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A NEW CLASS OF SMALL SUBMODULES

S. Rajaee, F. Farzalipour∗ and M. Poyan

Abstract. Let R be a commutative ring with identity 1 ̸= 0 and M a nonzero unital
R-module. In this paper, we introduce a new notion of submodules in M , namely
T -semi-annihilator small submodules of M with respect to an arbitrary submodule
T of M . A submodule N of M is T -semi-annihilator small in M provide that for
each submodule X of M with T ⊆ N + X implies that Ann(X) ≪ (T : M). In
addition, we investigate some results concerning to this new class of submodules.
Among various results, we prove that for a faithful finitely generated multiplication
module M , the submodule N of M is a T -semi-annihilator small submodule of M
if and only if (N : M) is a (T : M)-semi-annihilator small ideal of R. Finally, we
explore the properties and the behaviour of this structure under ring homomorphism,
localization, direct sums and tensor product of them with a faithfully flat R-module.

1. Introduction
Throughout this paper, R will denote a commutative ring with identity

1 ̸= 0 and M a nonzero unital R-module. We use the notations ⊆ and ≤ to
denote inclusion and submodule. A nonempty subset S of R is said to be a
multiplicatively closed set (briefly, m.c.s.) of R if 0 /∈ S, 1 ∈ S and st ∈ S
for each s, t ∈ S. The set of all submodules of M is denoted by L(M) and
also L∗(M) = L(M) \ {0,M} will denote the set of all non-trivial proper
submodules of M . Also, for a ring R, the set of all ideals of R is denoted by
I(R) and I∗(R) = I(R) \ {0, R} will denote the set of all non-trivial proper
ideals of R. As usual, the rings of integers and integers modulo n will be
denoted by Z and Zn, respectively. Let M be an R-module and N ≤ M , the
colon ideal of M into N is defined as (N :R M) = {r ∈ R : rM ⊆ N}. If there
is no ambiguity for the ring we will write (N : M). The annihilator of M
which is denoted by AnnR(M) is (0 :R M) and so (N :R M) = AnnR(M/N).
Also, Max(M) and Min(M) will denote the set of all maximal and minimal
submodules of M , respectively. Recall that, (R,m) is a quasi-local ring if m
is the only maximal ideal of R.
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A proper submodule P of M is a prime submodule, if for r ∈ R and m ∈ M ,
whenever rm ∈ P implies that either r ∈ (P :R M) or m ∈ P . If P is prime,
then the ideal p := (P :R M) is a prime ideal of R. In this case, P is said
to be p-prime submodule of M , see [12]. Equivalently, for ideal I of R and
m ∈ M whenever Im ⊆ P , then I ⊆ AnnR(M/P ) or m ∈ P . If Q is a
maximal submodule of M , then Q is a prime submodule and (Q : M) := m
is a maximal ideal of R. In this case, we say Q is an m-maximal submodule
of M , see [11, p. 61].

A module M on a ring R (not necessarily commutative) is called prime if
for every nonzero submodule K of M , Ann(K) = Ann(M). An R-module M
is called a multiplication module, if every submodule N of M has the form
N = IM for some ideal I of R, and in this case, N = (N :R M)M , see [5].
An R-module M is an r-multiplication (r-m, for short) module, if for every
proper ideal I of R there exists a proper submodule N of M with N = IM .
Equivalently, for every proper ideal I of R, IM ̸= M , see [13, Definition 3.1].

Let M be an R-module and N ≤ M . If there exists a submodule K of M
such that M = N +K and N ∩K = 0, then N is called a direct summand of
M , denoted by N ≤⊕ M , and we will write M = N ⊕K. A submodule N of
M is called small (superfluous), denoted by N ≪ M , if for every submodule
L of M , N + L = M , implies that L = M . Clearly, the zero submodule of
every nonzero module is superfluous. Dually, a submodule N of M is called
essential, denoted by N ≤e M , if for every submodule X of M , N ∩X = 0,
provide that X = 0. Note that 0 ≤e M if and only if M = 0. Also, note that
N always has at least one essential extension, since N ≤e N . In particular,
an ideal I of R is small (resp., essential) if I is a small (resp., essential)
submodule of R as an R-module. We denote by I ⊆e R (resp., I ⊆⊕ R)
an essential ideal (resp., a direct summand) of R. Gilmer [9, p.60] defined
the concept of cancellation ideal to be an ideal I of R which satisfies the
following: whenever AI = BI with A and B are ideals of R implies A = B.
An R-module M is called a cancellation module whenever IM = JM with I
and J are ideals of R implies that I = J .

By [3, Proposition 9.13], the Jacobson radical of M , denoted by J(M) is
the intersection of all maximal submodules of M and also it is the sum of all
small submodules of M , i.e., J(M) =

∩
m∈Max(M)m =

∑
N≪M N . If M does

not have maximal submodules, we put J(M) = M . Consequently, if J(M)
is a small submodule of M , then J(M) is the largest small submodule of
M . Moreover, if M is a finitely generated nonzero module, then M ̸= J(M).
Dually, for any R-module M , the sum of all minimal submodules of M is
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called the socle of M , denoted Soc(M). If M has no minimal submodules,
we have Soc(M) = 0. The module M is said to be semisimple provided
Soc(M) = M . For more details we refer the reader to [3, 5, 6, 9, 14, 15]. It
is well known that if M is a semisimple module, then the zero submodule is
the only small submodule of M and also M is the only essential submodule
of M .

