ON TYPE KRULL DIMENSION OF MODULES

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran.

Abstract

In this paper, the concept of type Krull dimension of a module is introduced and some related properties are investigated.
Using this concept, we extend some basic results about modules with Krull dimension. It is shown that every module with homogeneous type Krull dimension has type Krull dimension equal to zero. Also, it is proved that an $R$-module $M$ has type Krull dimension if and only if it has type Noetherian dimension. We observe that, every module with Krull dimension has type Krull dimension, but its converse is not true in general. Further, we define t-Artinian (resp., t-Noetherian) modules and it is shown that if $M$ be a t-Artinian $R$-module with type Krull dimension, then it has Krull dimension and these two dimensions for $M$ coincide. At the end, we define the concept of $\alpha$-DICCT modules and it is proved that an $R$-module $M$ is $\alpha$-DICCT if and only if it has type Krull dimension.

Keywords


1. A. R. Alehafttan and N. Shirali, On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension, Bull. Iranian Math. Soc., 43(7) (2017), 2457–2470.
 2. A. R. Alehafttan and N. Shirali, On the small Krull dimension, Comm. Algebra., 46(5) (2018), 2023–2032.
 3. M. Contessa, On DICC rings, J. Algebra, 105 (1987), 429–436.
 4. M. Contessa, On modules with DICC, J. Algebra, 105 (1987), 75–81.
 5. M. Contessa, On rings and modules with DICC, J. Algebra, 101 (1986), 489–496.
 6. J. Dauns and Y. Zhou, Classes of modules, Chapman and Hall, 2006.
 7. R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc., 1973.
 8. O. A. S. Karamzadeh, Noetherian dimension, Ph.D. thesis, Exeter, 1974.
 9. O. A. S. Karamzadeh and M. Motamedi, On α-DICC modules. Comm. Algebra, 22(6) (1994), 1933–1944.
 10. O. A. S. Karamzadeh and Sh. Rahimpour, The double infinite chain condition and its extension on essential submodules, This appears to J. Algebra Appl..
 11. G. Krause, On the Krull-dimension of left Noetherian left Matlis-rings, Math. Z., 118(3) (1970), 207–214.
 12. T. Y. Lam, Lectures on modules and rings, Springer Science and Business Media, Vol. 189, 2012.
 13. B. Lemonnier, Dimension de Krull et codeviation, Application au theorem dÉakin, Comm. Algebra, 6(16) (1978), 1647–1665. 44 
 14. B. Osofsky, Double infinite chain conditions, In: Abelian group theory, edited by R. Gobel and E. A. Walker, New York, NY, USA: Gordon and Breach Science Publishers, (1987), 451–456.
 15. R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, CR Acad. Sci. Paris, 265(2) (1967), 712–715.
 16. M. Shirali and N. Shirali, On parallel Krull dimension of modules, Comm. Algebra, 50(12) (2022), 5284–5295.
 17. P. F. Smith and M. R. Vedadi, Modules with chain conditions on non-essential submod ules, Comm. Algebra, 32(5) (2004), 1881–1894.
 18. Y. Zhou, Nonsingular rings with finite type dimension, In: Advances in ring theory, Birkhäuser, Boston, (1997), 323–333.