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ON SPECTRA OF HERMITIAN RANDIC MATRIX OF SECOND KIND

A. Bharali*, B. Bhattacharjya, S. Borah and I. J. Gogoi

ABSTRACT. Let X be a mixed graph and w = % We write i — j, if there is
an oriented edge from a vertex v; to another vertex v;, and 7 ~ j for an un-oriented
edge between the vertices v; and v;. The degree of a vertex v; is denoted by d;.
We propose the Hermitian Randi¢ matrix of second kind R*(X) = (), where
Ry = L_if i~ g, Ry} = —=— and R}; = Y _ if { — j, and 0 otherwise. In

this paper, we investigate some spectral features of this novel Hermitian matrix and
study a few properties like positiveness, bipartiteness, edge-interlacing etc. We also
compute the characteristic polynomial for this new matrix and obtain some upper
and lower bounds for the eigenvalues and the energy of this matrix.

1. INTRODUCTION

There has been an upsurge of studies related to spectral properties of graph
theoretical matrices. Investigation of these properties play a vital role in
analysing some properties of networks. In recent times, the extensions of
spectral theory of un-oriented networks to mixed networks is a popular topic.
In comparison to the un-oriented networks, the mixed networks are much
better to model the real world problems. However, we see that many graph
matrices for mixed networks appear to be non-symmetric, losing the property
that eigenvalues are real.

Recently, many researcher studied the spectral properties of adjacency
matrix, Laplacian matrix, normalized Laplacian matrix etc. of mixed net-
works by incorporating modified versions of these matrices. For details, see
[1,2,25,27]. In 2015, Yu and Qu [20] described some notable works on Her-
mitian Laplacian matrix of mixed graphs. In the same year, Liu and Li [15]
studied some properties of Hermitian adjacency matrix. They also deter-
mined some bounds for energies of mixed graphs. Yu et al. [24] in 2019,
defined the Hermitian normalized Laplacian matrix and studied some spec-
tral properties for mixed networks. In 2020, B. Mohar [19] introduced a new
modified Hermitian matrix that seems more natural. Some relevant notable
works can be found in [14,20,22 23].
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The energy levels of m-electrons in conjugated hydrocarbons in molecular
orbital are strongly related in spectral graph theory. In 1978, Gutman [9]
developed the notion of graph energy based on eigenvalues of a graph. Since
then it plays an important role in chemical graph theory. Later many vari-
ants of graph energy, based on different matrices other than the adjacency
matrix, were proposed as a consequence of the success of the notion of graph
energy, for details see [3,7,12,13]. In 2010, Bozkurt et al. [6] proposed the
Randi¢ energy of graph as the sum of the absolute values of the eigenvalues
of the Randi¢ matrix. In 2017, Lu et al. [10] introduced Hermitian Randi¢
matrix for mixed graphs, which was based on the Hermitian adjacency matrix
proposed by Guo and Mohar [8]. They also investigated the energy for this
matrix. In this paper, we define the Hermitian Randi¢ matrix of second kind
of a mixed graph, and study some properties of its eigenvalues and energy.

2. BASIC DEFINITIONS

Throughout the paper, we consider connected simple graph with at least
two vertices. Let X be an un-oriented graph. We denote an edge of X
between the vertices v; and v; by e;;. Note that the edge e;; can be assigned
two orlentatlons An oriented edge originating at v; an terminating at v; is

denoted by e;;. For each edge em er (X ), there is a pair of oriented edges e_Z;
and &, e;i. The collection E {em, e;i : e € E(X)} is the oriented edge

set associated with X. Note that each edge of an un-oriented graph is of the

form e;;. The set E(X ) is the collection of all possible oriented edges of an
un-oriented graph X.

A graph X is said to be mixed if it has both possibilities of edges that are
orlented and un-oriented. If X is a mixed graph, then at most one of ¢4, eﬁ
and ¢, e;i can be in F(X). We write ¢ — j, if there is an oriented edge from
vertex v; to vertex v;, and ¢ ~ j for an un-oriented edge between the vertices
v; and v;. The graph Xy obtained from a mixed graph X by replacing each
of the oriented edge of X by the corresponding un-oriented edge is called the
underlying graph of X. A cycle in a mixed graph is a cycle in its underlying
graph. A cycle is even or odd according as its order is even or odd.

A gain graph or T-gain graph is a triplet ® = (X, T,¢), where X is an
un-oriented graph, T = {2z € C: |z| = 1}, and ¢ : E(X) — T is a function
satisfying gp(e_i;-) = gp(e_jé)_l for each e;; € E(X). The function ¢ is called
the gain function of (X, T, ). For simplicity, we use ® := (X, ¢) to denote
a T-gain graph instead of ® := (X, T, ¢). For a T-gain graph ® = (X, T, ),
the T-gain graph —® is defined by —® = (X, —¢). In [22], Reff proposed
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the notion of the adjacency matrix A(®) := (a;;) of a T-gain graph, where

[l i
4 0 otherwise.

It is clear that A(®) is Hermitian. Thus the eigenvalues of this matrix are
real. If gp(e_i;) =1 for all e_i;-, then we have A(®) = A(X), where A(X) is the
usual (0, 1)-adjacency matrix of the graph X. Thus one can assume a graph
X as a T-gain graph (X, 1), where 1 is the function that assign 1 to each

edge of E(X). A switching function ¢ of X is a function from V(X)) to T,
that is, ¢ : V(X) — T. Two gain graphs ®7 := (X, 1) and ®5 := (X, p9) are
said to be switching equivalent, written ®; ~ ®,, if there exists a switching
function ¢ : V(X) — T such that ps(e;;) = (1) o1 (e)C(5).