The concept of small submodules has been generalized by some researches,
for this see [2, 6, 8, 14]. In [2], the authors introduced the concept of
annihilator-small submodules of any right R-module M . For a unitary right
R-module M on an associative ring R with identity, a submodule K of MR

is annihilator-small if K + T = M , such that T is a submodule of MR, im-
plies that ℓS(T ) = 0, where ℓS(T ) indicates the left annihilator of T over
S = End(MR). In [6] the authors introduced the concept of small submod-
ules with respect to an arbitrary submodule. Recall that a submodule N of
M is called, T -small in M denoted by N ≪T M , in case for any submodule
X ≤ M , T ⊆ N +X, implies that T ⊆ X. In [10], the author introduced the
concept of a semiannihilator small submodule N in M such that N is called
semiannihilator small (sa-small for short), denoted by N ≪sa M , if for every
submodule L of M with N + L = M , implies that Ann(L) ≪ R.

In this paper, we introduce a new class of submodules in M , namely T -semi-
annihilator small submodules of M with respect to an arbitrary submodule
T of M . A submodule N of M is T -semi-annihilator small in M provide
that for each submodule X of M with T ⊆ N +X, implies that Ann(X) ≪
(T : M). We investigate some results concerning to this class of submodules
and we explore the properties and the behaviour of this structure under ring
homomorphism, localization, direct sums and tensor product of them with a
faithfully flat R-module.

2. Preliminaries
In this section, we will provide the definitions and results which are

necessary in the next section. We recall that R is a von Neumann regular
ring (associative, with 1, not necessarily commutative) if for every element a
of R, there is an element b ∈ R with a = aba. These rings are characterized
by the fact that every R-module is flat.

Definition 2.1. Let N be a submodule of an R-module M .
(i) N is called an R-annihilator-small (briefly, R-a-small) submodule of

M , denoted by N ≪a M , if N + X = M for some submodule X of
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M , implies that AnnR(X) = 0. We denote the set of all R-a-small
submodules of M by Sa(M), see [1, Definition 2.1].

(ii) N is called semiannihilator small (sa-small for short) submodule, de-
noted by N ≪sa M , if for every submodule X of M with N +X = M ,
implies that Ann(X) ≪ R. We denote the set of all sa-small submod-
ules of M by Ssa(M). Particularly, an ideal I of R is a sa-small ideal,
if it is a sa-small submodule of R as an R-module, see [10].

(iii) M is called a semiannihilator hollow (sa-hollow for short) module
if every proper submodule of M is sa-small in M , i.e.,
L(M) \ {M} = Ssa(M), see [10, p. 17].

Clearly, every R-a-small submodule is also a sa-small submodule. Obvi-
ously, if M is a faithful R-module, then every small submodule is R-a-small
submodule in M , and so is sa-small in M . Example 2.2 (ii) shows that being
faithful to the module, is a necessary condition for this ruling. The converse
is not true, see Example 2.2 (iii).

Example 2.2. (i) Consider M = Z8 as a Z8-module. Then
Sa(Z8) = Ssa(Z8) = {⟨0̄⟩, ⟨2̄⟩, ⟨4̄⟩}.

(ii) Consider the uniserial module M = Z2n as a Z-module. Then ev-
ery nonzero proper submodule of M is of the form N = ⟨2k⟩ such that
1 ≤ k ≤ n− 1 and also AnnZ(Z2n) = 2nZ ̸≪ Z. Obviously, 0 is not sa-small
in M . Therefore Sa(M) = Ssa(M) = ∅, while S(M) = L(M) \ {M} where
S(M) is the set of all small submodules of M .

(iii) Consider M = Z as a Z-module. Then S(Z) = {0}. Suppose that
nZ + mZ = Z. Thus (n,m) = 1, if n ̸= 1, then AnnZ(mZ) = 0 and so
Sa(Z) = Ssa(Z) = L(Z) \ {Z}. In fact, Z is sa-hollow as a Z-module. This
implies that a sa-small submodule need not be small.

Note 2.3. We know that an ideal I of R is small in R if and only if I ⊆ J(R).
Therefore a submodule N of a module M is sa-small in M if N +X = M for
a submodule X of M , implies that Ann(X) ⊆ J(R).

Definition 2.4. An R-module M is said to be a comultiplication module if for
every submodule N of M there exists an ideal I of R such that N = AnnM(I).
An R-module M satisfies the double annihilator condition (DAC for short),
if for each ideal I of R, I = AnnR(AnnM(I)). Also, M is said to be a strong
comultiplication module, if M is a comultiplication module which satisfies
DAC, see [4, Definition 2.1].
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For example, the Z -module Z2∞ is a comultiplication module since all of
its proper submodules are of the form (0 :M 2kZ) for k = 0, 1, . . . . It is
clear that M is comultiplication if and only if for every submodule N of
M , AnnM(AnnR(N)) = N . Note that, if M is a strong comultiplication R-
module, then there exists exactly one ideal I of R with N = (0 :M I). In the
following, we recall some of basic important properties of small submodules
which are needed in the rest of the article.

Theorem 2.5. Let M be a module with submodules K ≤ N ≤ M and
H ≤ M . Then,

(i) N ≪ M if and only if K ≪ M and N/K ≪ M/K, see [3, Proposition
5.17].

(ii) H +K ≪ M if and only if H ≪ M and K ≪ M , see [3, Proposition
5.17].

(iii) If K ≪ M and f : M → N is a homomorphism, then f(K) ≪ f(M)
and f(K) ≪ N . In particular, if K ≪ M ≤ N , then K ≪ N , see [3,
Lemma 5.18] and [15, Remark 2.8, (4)].

