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ON SPECTRA OF HERMITIAN RANDIĆ MATRIX OF SECOND KIND

A. Bharali∗, B. Bhattacharjya, S. Borah and I. J. Gogoi

Abstract. Let X be a mixed graph and ω = 1+i
√
3

2 . We write i → j, if there is
an oriented edge from a vertex vi to another vertex vj , and i ∼ j for an un-oriented
edge between the vertices vi and vj . The degree of a vertex vi is denoted by di.
We propose the Hermitian Randić matrix of second kind Rω(X) := (Rω

ij), where
Rω

ij = 1√
didj

if i ∼ j, Rω
ij = ω√

didj

and Rω
ji =

ω√
didj

if i → j, and 0 otherwise. In
this paper, we investigate some spectral features of this novel Hermitian matrix and
study a few properties like positiveness, bipartiteness, edge-interlacing etc. We also
compute the characteristic polynomial for this new matrix and obtain some upper
and lower bounds for the eigenvalues and the energy of this matrix.

1. Introduction
There has been an upsurge of studies related to spectral properties of graph

theoretical matrices. Investigation of these properties play a vital role in
analysing some properties of networks. In recent times, the extensions of
spectral theory of un-oriented networks to mixed networks is a popular topic.
In comparison to the un-oriented networks, the mixed networks are much
better to model the real world problems. However, we see that many graph
matrices for mixed networks appear to be non-symmetric, losing the property
that eigenvalues are real.

Recently, many researcher studied the spectral properties of adjacency
matrix, Laplacian matrix, normalized Laplacian matrix etc. of mixed net-
works by incorporating modified versions of these matrices. For details, see
[1, 2, 25, 27]. In 2015, Yu and Qu [26] described some notable works on Her-
mitian Laplacian matrix of mixed graphs. In the same year, Liu and Li [15]
studied some properties of Hermitian adjacency matrix. They also deter-
mined some bounds for energies of mixed graphs. Yu et al. [24] in 2019,
defined the Hermitian normalized Laplacian matrix and studied some spec-
tral properties for mixed networks. In 2020, B. Mohar [19] introduced a new
modified Hermitian matrix that seems more natural. Some relevant notable
works can be found in [14, 20, 22, 23].
MSC(2020): Primary: 05C50; Secondary: 05C09, 05C31.
Keywords: Mixed graph; Hermitian adjacency matrix; Hermitian Randić matrix; Graph energy.
Received: 23 December 2023, Accepted: 17 May 2024.
∗Corresponding author.

173



174 BHARALI, BHATTACHARJYA, BORAH AND GOGOI

The energy levels of π-electrons in conjugated hydrocarbons in molecular
orbital are strongly related in spectral graph theory. In 1978, Gutman [9]
developed the notion of graph energy based on eigenvalues of a graph. Since
then it plays an important role in chemical graph theory. Later many vari-
ants of graph energy, based on different matrices other than the adjacency
matrix, were proposed as a consequence of the success of the notion of graph
energy, for details see [3, 7, 12, 13]. In 2010, Bozkurt et al. [6] proposed the
Randić energy of graph as the sum of the absolute values of the eigenvalues
of the Randić matrix. In 2017, Lu et al. [16] introduced Hermitian Randić
matrix for mixed graphs, which was based on the Hermitian adjacency matrix
proposed by Guo and Mohar [8]. They also investigated the energy for this
matrix. In this paper, we define the Hermitian Randić matrix of second kind
of a mixed graph, and study some properties of its eigenvalues and energy.

2. Basic Definitions
Throughout the paper, we consider connected simple graph with at least

two vertices. Let X be an un-oriented graph. We denote an edge of X
between the vertices vi and vj by eij. Note that the edge eij can be assigned
two orientations. An oriented edge originating at vi an terminating at vj is
denoted by −→eij. For each edge eij ∈ E(X), there is a pair of oriented edges −→eij
and −→eji. The collection −→

E (X) := {−→eij,−→eji : eij ∈ E(X)} is the oriented edge
set associated with X. Note that each edge of an un-oriented graph is of the
form eij. The set −→

E (X) is the collection of all possible oriented edges of an
un-oriented graph X.

A graph X is said to be mixed if it has both possibilities of edges that are
oriented and un-oriented. If X is a mixed graph, then at most one of eij,−→eij
and −→eji can be in E(X). We write i → j, if there is an oriented edge from
vertex vi to vertex vj, and i ∼ j for an un-oriented edge between the vertices
vi and vj. The graph XU obtained from a mixed graph X by replacing each
of the oriented edge of X by the corresponding un-oriented edge is called the
underlying graph of X. A cycle in a mixed graph is a cycle in its underlying
graph. A cycle is even or odd according as its order is even or odd.

A gain graph or T-gain graph is a triplet Φ := (X,T, φ), where X is an
un-oriented graph, T = {z ∈ C : |z| = 1}, and φ :

−→
E (X) → T is a function

satisfying φ(−→eij) = φ(−→eji)−1 for each eij ∈ E(X). The function φ is called
the gain function of (X,T, φ). For simplicity, we use Φ := (X,φ) to denote
a T-gain graph instead of Φ := (X,T, φ). For a T-gain graph Φ := (X,T, φ),
the T-gain graph −Φ is defined by −Φ := (X,−φ). In [22], Reff proposed
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the notion of the adjacency matrix A(Φ) := (aij) of a T-gain graph, where

aij =

{
φ(−→eij) if i → j
0 otherwise.