It is clear from the definition that the gain graphs ®; and ®, are switching
equivalent if and only if there is a diagonal matrix D., where the diagonal
entries come from T, such that

A(®y) = D A(®1) Dy

In 2015, Guo and Mohar [¢] introduced a Hermitian adjacency matrix
H(X) of a mixed graph X, where the ij-th entry is i, —i or 1 according as
67; € E(X), @Z € E(X) or e;; € E(X), respectively, and 0 otherwise. Here
i = v/—1. This matrix has numerous appealing characteristics, including real
eigenvalues and the interlacing theorem for mixed graphs etc.

Later in 2020, Mohar [19] put forward a new Hermitian adjacency matrix
H“(X) := (hi;) of a mixed graph X, which is referred as Hermitian matrix
of second kind, where

1 ifi~yg
o)W ifi —j
Y woif =i
0 otherwise.
Here w = 1+;‘/§, a primitive sixth root of unity and w = 1_;‘/§. For a

mixed graph X, let (X, w) represent the T-gain graph with the gain function
w: E(Xy) = {l,w,w}, where
1 if Cij € B(X)
&) =1 w ife; € B(X)
w if €ji € E(X)

Note that HY(X) = A(®) for ¢ = (Xy,w).
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With the growing popularity of these Hermitian matrices, the idea of inves-
tigating spectral properties of mixed networks based on other graph matrices
is also evolved. The matrix D~/2A(X)D~1/? is called the normalized adja-
cency matrix of an un-oriented graph X, where D = diag(d,...,d,) and d;
denote the degree of the vertex v; for ¢ € {1,...,n}. This matrix is popularly
known as the Randi¢ matrix R(X).

The matrix D~Y/2H(X)D~'/? is called the Hermitian Randi¢ matrix, de-
noted Ry (X), of a mixed graph X. Similarly, the matrix D~1/2H%(X)D~/?
is called the Hermitian Randi¢ matrix of second kind, denoted R*(X), of a
mixed graph X.

If R“(X) = (RY), we find that

( 1 . . .
if 2 ~
did; J
—— ifi —
RY = ¢ did;
(3 Y} . . .
! 2— ifj—1
did;
L 0 otherwise.

Clearly, R“(X) is Hermitian. Let L*(X) =D — H¥(X) and

£9(X) = D Y2L*(X)D 12
The matrices L¥(X) and £¢(X) are known as the Hermitian Laplacian ma-
trix of second kind and the normalized Hermitian Laplacian matrix of second
kind of X, respectively. It is clear that R“(X) = [ — £“(X), where [ is the
identity matrix of appropriate order.

The Randi¢ matrix R(®) of a T-gain graph & is defined by
R(®) :== D7Y2A(®)D~'/2. Similarly, the matrix I — R(®) is called the nor-
malized Laplacian matrix of a T-gain graph ®. If X is a mixed graph, then
we see that R(X) = R(®), where ® = (Xy, w).

A walk (or path) in a mixed graph is a walk (or path) in its underlying
graph. The value of a walk W := v;,v;, - - - v;, in a mixed graph X is defined
as Y, Ry, -+ Ry . A walk is called positive or negative according as its
value is positive or negative, respectively. An acyclic mixed graph is defined
to be positive. A non-acyclic mixed graph is positive or negative according
as each of its mixed cycle is positive or negative, respectively. A mixed graph
X is called an elementary graph if each component of X is an edge or a cycle.

For the easy reference of the reader, we list the various notations and names
of matrices associated with an un-oriented graph, mixed graph or a gain graph
in Table 1, Table 2, Table 3 and Table 4. Here D denotes the degree matrix of
an un-oriented graph, or the degree matrix of the corresponding underlying
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TABLE 1. X is an un-oriented graph

adjacency Randi¢ matrix Laplacian matrix normalized Laplacian
matrix R(X) L(X) matrix £(X)
—_ D12 12
A(X) |R(X)=D1?AX)D V2| L(X) =D — A(X) £(X) = D= L(X)D
=1 - R(X)
TABLE 2. X is a mixed graph
I:g;;?if? Hermitian Randié¢ Hermitian Laplacian normalized Hermitian
matrix matrix Ry (X) matrix Ly (X) Laplacian matrix £5(X)
— iz —1/2
H(X) | Ru(X)=D2H(X)D? | Ly(X) = D - m(x) | “#X) =D Lu(X)D
=1— Ry(X)
TABLE 3. X is a mixed graph
H((lairmitiari Hermitian Randié Hermitian Laplacian normalized Hermitian
?niisglf)}f matrix of 2nd kind matrix of 2nd kind Laplacian matrix
o T R¥(X) L¥(X) of 2nd kind £¢(X)
w — -127w —-1/2
H(X) | R#(X) = DV2Ie(X)D2 | [#(X) = D — mre(x) | &) = DL (0D
=1 - R*(X)
TABLE 4. ® is a gain graph
adjacency Randi¢ matrix Laplacian matrix | normalized Laplacian
matrix R(®) L(®) matrix £(®)

£(0) = D V2L(®) D2

A@) | R@) = DA@)D (@) = D - A@) T 2]

graph in case of a mixed graph or gain graph. Further, I denotes the identity
matrix of appropriate order.