(iv) Suppose that K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M and M = M1⊕M2. Then
(a) K1 ⊕K2 ≪ M1 ⊕M2 if and only if K1 ≪ M1 and K2 ≪ M2, see

[3, Proposition 5.20].
(b) K1 ⊕K2 ≤e M1 ⊕M2 if and only if K1 ≤e M1 and K2 ≤e M2, see

[3, Proposition 5.20].
(v) Each finite sum of small submodules of M is a small submodule in M ,

see [15, Remark 2.8].
(vi) If N ≤ X ≤⊕ M , then N ≪ X if and only if N ≪ M , see [15, Remark

2.8].

3. Sa-small submodules w.r.t. an arbitrary submodule
In this section, we introduce the concept of T -sa-small submodule in M

with respect to an arbitrary submodule T of M as a special case of sa-small
submodule and discuss some of its basic properties. Moreover, we investigate
some new other properties of the sa-small submodules and we will generalize
these properties to T -sa-small submodules and we supply some examples.

We begin this section with the following definition.

Definition 3.1. Let M be an R-module and T,N ≤ M with T ⊈ N .
(i) N is a T -semi-annihilator small (briefly, T -sa-small) submodule of M ,

denoted by N ≪sa
T M , provided for every submodule X ≤ M with
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T ⊆ N +X implies that Ann(X) ≪ (T :R M) = AnnR(M/T ). Equiv-
alently, if for a submodule X of M , Ann(X) is not small in (T :R M),
then T ⊈ N+X. The set of all T -sa-small submodules of M is denoted
by SsaT (M). In particular, for an arbitrary ideal A of R, we say that an
ideal I of R is an A-sa-small ideal of R if I is an A-sa-small submodule
of R as an R-module.

(ii) We say that M is a T -sa-hollow module if every submodule N of M is
T -sa-small. The sum of all T -sa-small submodules of M is denoted by
JsaT (M).

(iii) Let f : M → N be an R-epimorphism and T ≤ M , we say that f is a
T -sa-small epimorphism, in case Ker(f) ≪sa

T M .

Note 3.2. Let M be an R-module and T ≤ M .
(i) Assume that N ∈ SsaT (M). If T ⊆ N +X for some submodule X of M ,

then clearly Ann(M) ≪ (T : M) because Ann(M) ⊆ Ann(X). In fact,
if N ≪sa

T M and Ann(M) ̸≪ (T : M), then for every proper submodule
X of M , T ⊈ N +X.

(ii) For every submodule K of M , K ≪sa
T M if and only if R-epimorphism

p
K
: M → M/K is a T -sa-small epimorphism.

The following example shows that the concepts of small and T -sa-small
submodules are different from each other in general.

Example 3.3. (i) Consider M = Z as a Z-module. Then Z is a T -sa-
hollow Z-module for every submodule T = kZ (k ≥ 0) of Z, because if
kZ ⊆ mZ+nZ = (m,n)Z, then 0 = AnnZ(nZ) ≪ (kZ :Z Z) = kZ. Therefore
SsaT (Z) = L(Z). Note that Z is a faithful prime Z-module and 0 is the only
small submodule of Z.

(ii) Let p be an arbitrary prime number and n be any positive integer.
Then M = Zpn is a uniserial Z-module of length n. Clearly, all proper
submodules of M are small in M , but SsaT (M) = ∅ for every submodule T of
M , because let T = ⟨pk⟩ for some 1 ≤ k < n, then T ⊆ ⟨pn−1⟩ + ⟨pk−1⟩, but
AnnZ(⟨pk−1⟩) = pn−k+1Z ̸≪ (⟨pk⟩ :Z Zpn) = pn−kZ.

Note that if T ∈ L∗(M) and T ≤ N ≤ M , then N /∈ SsaT (M), otherwise,
since T ⊆ N + 0, by assumption, R = Ann(0) ≪ (T :R M) implies that
(T :R M) = R = 0 which is not possible.

Proposition 3.4. Let M be a nonzero R-module and T,N ≤ M with T ⊈ N .
If there exists a submodule T ′ ⊆ T with T ′ ⊈ N such that N ≪sa

T ′ M , then
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N ≪sa
T M . In particular, if for some m ∈ T \ N we have N ≪sa

Rm M , then
N ≪sa

T M .

Proof. Assume that T ⊆ N + X for some submodule X of M . Then
T ′ ⊆ N + X and by assumption, Ann(X) ≪ (T ′ : M). By Theorem 2.5
(iii), Ann(X) ≪ (T : M) since (T ′ : M) ⊆ (T : M). By taking T = Rm, the
second part will be obtained. □

The following theorem states the conditions (i) and (ii) under which a
module M is T -sa-hollow for a submodule T of M .

Theorem 3.5. Let M be a nonzero R-module and T ≤ M . Then the following
assertions hold.

(i) If M is a faithful prime R-module, then M is T -sa-hollow.
(ii) If Ssa0 (M) ̸= ∅, then M is a faithful prime module. Furthermore, M is

T -sa-hollow.

Proof. (i) Suppose that N is an arbitrary submodule of M and T ⊆ N +X
for some submodule X ≤ M . Then by assumption, Ann(X) = Ann(M) = 0
which is small in (T : M), so N ≤sa

T M , as needed.
(ii) Let N be a 0-sa-small submodule of M . Then for all nonzero submod-

ules X of M , since 0 ⊆ N +X, by assumption, Ann(X) ≪ Ann(M). Now,
since Ann(M) ⊆ Ann(X), Ann(X) = Ann(M). This is impossible unless
Ann(X) = Ann(M) = 0 for every nonzero submodule X of M , because the
nonzero ideal Ann(X) is never small in itself. This implies that M is a faithful
prime module. The second part is a result from (i). □
Note 3.6. Let M be an R-module and take T = M Then the notions of
T -sa-small submodules and sa-small submodules are equal.

