1. A. R. Alehafttan and N. Shirali, On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension, Bull. Iranian Math. Soc., 43(7) (2017), 2457–2470.
2. A. R. Alehafttan and N. Shirali, On the small Krull dimension, Comm. Algebra., 46(5) (2018), 2023–2032.
3. M. Contessa, On DICC rings, J. Algebra, 105 (1987), 429–436.
4. M. Contessa, On modules with DICC, J. Algebra, 105 (1987), 75–81.
5. M. Contessa, On rings and modules with DICC, J. Algebra, 101 (1986), 489–496.
6. J. Dauns and Y. Zhou, Classes of modules, Chapman and Hall, 2006.
7. R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc., 1973.
8. O. A. S. Karamzadeh, Noetherian dimension, Ph.D. thesis, Exeter, 1974.
9. O. A. S. Karamzadeh and M. Motamedi, On α-DICC modules. Comm. Algebra, 22(6) (1994), 1933–1944.
10. O. A. S. Karamzadeh and Sh. Rahimpour, The double infinite chain condition and its extension on essential submodules, This appears to J. Algebra Appl..
11. G. Krause, On the Krull-dimension of left Noetherian left Matlis-rings, Math. Z., 118(3) (1970), 207–214.
12. T. Y. Lam, Lectures on modules and rings, Springer Science and Business Media, Vol. 189, 2012.
13. B. Lemonnier, Dimension de Krull et codeviation, Application au theorem dÉakin, Comm. Algebra, 6(16) (1978), 1647–1665. 44
14. B. Osofsky, Double infinite chain conditions, In: Abelian group theory, edited by R. Gobel and E. A. Walker, New York, NY, USA: Gordon and Breach Science Publishers, (1987), 451–456.
15. R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, CR Acad. Sci. Paris, 265(2) (1967), 712–715.
16. M. Shirali and N. Shirali, On parallel Krull dimension of modules, Comm. Algebra, 50(12) (2022), 5284–5295.
17. P. F. Smith and M. R. Vedadi, Modules with chain conditions on non-essential submod ules, Comm. Algebra, 32(5) (2004), 1881–1894.
18. Y. Zhou, Nonsingular rings with finite type dimension, In: Advances in ring theory, Birkhäuser, Boston, (1997), 323–333.