3. SPECTRAL PROPERTIES OF HERMITIAN RANDIC MATRIX OF SECOND
KIND

In this section, we characterize some spectral properties of R“(X). We
continue with some known results which are associated to our findings.

Let M,,(C) denote the set of all n X n matrices with complex entries. For
A € M, (C), the matrix whose entries are absolute values of the correspond-
ing entries of A is denoted by |A|. The maximum of the absolute values of
the eigenvalues of a matrix A is called the spectral radius of A. It is denoted
by p(A). Further, the spectrum of A is denoted by Spec(A).

Theorem 3.1 ([28]). A T-gain graph (X, ) is positive if and only if
(Xs ) ~ (X, 1).
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Theorem 3.2 ([18]). Let (X, ) be a connected and positive T-gain graph.
Then X is bipartite if and only if (X, —p) is positive.

Theorem 3.3 ([10]). Let A,B € M, (C). Suppose A is non-negative and
irreducible, and A > |B|. Let X := ¢ p(B) be a mazimum-modulus eigenvalue
of B. If p(A) = p(B), then there is a diagonal unitary matriz D € M, (C)
such that B = ¢ DAD™!,

In [12], Kannan et al. studied the normalized Laplacian matrix for gain
graphs. They also characterized some spectral properties for the Randi¢
matrix of an un-oriented graph.

Lemma 3.4 ([12]). Let X be a connected graph. Then
Spec(R(X))= Spec(~R(X))
if and only if X is bipartite.

Lemma 3.5 ([12]). Let &1 and @5 be two connected gain graphs. If &1 ~ o,
then Spec(R(®1)) = Spec(R(P2)).

Lemma 3.6 ([12]). If ® := (X, ) is a connected gain graph, then
p(R(®)) < p(|R(®)]) = p(R(X)).
The following result is an immediate consequence of the preceding lemmas.

Theorem 3.7. Let X be a mized graph. Then Spec(R*(X)) = Spec(R(Xy))
if and only if (Xy,w) ~ (Xy,1).

Proof. If Spec(R“(X)) = Spec(R(Xy)), then by Theorem 3.3
R¥(X) = ¢"DR(Xy)D; Y,
where D, is a diagonal unitary matrix. Hence
D:'R¥(X)D; = e’ R(Xy)
or, D;'DVPH®(X)D 2D =D A(Xy)DV?
or, H“(X)=e"DA(Xy)D;"

Since both the matrices H¥(X) and A(Xy) are Hermitian, 6 is either 0 or
7. This gives that either (Xy,w) ~ (Xy,1) or (Xp,w) ~ (Xy,—1). If
(Xy,w) ~ (Xy, 1), we are done. If (Xy,w) ~ (Xy,—1), then by Lemma 3.5,
we have Spec(R¥(X))=Spec(—R(Xy)). Again as

Spec(R¥(X))=Spec(R(Xv)),
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we have Spec(R(Xy))=Spec(—R(Xy)). Thus by Lemma 3.4, Xy is bipar-
tite. Now applying Theorem 3.2 for the positive gain graph (Xy, —w), we
find that (Xy,w) is positive, and hence (Xy,w) ~ (Xy,1). Conversely, if
(Xv,w) ~ (Xy, 1), then clearly Spec(R“ (X)) = Spec(R(Xy)). ]

Theorem 3.8. Let X be a mixed graph of order n, where n > 2. If
Spec(R¥ (X)) = {1, ..., \n}, then =1 < X\, <1 for each k € {1,...,n}.

Proof. Let p(R“(X)) denote the spectral radius of the matrix R¥(X) and let
Xy be the underlying graph of the mixed graph X. Then by using Lemma
3.6 and the definition of spectral radius, we have

el < p(R(X)) < p(R*(Xy)) = 1.
]

In order to determine some spectral properties of the matrix R*(X), we

now provide the following lemma. In what follows, h;; always represents the
ij-th entry of H¥(X).

Lemma 3.9. If X be a mized graph on n vertices, and'y = (y1,...,yn)"
e C", then

Yy H(X)y = > (i +hijyil” = (lyl® + lys]?).
1<J, eijEE(XU)

Proof. We have

Yy HY(X)y = Z (Wihijys + yihijy;)
i<j, ei; EE(Xv)

= Z (Wihigy; + yihis¥;) + Yavi + Y595 — YiYi — Y;95)
= S (@hiys + Twi) + (ihigly + Tihaihigy) — (vl + lyi1)
= Y (it hiy) i + higyy) — (wl® + %), as byl =1

= (lyi + hagyi|* = (wal® + ly; 1*))- O
i<j, ei; €E(Xv)

Eigenvalue interlacing is a popular technique for generating inequality and
regularity conclusions regarding graph structure in terms of eigenvalues. We
provide an edge version of interlacing properties for R¥(X). First, we present
two basic inequalities in the following lemma. The proofs are straight forward.

Lemma 3.10. Let a, b, and c be three real numbers such that b > 0, ¢ > 0
and b —c > 0.
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(i) If § <1, then =5 < {.
() If |¢] <1, then $££ > €.
Theorem 3.11. Let X be a mixed graph on n vertices and X — e be the graph

obtained by removing the edge e of X. Let Spec(R“(X)) = {A1,..., \n} and
Spec(RY(X —e)) ={61,...,0,}. Then

=1 < O < A
for each k € {1,...,n} with the convention that A\g = —1 and A\,+1 = 1.