In the following theorem, we prove that in a local ring the concepts of small
ideals, a-small ideals and sa-small ideals are identical.

Theorem 3.7. Let (R,m) be a local ring. Then
S(R) = Sa(R) = Ssa(R) = L(R) \ {R}.

Proof. We prove that every proper ideal of R is small in R. Assume that
I is a proper ideal of R with I + X = R for some ideal X of R. Then
m +X = R and this implies that X = R, because otherwise X ⊆ m and so
m + X = m ⊊ R which is a contradiction. Hence I ∈ S(R). Similarly, we
conclude that I +X = R implies that Ann(X) = 0 and so Ann(X) ≪ R, as
needed. □
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Proposition 3.8. Let K and N be submodules of an R-module M such that
K +N = M . Then the following assertions hold.

(i) If Ann(K) ̸= 0, then N ̸≪a M .
(ii) If Ann(K) ̸≪ R, then N ̸≪sa M .

Proof. The proofs are straightforward. □

Proposition 3.9. Let M be a faithful R-module and N ∈ L(M). If
Ann(N) ⊆e R, then N ≪a M .

Proof. Suppose that N + K = M for some submodule K of M . Since
Ann(N) ∩ Ann(K) = Ann(N + K) = Ann(M) = 0, hence Ann(K) = 0,
as needed. □

Theorem 3.10. Let M be an R-module and T ≤ M . Then the following
assertions hold.

(i) Every T -sa-small submodule of M is a sa-small submodule of M .
(ii) Assume that M is a prime cancellation multiplication module and

N ≤ T ≤⊕ M . If N ≪sa M , then N ≪sa
T M .

Proof. (i) Assume that N ≪sa
T M and N +K = M for some submodule K of

M . Since T ⊆ N +K and N ≪sa
T M , Ann(K) ≪ (T : M) ≤ R. By Theorem

2.5 (iii), Ann(K) ≪ R and so N ≪sa M .
(ii) Suppose that M = T +T ′ for some submodule T ′ of M and T ⊆ N+K

for some submodule K of M . This implies that M = T + T ′ ⊆ N +K + T ′

and so N + K + T ′ = M . By assumption, Ann(K + T ′) ≪ R. Since M is
prime,

Ann(K + T ′) = Ann(K) ⊆ (T : M) ⊆ R.

Since M is a cancellation multiplication module, (T : M) ⊆⊕ R and by
Theorem 2.5 (vi), Ann(K) ≪ (T : M), as needed. □

The following example shows that in general the concepts of small sub-
modules and sa-small submodules are independent from each other. In (iii),
we show that the converse of Theorem 3.10 (i), is not true in general. Also,
(iv) shows that for R-modules M,M ′, if f : M → M ′ is an R-epimorphism,
then the image of a T -sa-small submodule of M need not be an f(T )-sa-small
submodule in M ′.

Example 3.11. Let Z and Zn be the rings of integers and integers modulo
n, respectively.
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(i) Consider M = Z6 as a Z-module. Since AnnZ(Z6) = 6Z is not a small
ideal of Z, hence ⟨0⟩ /∈ Ssa(Z6) whereas ⟨0⟩ ∈ S(Z6). We note that the
only nonzero proper submodules of Z6 are N = ⟨2⟩ and L = ⟨3⟩ where
N + L = Z6 and both of AnnZ(N) = 3Z and AnnZ(L) = 2Z are not
small ideals of Z. It concludes that Ssa(Z6) = ∅ whereas S(Z6) = {⟨0⟩}.

(ii) We take the Z-module M = 2Z × Z8. Then N = ⟨(0, 0̄)⟩ is a sa-
small submodule of M but N is not a T -sa-small submodule of M
for submodule T = ⟨(0, 4̄)⟩ of M , since T ⊆ N + ⟨(0, 2̄)⟩ whereas
AnnZ(⟨(0, 2̄)⟩) = 4Z is not small in (T :Z M) = 0.

(iii) Consider the natural Z-epimorphism π : Z −→ Z8 where π(n) = n.
Take N = 0 and T = 2Z. Clearly, 0 ≪sa

2Z Z because we have 2Z ⊆ 0+2Z
and also 2Z ⊆ 0 + Z, then

0 = AnnZ(2Z) ≪ (2Z :Z Z) = 2Z,

0 = AnnZ(Z) ≪ (2Z :Z Z) = 2Z.

But π(N) = π(0) = ⟨0̄⟩ is not π(T )-sa-small submodule of Z8 since
π(T ) = ⟨2̄⟩ and ⟨2̄⟩ ⊆ ⟨0̄⟩+ Z8 whereas AnnZ(Z8) = 8Z is not small in
(⟨2̄⟩ :Z Z8) = 2Z.

Theorem 3.12. Let M be an R-module and N ≤ K ≤ M . Then we have:
(i) Let T ≤ T ′ ⪇ M . If N ≪sa

T M , then N ≪sa
T ′ M .

(ii) If K ≪sa
T M , then N ≪sa

T M . If M is a faithful prime R-module, the
converse is also true.

(iii) Let T ⊆ K. Then N ≪sa
T M if and only if N ≪sa

T K.

Proof. (i) Assume that T ′ ⊆ N + X for some submodule X of M . Then
T ⊆ N + X and so Ann(X) ≪ (T : M) ≤ (T ′ : M). By Theorem 2.5 (iii),
Ann(X) ≪ (T ′ : M) as we needed.

