali, A. El Amrani and J. Ettayb, A note on Pencil of bounded linear operators on non-Archimedean Banach spaces, Methods Funct. Anal. Topology, 28(2) (2022), 105–109.
7. A. Blali, A. El Amrani and J. Ettayb, Some spectral sets of linear operator pencils on non-Archimedean Banach spaces, Bulletin of the Transilvania University of Braşov. Series III: Mathematics and Computer Science, (2022), 41–56.
8. E. B. Davies, Linear Operators and Their Spectra, Cambridge University Press, New York, 2007.
9. T. Diagana and F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.
10. B. Diarra, Ultrametric Calkin algebras, Advances in Ultrametric Analysis, Contemp. Math., 704 (2018), 111–125.
11. A. El Amrani, J. Ettayb and A. Blali, Pseudospectrum and condition pseudospectrum of non-archimedean matrices, J. Prime Res. Math., 18(1) (2022), 75–82.
12. A. El Amrani, J. Ettayb and A. Blali, On Pencil of Bounded Linear Operators on Nonarchimedean Banach Spaces, Boletim da Sociedade Paranaense de Matemática, Published August 20, 2022, http://www.spm.uem.br/bspm/pdf/next/17.pdf.
13. M. Embree and L. N. Trefethen, Generalizing eigenvalue theorems to pseudospectra theorems, SIAM J. Sci. Comput., 23(2) (2001), 583–590.
14. J. Ettayb, Condition pseudospectrum of operator pencils on non-archimedean Banach spaces, to appear.
15. C. Perez-Garcia and S. Vega, Perturbation theory of p-adic Fredholm and semi-Fredholm operators, Indag. Math. (N.S.), 15(1) (2004), 115–128.
16. L. N. Trefethen and M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.
17. A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978