Proof. For a complex vector x, let y := D~ /2x, where D is the diagonal

degree matrix of the underlying graph Xy. Let y; be the ¢-th coordinate of
y. By Lemma 3.9, we have

XROX)x = > (i +hiyil* = lwil® = [y
i<j, ei; €E(Xv)

n
Also, x*x = >_ d;|y;|*>. By Courant-Fischer Theorem, we have
=1

2

x*R¥(X)x
A = max _—
xW L xk=DeCn  x1{xD),. xk-1} X*x
x€C™, x#0
> (yi + higy? = luil® = [y )
- (1) m<akX1) (1I)nin (k—1) e n ’ (3'1)
= n -1
R A ) Y. difyil”
1=

Using min-max version of Courant-Fischer theorem, we can also write Equa-
tion (3.1) as

> (lyi + hijy;1* = lvil* = |y; %)
i< e €B(X
max i<h «g€BXo) . (3.2)

Ak = ( )min( ) (k+1)  x(n) n
x(k+1)  x(MeCn  x I {x*k+tD) . x(n)} 2
xEC™, X0 21 dilyil
iz

Without loss of generality, let e be the edge joining the vertex v; and ws.
After deleting the edge e, the degrees of the vertices v; and vy are decreased

by 1. Hence for G — e, the expression > (ly: + hijy;)? — lwil* = |y;1?)
<7, eijEE(XU)
becomes 37 (lyi+ haigys* = lyil® = |y;*) = (ly1 + haoel® — |1 |* — |2

<7, eijEE(XU)
and >" di|y;)? becomes > di|yil® — |y1]? — |y2|>. Therefore
i=1 i=1
0 = max min T,

xW L xE-DeCr  x1{x® .. xk-1}
xeC™, x#0
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> ((yi+hizy; P =1y P =1y;1?) = (ly1+ha2yz |~y —y2]?))
1<J, €ij EE(XU)

where T = -
;dilyil2—ly1|2—|y2|2

Let x; and y; be the i-th coordinates of x and y, respectively. Choose x1 and

ry such that +/dex; = hiao/dizs. Then y;1 = hioys, and so

ly1 + hagel® = 2(Jil* + |gaf?). Thus for a = |y; + hijyj|2 — |yil* — \yj|2,

b= > dily:]* and ¢ = 2|y;|* in Lemma 3.10, we have

i=1
> (lys + hajy; > = |wil® = ly; 1) — 2|y ]? > (i + hajyi|* = wil* — ly;1%)
i<j, ei;€E(Xy) < i<j, ei;€E(Xy)

n n
Zldz‘|yz‘|2 — 2|y1|? Zldz|2/z|2
1= 1=

Note that if x L (\/d_261 — hlg\/d_leg), then \/d_QZL'l = hlg\/d_ll'g, where the
vectors e, ey are standard basis vectors of C". Thus,

> (lys + hijys® — lwil® = |y51?) = 2|y |?
Z'<j,eij€E(XU)

0, < max min -
x(M L xk-DeCn  xI{xD . . x(k-1} .12 2
S ECT x7£0,/d3z1 =h12/dT 3 Z; dilyil* — 2|y

> (i + hijys? = lwil® = [ys1?) — 20 )?
i<jei; €E(Xy)

T m(%xn W xlk f)ﬂin n
XD eCrx L {x (). x(k—1) \/dze1—h1ov/d
X XU EC LD, xECn\,iEOel 1avdrea) .Zldi|yi|2 — 2y, |2
1=
> (yi + hijy? = lwil® = lyil?)
. i<jei; €E(Xy)
=, o e W), X1 VT S
XD eCrx L {x (). x(k—1) \/dpe1—h1oy/d
X X BT EC LD, BV o1~z Vdie2) 2d1|yi|2
1=

> Iy + hajys = lwsl* = lys]?)

< max min = i1
x(D) ... xkeCrx L {x(D),... x(F)} R *
xeCn,x#0 Z z’yz’
i=1

Similarly, from Equation (3.2) we have

min max
x(B+1) | x(m)eCnx | {x(k+1) | x(n)}
x€C™,x#0

> (lys + hagy; 1 — wil* = |y;*) = (Jyr + ha2wol® — [y2* = |y2]?)
’i<j,€ij€E(XU)

O =

n
Zldi|yz'|2 — |y1]? — [y2?
1=

min max

o x| x(m)eCn xL{x(k+D)  x(n)}

x€C™,x7#0,1/daz1=—h12y/dj 22

> (yi+hijyi P —lyi > —ly;1?) = (y1+h12y2 > —|y1 12 —|y2|?)
i<j,€l'j GE(XU)

n
Zldz‘!yilz — |1l = |y2|?
1=



182 BHARALI, BHATTACHARJYA, BORAH AND GOGOI

min max
x(b+1) L x(M)eCnx | {x(k+D) . x(n) \/dyei+hiav/diea}
x€Cn,x#0

> (lys + hijy;® = lwil® = |y51?) + 2|y |?
’i<j,eij€E(XU)

n
> dilyil* = 2|y |?
=1

Note that |a+b|* < 2|al*+2]b|* for two complex numbers a and b. Therefore,
we have

o Uw+hgylP —lwl =1y < > (ul+ 1yl zdw (3.3)

1<j, e;;€E(Xy) i<j, ei; €EE(Xy)
Again,
ooyt byl =lwlP =1y > D (lul =yl Zd vil*. (3.4)
i<j, ei;; €E(Xy) i<j, ei; €E(Xy)