(ii) Assume that T ⊆ N+X for some submodule X of M . Then T ⊆ K+X.
By assumption, Ann(X) ≪ (T : M) and so N ≪sa

T M . Conversely, let
N ≪sa

T M and T ⊆ K + X for some submodule X of M . By assumption,
Ann(X) = Ann(M) = 0 is small in (T : M), as needed.

(iii) (⇒) It is clear.
(⇐) Let T ⊆ N + L for some submodule L of M . Then by the modular

law T ⊆ (N + L) ∩K = N + (L ∩K). Since N ≪sa
T K,

Ann(L) ⊆ Ann(L ∩K) ≪ (T :R M)

and this implies that Ann(L) ≪ (T :R M) and so the proof is complete. □
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Proposition 3.13. Let M = N ⊕K be a multiplication R-module such that
N,K are finitely generated nonzero submodules of M . Then N and K are
not sa-small in M .

Proof. By [7, Corollary 2.3], Ann(N)+Ann(K) = R. If N ≪sa M , then since
M = N +K, Ann(K) ≪ R and so Ann(N) = R. It concludes that N = 0
which is impossible. □
Proposition 3.14. Let M be an R-module. Then the following assertions
hold.

(i) 0 ∈ Ssa(M) if and only if Ann(M) ⊆ J(R).
(ii) If R is a field, then every proper submodule of M is sa-small.
(iii) If M is a prime module and Ann(M) ⊆ J(R), then every proper sub-

module of M is sa-small. Furthermore, S(M) ⊆ Ssa(M).

Proof. (i) The proof is straightforward.
(ii) Suppose that N ⪇ M such that N + X = M for some submodule X

of M . If Ann(X) = 0, then Ann(X) ≪ R and the proof is complete. If
Ann(X) = R, then X = 0 and hence N = M , which is a contradiction.

(iii) The proof is clear. □
Theorem 3.15. Let M be an R-module and N a proper submodule of M
which is not sa-small in M . Then R is not a field.

Proof. Since N ̸≪sa M , hence there exists a submodule X of M such that
N + X = M and Ann(X) ̸≪ R. Then clearly, Ann(X) is a nontrivial ideal
of R and the proof is complete. □

Recall that a ring is perfect if and only if it satisfies DCC on its principal
ideals.

Proposition 3.16. Let M be a nonzero finitely generated R-module. Then
the following statements are equivalent:

(i) The zero submodule is a sa-small submodule of M ;
(ii) Ann(M) ⊆ J(R);
(iii) M is r-m;
(iv) Mm ̸= 0 for every m ∈ Max(R);
(v) R is a perfect quasi-local ring.

Proof. (i) ⇔ (ii): By Proposition 3.14 (i).
(ii) ⇔ (iii) ⇔ (iv): By [13, Proposition 3.6].
(iii) ⇔ (v): By [13, Corollary 3.4]. □
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The following corollary follows by [13, Proposition 3.3].

Corollary 3.17. Let M be a nonzero finitely generated module on a quasi-
local ring (R,m). Then the following assertions are equivalent to above
equivalences:

(i) Max(M) ̸= ∅;
(ii) There is an m ∈ M such that Rm /∈ S(M).

In the following theorem (i), we present a condition that the ring R not to
be semisimple. Also, in (ii), we show that in a sa-hollow ring R, the only
nonzero idempotent element is the identity element 1R.

Recall that an element x ∈ R is a zero-divisor, if there exists a nonzero
y ∈ R such that xy = 0. We denote the set of zero-divisors from a ring R by
Z(R).

Theorem 3.18. Let R be a ring. Then the following statements are true:
(i) Let R be a sa-hollow ring. If x ∈ Z(R), then R ̸= Rx + Ry for some

y ∈ R. Moreover, e = 1 is the only nonzero idempotent element of R.
(ii) If R is a von Neumann regular ring, then none of the nonzero finitely

generated ideals of R is a sa-small ideal of R.
(iii) Suppose that M is a faithful multiplication module on an integral

domain R. Then every proper submodule of M is sa-small in M .

Proof. (i) Assume that x ∈ Z(R). Then there exists an element 0 ̸= y ∈ R
such that xy = 0. Let R = Rx + Ry.Then Ry ⊆ Ann(Rx) ≪ R. This
implies that Ry ≪ R, hence Rx = R and so x ∈ U(R) which is a contra-
diction. Furthermore, assume that e is an idempotent element of R. Since
R(1 − e) + Re = R, by assumption, R(1 − e) ⊆ Ann(Re) ≪ R. Thus,
R(1− e) ≪ R and so Re = R. It concludes that e = 1.

(ii) The proof follows from the fact that since R is a von Neumann regular
ring, hence every finitely generated ideal I of R is a direct summand of R
such that I = Re with e2 = e. Thus R = Re ⊕ R(1 − e). By proof of (i), I
can not be a sa-small ideal of R.

(iii) Clearly, the zero submodule is sa-small in M , because 0 + M = M
and we have Ann(M) = 0 is small in R. Now, assume that N is a nonzero
submodule of M and N + K = M for some submodule K of M . Then
K = IM for some nonzero ideal I of R. Let r ∈ Ann(K). Then r(IM) = 0,
so rI = 0. It concludes that r = 0 since R is an integral domain. Hence
Ann(K) = 0 which is a small ideal of R, as needed. □
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Proposition 3.19. Let M be a strong comultiplication module and
N + L = M for submodules N,K of M . Then N ≪sa M if and only if
L ≤e M .

