In this paper we use "ring changed'' Gorenstein homological dimensions to define Cohen-Macaulay injective, projective and flat dimensions. For doing this we use the amalgamated duplication of the base ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
Esmaeelnezhad, A. (2015). COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION. Journal of Algebraic Systems, 2(2), 125-135. doi: 10.22044/jas.2015.361
MLA
A. Esmaeelnezhad. "COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION". Journal of Algebraic Systems, 2, 2, 2015, 125-135. doi: 10.22044/jas.2015.361
HARVARD
Esmaeelnezhad, A. (2015). 'COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION', Journal of Algebraic Systems, 2(2), pp. 125-135. doi: 10.22044/jas.2015.361
VANCOUVER
Esmaeelnezhad, A. COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION. Journal of Algebraic Systems, 2015; 2(2): 125-135. doi: 10.22044/jas.2015.361