Now, taking a = |y; + hijyj|2 — |yil? — |yj|2 b= Z d;ly;|? and ¢ = 2|y1|?, we

find from Equations (3.3) and (3.4) that |7] < 1. Therefore Lemma 3.10 (ii)
gives

> (lys + hagy; > — wil* = ly; 1) + 2|1 ]? > (lyi + hijy;1* = lwil* — ly;1?)
i<j, e;;€EE(Xy) > i<j, ei; €E(Xv)
n — n
> dilyi* = 2|y1)? > dilyil?
i=1 i=1
Thus
oo (i + higys? = lwil® = 1y ?)
. i<j,eijEE(XU)
0, > min max -
X<k+l)7"’7X(n>ECHXL{x(k+1)7“-ax(n)7\/£el+h12\/a62} d |2
XxECT,x7£0 2 z‘yz‘
o (i + higy P =yl = 1y *)
> min max i<ies €BXy)
 x(k) (n)ecn (k). x(n) n
x(k) . x(MeC xJ_{:cecn o } Z dilinQ
= Agp—1.

Thus, A1 < 0, < A1 with the convention that A\ = —1 and \,,.; =1. U

Let Sy(X) = (sg,,) be an n x m matrix indexed by the vertices and edges
of a mixed graph X, with |sp, | = 1 whenever k is incident to e, and

—sp, ife=ep

Sg,, = § —wspy, ife= e_>kg
0 otherwise.

If D is the diagonal degree matrix of the underlying graph
Xy, D7V2Sy(X) = (se) and (D7V2S5(X)) (D7Y2Su(X))" = (cw)nxns
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then

1
Qg = Z SkeSte = Z ——SHy.SH.-
ceE(X) Y didy

eeE(X)
2

1 1
Thus app = > \ﬁ SHy.SHy, = > -lsm.|° = 7.dy=1. Now assume

eeE(X) e€B(X)
that £ £ /.
(i) For ey € E(X),

1 1 1 9 1
Qkg = SkeSle = we =SHp = (—SH E)EHE =75 15H e| == :
e g e = e e = g
(i) For ep € E(X),
_ 1 1 1 -
Af¢ = SkeSte = ke

(iii) For e@ € E(X),

Thus, r*(X ( /25H (X)) (D128 (X))".

Lemma 3.12 ([ ). A mized graph X is positive if and only if for any two
vertices v; and v; all paths from v; to v; have the same value.

Theorem 3.13. Let X be a connected mized graph. If 1 is an eigenvalue of
R¥(X), then X is positive and 1 is a simple eigenvalue of R¥(X).

Proof. Assume that 1 is an eigenvalue of R“(X) with corresponding eigen-
vector x. If x = (z1,...,2,)!, we have

RY(X)x =x

(I —R*(X))x=0
(D™2Sp(X) (D125 k(X))* )X—O

or, (D Y28p(X)(D™2Sk(X))x,x) =
{ 28y
(D

or,

or,

(D725 (X)), (D (X))* >=0
D28y (X))'x=0.
Thus if e is an edge of X with end vertices v; and v;, we have
(D725 (X)) "x)e = 0,
=0.

Note that sp, Sy, = —h;j, and so x; = \/j:;hijxj for any edge incident to

or,

or,

and this gives 5y, d; 1/2 T;+Sm,d; 1 L

v; and v;. Let Wi == wjuy ... u; be any wjug-path such that u; = v; and
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up = vj. Also, let Wy, be the uju,-section of the path Wiy, where 2 <r < k.
For Wi, = wqus ... up_1u,, let h(Wy,) = hio .. h(r 1)r, the value of W1,.

We have z; = \/7h12x2 \/7h12h23x3 \/gh(Wu)aﬁi. This implies
that each v;v;-path has the same value. Hence by Lemma 3.12, X is positive.

Moreover, x = (x1,...,x;)" = (1, \/Z:ih(ng)xl, e /%h(Wu)xl)t, SO
[d /di— :
X =T 1, 2h(W12) —h(WM) .
d; dy

Hence 1 is an eigenvalue of R¥(X) with multiplicity 1. H

Yu et al. [24], in their study of Hermitian normalized Laplacian matrix
for mixed networks, established that a graph is bipartite if and only if all of
its eigenvalues are symmetric about 1. The symmetric characteristics of the
R“(X) eigenvalues can also be determined in a similar manner.

Theorem 3.14. If X is a connected mixed graph, then X is bipartite if and
only if all eigenvalues of RY(X) are symmetric about 0.

Proof. Because of R¥(X) = I — £“(X), the proof is analogous to the proof
of Theorem 3.5 in [2/] [

Theorem 3.15 ([21]). If X is a connected mized graph, then 2 is an eigen-
value of £°(X) if and only if X is a positive bipartite graph.

Noting that R“(X) = [ — £¥(X), we get the following corollary from
Theorem 3.15.

Corollary 3.16. If X is a connected mized graph, then —1 is an eigenvalue
of R®(X) if and only if X is a positive bipartite graph.

Note that if X is a bipartite mixed graph, then the spectrum of R¥(X) is
symmetric about 0. As a result, if X is a bipartite mixed connected graph,
then 1 is an eigenvalue of R¥(X) if and only if X is a positive.