Proof. Suppose that N + L = M . Then by assumption, Ann(L) ≪ R. By
[16, Theorem 2.5], L = (0 :M AnnR(L)) is an essential submodule of M if
and only if L ≤e M . □

The following proposition describes the relation between T -sa-small sub-
modules of an R-module M and (T : M)-sa-small ideals of R for an arbitrary
submodule T of M .

Proposition 3.20. Let M be a multiplication R-module. If N ≪sa M (resp.,
N ≪sa

T M), then (N : M) ≪sa R (resp., (N : M) ≪sa
(T :M) R). The converse

is true if M is also a finitely generated faithful module. Furthermore, in this
case, JsaT (M) = Jsa(T :M)(R)M .

Proof. (⇒) Let (N : M) + J = R for some ideal J of R. Thus
(N : M)M + JM = M . Since M is multiplication, N + JM = M and
so Ann(JM) ≪ R. From Ann(J) ⊆ Ann(JM), we infer that Ann(J) ≪ R
and so (N : M) ≪sa R, as we needed.

(⇐) Suppose that (N : M) ≪sa R and N +K = M for some submodule K
of M . By [7, p. 756], (N : M)M + (K : M)M = RM . Since M is a finitely
generated faithful multiplication module, M is a cancellation module and so
(N : M) + (K : M) = R. By assumption, Ann(K : M) ≪ R. Since M is a
faithful module, Ann(K : M) = Ann(K) ≪ R.

Similarly, assume that N ≪sa
T M and (T : M) ⊆ (N : M) + J for some

ideal J of R. Since M is a multiplication module,

T = (T : M)M ⊆ (N : M)M + JM = N + JM .

By assumption, Ann(J) ⊆ Ann(JM) ≪ (T :R M) and so

Ann(J) ≪ (T :R M)

as we needed. Conversely, let (N : M) ≪sa
(T :M) R and T ⊆ N +K for some

submodule K of M . Therefore

T = (T : M)M ⊆ (N : M)M + (K : M)M = ((N : M) + (K : M))M

and so (T : M) ⊆ (N : M) + (K : M) because M is a cancellation module.
Since (N : M) ≪sa

(T :M) R, we infer that Ann(K : M) ≪ (T : M). Since M is
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faithful, Ann(K : M) = Ann(K) ≪ (T : M) and the proof is complete. For
the second part we note that

JsaT (M) :=
∑

N≪sa
T M

N =
∑

N≪sa
T M

(N : M)M

:=

 ∑
(N :M)≪sa

(T :M)R

(N : M)

M = Jsa(T :M)(R)M.

□

Corollary 3.21. Let M be a faithful finitely generated multiplication R-
module and T ≤ M . Then M is a T -sa-hollow module if and only if R is a
(T : M)-sa-hollow ring.

Proposition 3.22. Let M be an R-module with submodules N ≤ K and
T ≤ M . Then the following statements are true:

(i) Assume that M and M ′ are R-modules and f : M → M ′ is an R-
epimorphism. If N ′ ≪sa

T ′ M ′ for some submodule T ′ of M ′, then
f−1(N ′) ≪sa

f−1(T ′) M .
(ii) Let N ⪇ T ≤ M be submodules of M . If K/N ≪sa

T/N M/N , then
K ≪sa

T M and N ≪sa
T M .

(iii) Let M be a Noetherian R-module and S be a m.c.s. of R. Then S−1N
is an S−1T -sa-small submodule of S−1R-module S−1M if and only if
N is a T -sa-small submodule of M .

Proof. (i) Suppose that f−1(T ′) ⊆ f−1(N ′) + L for some submodule L of M .
Since f is an R-epimorphism, hence

T ′ = f(f−1(T ′)) ⊆ f(f−1(N ′) + L) ⊆ N ′ + f(L).

Since N ′ ≪sa
T ′ M ′, hence Ann(f(L)) ≪ (T ′ : M ′) and so

Ann(L) ⊆ Ann(f(L)) ≪ (T ′ :R M ′) = (f−1(T ′) :R M).

It implies that Ann(L) ≪ (f−1(T ′) :R M) and the proof is complete.
(ii) Assume that K/N ≪sa

T/N M/N and also, T ⊆ K+L for some submodule
L of M . Then T/N ⊆ (K + L)/N = K/N + L/N implies that

Ann(L/N) ≪ (T/N : M/N) = (T : M).

Since Ann(L) ⊆ Ann(L/N) ≪ (T : M), hence Ann(L) ≪ (T : M). It
concludes that K ≪sa

T M and by (ii), N ≪sa
T M .
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(iii) Since X is a finitely generated submodule of M , hence we have S−1(0 :R
X) = (S−10 :S−1R S−1X). Suppose that T ⊆ N + X, we must show that
AnnR(X) ≪ (T :R M). Note that

S−1T ⊆ S−1(N +X) = S−1N + S−1X.

By assumption, AnnS−1R(S
−1X) ≪ (S−1T :S−1R S−1M). Therefore

AnnS−1R(S
−1X) : = (S−10 :S−1R S−1X) = S−1(0 :R X)

≪ S−1(T :R M) = (S−1T :S−1R S−1M).

This implies that AnnR(X) ≪ (T :R M). Similarly, one can check that the
converse is also true. □
Corollary 3.23. Let f : M → M ′ be an R-epimorphism and T ′ ≤ M ′. If
M ′ is a T ′-sa-hollow module, then M is an f−1(T ′)-sa-hollow module.

