(WEAKLY) (s, n)-CLOSED HYPERIDEALS IN COMMUTATIVE MULTIPLICATIVE HYPERRINGS

Document Type : Original Manuscript

Author

Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran.

Abstract

‎A multiplicative hyperring is a well-known type of algebraic hyperstructures which extends a ring to a structure in which the addition is an operation but the multiplication is a hyperoperation‎. ‎Let $G$ be a commutative multiplicative hyperring and $s,n \in \mathbb{Z}^+$‎. ‎A proper hyperideal $Q$ of $G$ is called (weakly) $(s,n)$-closed if ($0 \notin a^s \subseteq Q$ ) $a^s \subseteq Q$ for $a \in G$ implies $a^n \subseteq Q$‎. ‎In this paper‎, ‎we aim to investigate (weakly) $(s,n)$-closed hyperideals and give some results explaining the structures of these notions‎.

Keywords


 1. R. Ameri and A. Kordi, Clean multiplicative hyperrings, Italian Journal of Pure and Applied Mathematics, 35 (2015), 625–636.
2. R. Ameri and A. Kordi, On regular multiplicative hyperrings, Eur. J. Pure Appl. Math., 9(4) (2016), 402–418.
3. R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. St. Univ. ovidious Constanta, 25(1) (2017), 5–23.
4. R. Ameri and M. Norouzi, On commutative hyperrings, International Journal of Algebraic Hyperstructures and its Applications, 1(1) (2014), 45–58.
5. M. Anbarloei, A generalization of prime hyperideals, J. Algebr. Syst., 8(1) (2020), 113– 127.
6. M. Anbarloei, On 2-absorbing and 2-absorbing primary hyperideals of a multiplicative hyperring, Cogent Math., 4 (2017), 1–8.
7. M. Anbarloei, On 1-absorbing prime hyperideal and some of its generalizations, J. Math., (2022), Article ID: 4947019.
8. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39(5) (2011), 1646–1672.
9. D. F. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl., 16(1) (2017), 1–21.
10. E. Ay, G. Yesilot and D. Sonmez, δ-Primary hyperideals on commutative hyperrings, International Journal Mathematics and Mathematical Sciences, (2017), Article ID: 5428160, 4 pages.
11. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417–429.
12. J. Chvalina, Š. Křehlík and M. Novák, Cartesian composition and the problem of generalizing the MAC condition to quasi-multiautomata, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 24(3) (2016), 79–100.
13. P. Corsini, Prolegomena of hypergroup theory, Second ed., Aviani Editore, 1993.
14. P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Adv. Math., Kluwer Academic Publishers, 2003.
15. I. Cristea, Regularity of intuitionistic fuzzy relations on hypergroupoids, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 22(1) (2014), 105–119.
16. I. Cristea and S. Jancic-Rasovic, Compositions hyperrings, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 21(2) (2013), 81–94.
17. U. Dasgupta, On certain classes of hypersemirings, Ph.D. Thesis, University of Calcutta, 2012.
18. U. Dasgupta, On prime and primary hyperideals of a multiplicative hyperring, Annals of the Alexandru Ioan Cuza University-Mathematics, 58(1) (2012), 19–36.
19. B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
20. F. Farzalipour and P. Ghiasvand, Semiprime hyperideals in multiplicative hyperrings, 51th Annual Iranian Mathematics conference, 1 (2021), 801–804.
21. P. Ghiasvand and F. Farzalipour, 1-Absorbing prime avoidance theorem in multiplicative hyperrings, Palest. J. Math., 12(1) (2023), 900–908.
22. P. Ghiasvand and F. Farzalipour, On S-prime hyperideals in multiplicative hyperrings, Journal of Algebraic Hyperstructures and Logical Algebras, 2(2) (2021), 25–34.
23. L. Kamali Ardekani and B. Davvaz, Differential multiplicative hyperring, J. Algebr. Syst., 2(1) (2014), 21–35.
24. F. Marty, Sur une generalization de la notion de groupe, In: 8iem Congres des Mathematiciens Scandinaves, Stockholm, (1934), 45–49.
25. C. G. Massouros, On the theory of hyperrings and hyperfields, Algebra Logika, 24 (1985), 728–742.
26. A. A. Mena and I. Akray, n-absorbing I-prime hyperideals in multiplicative hyperrings, J. Algebr. Syst., 12(1) (2024), 105–121.
27. M. Novak, n-ary hyperstructures constructed from binary quasi-orderer semigroups, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 22(3) (2014), 147–168.
28. R. Procesi and R. Rota, On some classes of hyperstructures, Discrete Math., 208 (1999), 485–497.
29. R. Rota, Sugli iperanelli moltiplicativi, Rend. Di Math., Series VII, 4 (1982), 711–724.
30. M. K. Sen and U. Dasgupta, Some aspects of GH-rings, An. Stiint. Univ. “Al. I. Cuza” Iasi. Mat., 56 (2010), 253–272.
31. E. Sengelen Sevim, B. A. Ersoy and B. Davvaz, Primary hyperideals of multiplicative hyperrings, Eurasian Bulletin of Mathematics, 1(1) (2018), 43–49.
32. G. Ulucak, On expansions of prime and 2-absorbing hyperideals in multiplicative hyperrings, Turkish J. Math., 43 (2019), 1504–1517.
33. T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., Palm Harber, USA, 1994.