4. DETERMINANT AND CHARACTERISTIC POLYNOMIAL OF HERMITIAN
RANDI¢ MATRIX OF SECOND KIND

In this section, we provide some results similar to Theorem 2.7 in [15] and
Proposition 7.3 in [1] for Hermitian Randi¢ matrix of second kind. Lu et
al. in [10] defined the Hermitian-Randi¢ matrix Ry (X) of a mixed graph X.
For this Hermitian matrix, they obtained the determinant and characteristic
polynomial. In [16], det Ry(X) is expressed as a summation, in which the
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summation is taken over a specific class of elementary spanning sub-graphs
of X. In the next theorem, we find an analogous expression for det R*(X),
in which the summation is taken over all spanning elementary sub-graphs of
X.

Let X’ be an elementary sub-graph of a mixed graph X on n vertices. Let
¢(X') be the number of components of X', and r(X’) = n — ¢(X’). Further,
let s(X’) be the number of cycles of length at least 3 in X’. For a sub-graph
Vot X,let QY) =, cvy di

Recall that a cycle is called positive or negative according as its value is
positive or negative, respectively. A cycle C is called semi-positive if its value
is either w@(C) or WQ(C). Similarly, it is called semi-negative if its value
is either —w@(C) or —wQ(C). Let 1,(X"), [,(X"), lsp(X’) and l5,(X’) be the
number of positive, negative, semi-positive and semi-negative cycles in X,
respectively.

Theorem 4.1. Let R“(X) be the Hermitian Randi¢ matriz of second kind of
a mized graph X of order n. Then

det(R“’ (X)) _ Z(—1)T(X/)+l”(X/)+ls"(X/)Ql"(X/)Hp(X/)Q(X/),
X/

where the summation is over all spanning elementary sub-graphs X' of X.

Proof. Let X be a mixed graph of order n. We have

det(R¥(X)) = Z sgn(m) Ry 1) By - By

Tes,
where S, is the set of all permutations on {1,...,n}.
Consider a term sgn(m)Ry ) --- R ) in the expansion of det(R“(X)).

If vpvrp) 1s not an edge of X, then R;’F(k) = 0, hence the term vanishes.
Thus, if the term corresponding to a permutation is non-zero, then it is
fixed- point-free and can be expressed uniquely as the composition of disjoint
cycles of length at least 2. Consequently, each non-vanishing term in the
expansion of det(R¥(X)) gives rise to a spanning elementary sub-graph X’
of X. Note that a spanning elementary sub-graph may correspond to several
non-vanishing terms in the expansion of det(R“(X)).

Let X’ be a spanning elementary sub-graph of X that corresponds to a
non-vanishing term in the expansion of det(R¥(X)). Let w(X') be the set
of all permutations that correspond to X’. Clearly, |7(X")| = 2°X), and
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sgn(m) = (—1)"&) for 7 € 7T(X’). Thus
det R*(X) =Y (=1 N~ Ry ()RS - RY .

X' ren(X')

Note that, for each edge component with vertices v; and vy, the corre-
sponding factor Ry, Ry has the value 7 dlk 7 dlg T = dkldé or W‘l*; T \/(Z T = dklde.
Furthermore, if for one direction the value of a mixed cycle is «, then for the
reversed direction its value is @, the conjugate of . Thus, in the summation
of det(R¥(X)), we have two cases for the cycles having complex values. For

a semi-positive Cycle say C1, we have

W Hv]eV (C1) d + w HjGV di_(w + w) ijeV(Cl) % - ijeV(Cl) d%?

and for a semi-negative cycle, say C5, we have
1 — 1 — 1 1
—w HujeV(CQ) a — W HjeV(Cg) a —(w+ ) HujeV(cg) 4 - ijeV(Cg) d;

In addition, if a cycle C' has the real values [, cy (¢ + or — ILevio) + for
some direction, then it has the same value for the other direction of C as
well.

Let X! be the sub-graph of X " consisting of the edge components of X'.
Recall that Q(X;) = [],.cv(x d— As a convention, assume that Q(X)) =1
if X; = ¢. Let (1, Cy,...,Cyx be the cycles of X' of a length at least 3,

and for i € {1,...,s(X’)} and o € {1, 2}, define

a W(CZ) ifa=1
Wi = { W(C;) ifa=2.
Thus
det R*(X) =Y (1" 3" QX)HWWS ... Wiy,
X/ ae{1,2}

Observe that for 1 < k < s(X’), we have
W W WEWR L Wy + W W WEWR L W
B (=)W W, Q(Cr) W, ... Wiy i W(Ck) is not real
S (DR W Q)W Wk i W(C) s real

where
B, = 1 if C} is negative or semi-negative cycle
g 0 otherwise.
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Thus
QX)W Ws ... WféX,)
ae{l,2}
= (1))l QXNQ(C) ... Q(Cler)
= (= 1) EH X (XHLED (X, 0

Let Pre(X,z): = det(z] — R“(X)) be the characteristic polynomial of the
matrix R“(X) of a mixed graph X. Now we compute an expression for the
coefficients of Pre (X, x).

Theorem 4.2. If Pro(X, ) = 2" + a1z" ' + -+ + a,, then
(_1)kak _ Z(_1)T(X/)+ln(X/)+lsn(X/)2ln(X/)+lp(X/)Q(X/)’
X/
where the summation is over all elementary sub-graphs X' with order k of X.

Proof. The proof is based on Theorem 4.1, and makes use of the fact that the
summation of the determinants of all principal k x k sub-matrices of R*(X)
is (—1)*ay. O

In the next corollary, we look at how the coefficients of Pre(X, ) change
their shape for different graph structures.