Proof. Assume that K is a submodule of M . Then f(K) ≪sa
T ′ M ′ since M ′ is

a T ′-sa-hollow module. By Proposition 3.22 (i), f−1(f(K)) is an f−1(T ′)-sa-
small submodule of M . Since K ⊆ f−1(f(K)), by Proposition 3.22 (i), K is
also an f−1(T ′)-sa-small submodule of M . □

The following example shows that the converse of Proposition 3.22 (ii) is
not true.

Example 3.24. Consider the Z-module M = Z. Take T = 2Z, K = 4Z
and N = 8Z. Then 8Z is a 2Z-sa-small submodule of Z, because if
2Z ⊆ 8Z + kZ, for some submodule kZ of Z, then either (k, 8) = 2 or
(k, 8) = 1. In any case, 0 = AnnZ(kZ) ≪ (2Z :Z Z) = 2Z, but K/N = 4Z/8Z
is not a 2Z/8Z-sa-small submodule of Z/8Z, because if

2Z/8Z ⊆ 4Z/8Z+ kZ/8Z
for some submodule kZ/8Z of Z/8Z, then 2Z ⊆ 4Z+ kZ = (4, k)Z. If k = 2,
then AnnZ(2Z/8Z) = 4Z is not small in (2Z/8Z :Z Z/8Z) = 2Z. If k = 1,
then AnnZ(Z/8Z) = 8Z is not small in (2Z/8Z :Z Z/8Z) = 2Z.

We recall that for an ideal I of a ring R the radical of I is defined by
rad(I) = {x ∈ R | xn ∈ I for somen ∈ N}. Let N be a proper submodule
of M . Then the prime radical of N , denoted by rad(N), is defined to be the
intersection of all prime submodules of M containing N , and in case N is not
contained in any prime submodule, then rad(N) is defined to be M .

Lemma 3.25. If I ≪sa R, then rad(I) ≪sa R.

Proof. Let rad(I) + J = R for some ideal J of R. Since
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rad(I) + J ⊆ rad(I) + rad(J), rad(I) + rad(J) = R.
This implies that rad(I + J) = R and so I + J = R. Hence Ann(J) ≪ R,
since I ≪sa R and so rad(I) ≪sa R. □
Theorem 3.26. Let M be a finitely generated faithful multiplication R-
module. If N ≪sa M , then rad(N) ≪sa M .
Proof. By [12, Theorem 4], (rad(N) : M) = rad(N : M). Since N ≪sa M , by
Proposition 3.20, (N : M) ≪sa R and by Lemma 3.25, rad(N : M) ≪sa R.
It concludes that (rad(N) : M) ≪sa R. Again using Proposition 3.20, we
find that rad(N) ≪sa M . □

In the following theorem, we will present a condition that a sa-small sub-
module of M is not a direct summand of M .

Proposition 3.27. Let N be a nonzero sa-small submodule of M such that
N +K = M for some submodule K of M . If (N : K) + (K : N) = R, then
the sum N +K is not direct.
Proof. Contrary, assume that N ∩K = 0. Then clearly (N : K) = Ann(K)
and (K : N) = Ann(N). Thus (N : K)+(K : N) = Ann(K)+Ann(N) = R.
By assumption, N ∈ Ssa(M) and N +K = M , hence Ann(K) ≪ R and so
Ann(N) = R. This implies that N = 0 which is a contradiction. □

We recall that two ideals I and J of R are comaximal ideals of R, whenever
I + J = R.

Corollary 3.28. Let I and J be nonzero comaximal ideals of R. If either I
or J is sa-small ideal in R, then R is not semisimple.
Corollary 3.29. Every sa-hollow semisimple ring is a field.
Proof. Assume that I is a nonzero ideal of R. By assumption, I ⊆⊕ R. Then
by the proof of Proposition 3.27, I is not a sa-small ideal of R which is a
contradiction. □
Theorem 3.30. Let f : M → N be an R-monomorphism and T ≤ M . If
K ≪sa

T M , then f(K) ≪sa
f(T ) f(M).

Proof. Assume that f(T ) ⊆ f(K) + L for some submodule L of f(M). We
must show that Ann(L) ≪ (f(T ) :R f(M)). Take t ∈ T , then f(t) = f(k)+s
for some k ∈ K and s ∈ L. Hence f(t− k) ∈ L and so t− k ∈ f−1(L). This
implies that t ∈ K + f−1(L). Therefore T ⊆ K + f−1(L) and by assumption,
Ann(f−1(L)) ≪ (T :R M). Now, we claim that (T :R M) = (f(T ) :R f(M)).
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Clearly, if r ∈ (T :R M), then rM ⊆ T and so f(rM) = rf(M) ⊆ f(T )
which implies that r ∈ (f(T ) :R f(M)). Conversely, let r ∈ (f(T ) :R f(M)),
then rf(M) = f(rM) ⊆ f(T ). Since f is a monomorphism, hence

rM ⊆ f−1(f(rM)) ⊆ f−1(f(T )) = T .

□

Recall that an R-epimorphism f : M → N is a T -sa-small epimorphism
for some submodule T ≤ M , whenever Ker(f) ≪sa

T M .

Theorem 3.31. Let f : N → K be an R-monomorphism and T ≤ N . If
g : K → M is an f(T )-sa-small epimorphism, then g ◦ f : N → M is also a
T -sa-small epimorphism.

Proof. Assume that T ⊆ Ker(g ◦ f) + X for some submodule X of N . We
show that Ann(X) ≪ (T : N). Since Ker(g ◦ f) = f−1(Ker(g)), we have

f(T ) ⊆ f(Ker(g ◦ f)) + f(X) ⊆ Ker(g) + f(X).