Corollary 4.3. Let Ppo(X,z) = 2"+ a12™ ' + -+ + a,,.
(i) If X is a tree, then (—1)Fay, = Y"(—=1)"X)Q(X"), where the summation
X/
is over all elementary sub-graphs X' with order k of X.
(7i) If the underlying graph Xy of X is d-reqular (6 #0), then

!/ l !/ !/ ! 1
1k, VX)L (X Han (X ol (X ) +p(XT) L
(Do =321 2 -
where the summation is over all elementary sub-graphs X' with order k
of X .

The proof of Corollary 4.3 is straightforward due to the absence of cycles
in a tree and the fact that every vertex in a d-regular graph has degree 0.

In 1999, Bollobés et al. [5] defined the general Randi¢ index R(®)(X) of an
un-oriented graph X as

ROX) = 3 (dudy)”

u~v

Now we find a bound for eigenvalues of R(X) in terms of RV (Xy).
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Theorem 4.4. If \; is the smallest eigenvalue of R¥(X), then

(-1)
2 5 2R(X0)
n(n —1)
Proof. Let the eigenvalues Ay, ..., A\, of R¥(X) satisfy
AL < KA S A S S

We have

n

Z \;2 = trace (R¥(X Z Z R‘Z‘;R;"l

=1 i=1 j=1

=) RiR;

i=1 j=1

3SR

i=1 j=1

Also,

i=1 i=1
or, ZA—Al + Z M — A1) (A — A1) = (nA)2.
pa=1, p#q
Since > (A — A1)(Ag — A1) is non-negative, we have

n

> (= A)P < n’A

1=1

or, Z M 4+ nA] < n?A?
1=1
or, 2RV (Xy) +nA? < n’A?
2RED(X
or, > —(U)

n(n—1)
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For an n x n matrix A = (a;;), define

) =min {553 0 1Yty S

i=1 j=1 i#j
and
I 1 < 1
Y2 (A) = max{EZZaij : 5.2:&% — mZaij}.
i=1 j=1 i=1 i
Lemma 4.5 ([L7]). Let A = (ai;) be an n x n Hermitian matriz. Let

A1 and A, be the smallest and largest eigenvalues of A, respectively. Then
A< 7(A) < 7(A) < A

Theorem 4.6. Let X be a mixed graph, and let A1 and A\, be the smallest
and the largest eigenvalues of R¥(X), respectively. Then

A < —

nln 1) <§W+Zm) (Z;m Zﬁ)“’l
Proof. We have

w —~ 2 1
>33 =3+ Y (Gt i) % vaw o v

Also, Z R = trace(R*) = 0.
Hence by Lemma 4.5, we have A\ < v < v < \,, where

i <ZF > i) (% v )

(S vam X i)

1—)

and

nmos (S i+ S (S v S )

1—]

_ 1(2 2,y ! )
n i w/didj i w/didj
Hence

A<

_n(n_il)<;j\/% ;\/ﬁ) (;m Z\/C%lj)sm

1—]

The following corollary follows easily from Theorem 4.6.
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Corollary 4.7. Let X be a mixed graph. If A1 and A\, are the smallest and
the largest eigenvalues of R“’(X) then

A — A1 >

S ST
5. ENERGY OF HERMITIAN RANDI¢ MATRIX OF SECOND KIND

Lu et al. in [I6] investigated the energy for Hermitian Randi¢ matrix
Ry (X) and computed various bounds. We analogously define the energy
e(R°(X)) of R“(X). That is, e(R“(X)) is the sum of the absolute val-
ues of the eigenvalues of R“(X). We find that most of the results on en-
ergy of Ry(X) also hold good for the matrix R¥(X) due to the fact that
trace(R¥ (X)) = trace(Ry (X)) =0 and .1 \* = 2RV (Xp).

Theorem 5.1. Let X be a mized graph of order n, and \i,...,\, be the
eigenvalues of R¥(X). Then

V2RED(Xy) + n(n — 1)(det R2(X))2/n < £(R¥(X)) < /20 R0
where equality holds if [M\]| = -+ = |\y].
Proof. The proof is similar to the proof of Theorem 3.5 in [1(], that can
be obtained using the Cauchy-Schwartz inequality and geometric-arithmetic
inequality. [

Theorem 5.2. Let X be a mixed graph, and A, ..., A, be the eigenvalues of
R¥(X), where A\ < ... < \,, and k is the number of negative eigenvalues.

Then
. det(R(X))) ™
(R <X>>zz<n—k>( T ) |

where equality holds if all positive eigenvalues are equal.

Proof. Given that the eigenvalues Ay, ..., A, of R¥(X) satisfy
MZ LSS A S S A

Also, Ay,..., A\ are negative and Ai.1,...,\, are positive. As
n n k
trace(R*(X)) = 0, we have ¢(R“(X)) = D || = 2 > M| = 2D |\l
i=1 i=k+1 i=1
Now

|)\1‘—|—’)\2|+...—|—’)\k|:|>\1—f—>\2+...—|—)\k‘
:)\k+1++)\n
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1

>(n — k) H >\> o

2 k+1

[ det(R® (X)) =
Hf:l Ai |

Hence
1

anijuaz%n—m(“?ﬁﬂf”)n.

Equality is obtained directly from the equality condition of geometric-
arithmetic inequality. ]

Lemma 5.3. If xy,x9,...,2, are non-negative and k > 2, then
k/2
Dl af < (Z?:l 37@2) :

Lemma 5.3 can be easily proved using the principle of mathematical induc-
tion and Cauchy-Schwartz inequality.

Theorem 5.4. Let X be a mized graph. Then e(R¥(X)) < eV2E "V (Xv),

Proof. Let the eigenvalues of R“(X) be Ay,...,A,. We have
S A =2RCY(Xy).

Now

e(R¥(X)) = Z I\i| < anew
= zzl )\Z .
=22 | k!‘

i=1 k>0
i k)2
1
< Z ] (Z |)\i|2) , using Lemma 5.3
k>0 i=1

< 37 SRV

k>0

k
- L (o) =T

k>0
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Theorem 5.5. Let \y,..., A\, be the eigenvalues of R¥(X) and p = max|\;|.
Then

1
(R*(X)) < 5 (p<n o)+ Jpn— 2+ 16R<—1><XU>) ,
where equality holds if [A\]| = -+ = |A\y].

Proof. Suppose A, is the largest negative eigenvalue of R“(X). Then
A << Xand \gy1 <... < \,. Now

(i 2]

j=k+1

2(@&.) AEm)) wsn- £

j=k+1
k n

=2 (D P+ DD P2 DY 2 Y Il
=1 j

j=k+1 1<i<p<k (k+1)<j<q<n

:2Z|)\i|2+4 |: Z Xl [ Ap] + Z )‘j)‘q] :
i=1

1<i<p<k (k+1)<j<q<n

We have (|\i| —p/2) (|\| — p/2) < %2, which implies that

Ail[Ap] < S0+ [Ap))-

Similarly, |Aj[|Aq| < §(|Aj] 4 |Aq]). Note that for both the cases equality can
be obtained when all |\;| are equal.

Hence from Equation (5.1), we have

w P
e(R¥(X))? <4RCY(Xy) +4- 3 PR Y e P R N (PVIE S W)
1<i<p<k (k+1)<j<g<n
—4RY(Xy) +2p | (k—1) Z|)\|+ n—k—1) Z I\
j=k+1
=4RY(Xy) + p(n — 2)e

After solving the preceding inequality, we get

(R200) < 5 (ol = 2) + /20— 22+ 10ROV (x0) )
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Theorem 5.6. Let the eigenvalues of R“(X) be A1,..., A\, and o = min|\;|.
Then

1
e(R¥(X)) > 2( o(n —2 +\/02 )2+ 16R(- )(XU)),
where equality holds if |[M\| = --- = |\,|.

Proof. Considering o = min|A;|, we have (|\i| —a/2)(|\,)| —0/2) > F. It

implies that |A;||[A,] > S(|Ai| + [Ap]). Similarly, [Aj|[A;] = S([A;] 4+ |Ag])-
Equality holds when all |);| are equal. Now from Equation (5.1), we get the
quadratic inequality e(R*(X))? > 4RY(Xy) + o(n — 2)e(R¥(X)). Solving

this quadratic inequality, we get the required result. ]
Lemma 5.7 (Pdlya-Szego Inequality [3]). If a; and b; are positive real num-
bers for each i € {1,...,n}, with M; = maxal, M, = maxb;, m; = min q;
1< 1<i<n 1<i<n
and mo = min b;. Then
1<i<n
2
IEOE >
= 4 Ml ! ’
1=1
My

where equality hold if and only if p = n&Jr@ and q = nﬁ are integers

and if p of the numbers a;, i € {1,...,n} are equal to my and q of these
numbers are equal to My, and if the corresponding numbers b; are equal to
Ms and my respectively.

Theorem 5.8. Let \y,..., \, be the eigenvalues of R¥(X), p = max|\;| and

o =min|\;|. Then

\/8npoR(-1 (XU)
p+o
and —£ p have to be integers, and the graph can have at most

four distinct ezgenvalues with absolute values p and o, and number of such

_no_ :
etgenvalues having absolute values o and p are —= p+a and o respectively.

e(R*(X)) =

a

For equalzty L2

Proof. Considering p = max|\;| and ¢ = min|)\;|, by Pdlya-Szego Inequality

Z Azl <1(y/%+ \/§> (Zm)

we have
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. 1 p+o 2 w 2
or, 2nR! )(XU)SZ(\/_p> (e(R*(X)))

npo )
or, S(Rw(X)) \/8 ppio- (XU)

For equality, from Lemma 5.7 clearly, and £ have to be integers. Also
there can be at most four distinct elgenvalues havmg absolute values p and
o. It is also to be noted that number of such eigenvalues having absolute
values o and p are +p and 2 respectively. ]

In 1968, N. Ozeki [21] prov1ded an inequality for positive real numbers.
However the result was prone to some errors which was revised in [11].

Lemma 5.9 (Ozeki’s Inequality [11]). If a; and b; are non-negative real num-
bers for each i € {1,...,n}, then

n

Z 262 <Z a;b > < % (M My — m1m2)2,

=1

where My, = maxa;, My = maxbz, mq = min a; and ms = min b;.
1<i<n 1<i<n 1<i<n 1<i<n

Theorem 5.10. Let A\q,..., A, be the eigenvalues of R¥(X), p = max|\|

and o = min|\;|. Then

S(R¥(X)) > ¢ it (XU)3‘ o= o)

Proof. Considering p = max|);| and ¢ = min|)\;|, by Ozeki’s Inequality we
2 2

have

2

D SR PollY) IEE T

=1

6nRD(Xy) —n2(p — 0)2 o
or, \/ U3 < e(R*(X)). O

The graph Ky exemplifies the equality conditions in Theorem 5.1 and The-
orems 5.5-5.8. Additionally, we note that the complete graph K, illustrates
the equality criterion outlined in Theorem 5.8.
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