Since Ker(g) ≪sa
f(T ) K, by assumption, Ann(f(X)) ≪ (f(T ) :R K).

We have (f(T ) :R K) ⊆ (T :R N), because if r ∈ (f(T ) :R K) and
x ∈ N , then rf(x) = f(rx) ∈ f(T ). Since f is monomorphism, hence
rx ∈ f−1(f(T )) = T . It concludes that r ∈ (T :R N). Thus

Ann(X) ≪ (T :R N),

since Ann(X) ⊆ Ann(f(X)), and the proof is complete. □

We recall that an R-module F is called flat if whenever N → K → L is
an exact sequence of R-modules, then F ⊗ N → F ⊗ K → F ⊗ L is an
exact sequence as well. An R-module F is called faithfully flat, whenever
N → K → L is an exact sequence of R-modules if and only if

F ⊗N → F ⊗K → F ⊗ L

is an exact sequence.

Theorem 3.32. Let M be an R-module and F be a faithfully flat R-module
and N, T ≤ M . Then the following statements are true:

(i) If F ⊗ N is a sa-small submodule of F ⊗ M , then N is a sa-small
submodule of M .

(ii) If F ⊗ N is a F ⊗ T -sa-small submodule of F ⊗ M , then N is a
T -sa-small submodule of M .
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Proof. (i) Let N +K = M for some submodule K of M . Then

F ⊗ (N +K) = F ⊗N + F ⊗K = F ⊗M.

By assumption, Ann(K) = Ann(F ⊗ K) ≪ R and so N ≪sa M , as we
needed.

(ii) Let T ⊆ N +K. Then F ⊗T ⊆ F ⊗ (N +K) = F ⊗N +F ⊗K. Now,
since F ⊗ N ≪sa

F⊗T F ⊗ M , hence Ann(F ⊗ K) ≪ (F ⊗ T :R F ⊗ M). It
concludes that Ann(K) ≪ (T :R M) and so N ≪sa

T M . □

Conclusions
Investigating the properties of small submodules and new generalizations

of them has been of interest for many years, see [2, 3, 6]. This motivates the
research in the direction of finding a new concept namely the semiannihilator
small submodules of an R-module M with respect to an arbitrary submodule
T of M which is related to small ideals of R. We call them T -sa-small sub-
modules of M such that this class of submodules of M is in general different
from the classical concept of small submodules and also class of sa-small sub-
modules, but in certain conditions they are equivalent. For example, if we
take T = M , then the notions of T -sa-small submodules and sa-small sub-
modules are the same. In Theorem 3.7, we proved that in a local ring R the
concepts of small, R-a-small and sa-small ideals are the same. In Theorem
3.9, we proved that in a faithful R-module M all submodules N of M such
that AnnR(N) ⊆e R are R-a-small submodules of M .

We showed that every T -sa-small submodule of M is a sa-small submodule
of M , see Theorem 3.10 (i). Among various results, in Theorem 3.18 (ii), we
proved that, if R is a von Neumann regular ring, then none of the finitely
generated ideals of R is a sa-small ideal of R. In addition, we proved that in
a faithful finitely generated multiplication R-module M there is a bijection
between the class of T -sa-small submodules of M and the class of (T : M)-
sa-small ideals of R (see Proposition 3.20). In Proposition 3.27, we proved
that if an R-module M has a nonzero sa-small submodule such as N , where
for some submodule K of M , N +K = M and (N : K) + (K : N) = R, then
M is not semisimple.

Several properties, examples and characterizations of annihilator small sub-
modules and T -sa-small submodules have been investigated. Moreover, we
investigated the properties and the behaviour of this structure under ring
homomorphism, localization, direct sums and tensor product of them with a
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faithfully flat R-module, see Proposition 3.22, Example 3.24 and Theorems
3.26, 3.30, 3.31, 3.32.
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S. RAJAEE, F. FARZALIPOUR AND M. POYAN

کوچک زیرمدول های از جدید رده بندی یک

پویان٣ ام. و پور٢ فرضعلی اف. رجائی١، اس.

ایران تهران، نور، پیام دانشگاه ریاضی، ١,٢,٣گروه

در باشد. غیرصفر یکانی R-مدول یک M و ١ ̸= ٠ با یکدار جابجایی حلقه ی یک R کنید فرض
از T-نیم-پوچساز زیرمدول های که می کنیم معرفی را M زیرمدول های از جدید مفهوم یک مقاله، این
زیرمدول یک M از N زیرمدول یک می شوند. نامیده M از T دلخواه زیرمدول یک به نسبت M
کند ایجاب T ⊆ N +X با M از X زیرمدول هر برای که صورتی در است کوچک T-نیم-پوچساز
زیرمدول ها این از جدید رده ی این با مرتبط نتایج تعدادی این، بر علاوه .Ann(X) ≪ (T : M) که

می کنیم. بررسی را
زیرمدول ،M وفادار مولد متناهی ضربی مدول یک برای که می کنیم ثابت ما مختلف، نتایج میان در
ایده آل یک (N : M) اگر تنها و اگر است M کوچک T-نیم-پوچساز زیرمدول یک M از N
همریختی تحت را ساختار این رفتار و خواص ما سرانجام، باشد. R کوچک T)-نیم-پوچساز : M)

بررسی را وفادار تخت R-مدول یک با آن ها تانسوری ضرب و مستقیم جمع های سازی، موضعی حلقه،
می کنیم.

ضربی. مدول کوچک، نیم-پوچساز زیرمدول کوچک، زیرمدول کلیدی: کلمات
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