It is clear that A(Φ) is Hermitian. Thus the eigenvalues of this matrix are
real. If φ(−→eij) = 1 for all −→eij, then we have A(Φ) = A(X), where A(X) is the
usual (0, 1)-adjacency matrix of the graph X. Thus one can assume a graph
X as a T-gain graph (X,1), where 1 is the function that assign 1 to each
edge of −→E (X). A switching function ζ of X is a function from V (X) to T,
that is, ζ : V (X) → T. Two gain graphs Φ1 := (X,φ1) and Φ2 := (X,φ2) are
said to be switching equivalent, written Φ1 ∼ Φ2, if there exists a switching
function ζ : V (X) → T such that φ2(

−→eij) = ζ(i)−1φ1(
−→eij)ζ(j).

It is clear from the definition that the gain graphs Φ1 and Φ2 are switching
equivalent if and only if there is a diagonal matrix Dζ , where the diagonal
entries come from T, such that

A(Φ2) = D−1
ζ A(Φ1)Dζ .

In 2015, Guo and Mohar [8] introduced a Hermitian adjacency matrix
H(X) of a mixed graph X, where the ij-th entry is i,−i or 1 according as
−→eij ∈ E(X), −→eji ∈ E(X) or eij ∈ E(X), respectively, and 0 otherwise. Here
i =

√
−1. This matrix has numerous appealing characteristics, including real

eigenvalues and the interlacing theorem for mixed graphs etc.
Later in 2020, Mohar [19] put forward a new Hermitian adjacency matrix

Hω(X) := (hij) of a mixed graph X, which is referred as Hermitian matrix
of second kind, where

hij =


1 if i ∼ j
ω if i → j
ω if j → i
0 otherwise.

Here ω := 1+i
√
3

2 , a primitive sixth root of unity and ω := 1−i
√
3

2 . For a
mixed graph X, let (XU ,ω) represent the T-gain graph with the gain function
ω :

−→
E (XU) → {1, ω, ω}, where

ω(−→eij) =

 1 if eij ∈ E(X)
ω if −→eij ∈ E(X)
ω if −→eji ∈ E(X).

Note that Hω(X) = A(Φ) for Φ = (XU ,ω).
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With the growing popularity of these Hermitian matrices, the idea of inves-
tigating spectral properties of mixed networks based on other graph matrices
is also evolved. The matrix D−1/2A(X)D−1/2 is called the normalized adja-
cency matrix of an un-oriented graph X, where D = diag(d1, . . . , dn) and di
denote the degree of the vertex vi for i ∈ {1, . . . , n}. This matrix is popularly
known as the Randić matrix R(X).

The matrix D−1/2H(X)D−1/2 is called the Hermitian Randić matrix, de-
noted RH(X), of a mixed graph X. Similarly, the matrix D−1/2Hω(X)D−1/2

is called the Hermitian Randić matrix of second kind, denoted Rω(X), of a
mixed graph X.

If Rω(X) := (Rω
ij), we find that

Rω
ij =



1√
didj

if i ∼ j

ω√
didj

if i → j

ω√
didj

if j → i

0 otherwise.
Clearly, Rω(X) is Hermitian. Let Lω(X) = D −Hω(X) and

Lω(X) = D−1/2Lω(X)D−1/2.
The matrices Lω(X) and Lω(X) are known as the Hermitian Laplacian ma-
trix of second kind and the normalized Hermitian Laplacian matrix of second
kind of X, respectively. It is clear that Rω(X) = I − Lω(X), where I is the
identity matrix of appropriate order.

The Randić matrix R(Φ) of a T-gain graph Φ is defined by
R(Φ) := D−1/2A(Φ)D−1/2. Similarly, the matrix I − R(Φ) is called the nor-
malized Laplacian matrix of a T-gain graph Φ. If X is a mixed graph, then
we see that Rω(X) = R(Φ), where Φ = (XU ,ω).

A walk (or path) in a mixed graph is a walk (or path) in its underlying
graph. The value of a walk W := vi1vi2 · · · viℓ in a mixed graph X is defined
as Rω

i1i2
Rω

i2i3
· · ·Rω

iℓ−1iℓ
. A walk is called positive or negative according as its

value is positive or negative, respectively. An acyclic mixed graph is defined
to be positive. A non-acyclic mixed graph is positive or negative according
as each of its mixed cycle is positive or negative, respectively. A mixed graph
X is called an elementary graph if each component of X is an edge or a cycle.

For the easy reference of the reader, we list the various notations and names
of matrices associated with an un-oriented graph, mixed graph or a gain graph
in Table 1, Table 2, Table 3 and Table 4. Here D denotes the degree matrix of
an un-oriented graph, or the degree matrix of the corresponding underlying
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Table 1. X is an un-oriented graph

adjacency
matrix

Randić matrix
R(X)

Laplacian matrix
L(X)

normalized Laplacian
matrix L(X)

A(X) R(X) = D−1/2A(X)D−1/2 L(X) = D − A(X)
L(X) = D−1/2L(X)D−1/2

= I −R(X)

Table 2. X is a mixed graph

Hermitian
adjacency

matrix

Hermitian Randić
matrix RH(X)

Hermitian Laplacian
matrix LH(X)

normalized Hermitian
Laplacian matrix LH(X)

H(X) RH(X) = D−1/2H(X)D−1/2 LH(X) = D −H(X)
LH(X) = D−1/2LH(X)D−1/2

= I −RH(X)

Table 3. X is a mixed graph

Hermitian
adjacency
matrix of
2nd kind

Hermitian Randić
matrix of 2nd kind

Rω(X)

Hermitian Laplacian
matrix of 2nd kind

Lω(X)

normalized Hermitian
Laplacian matrix

of 2nd kind Lω(X)

Hω(X) Rω(X) = D−1/2Hω(X)D−1/2 Lω(X) = D −Hω(X)
Lω(X) = D−1/2Lω(X)D−1/2

= I −Rω(X)

Table 4. Φ is a gain graph

adjacency
matrix

Randić matrix
R(Φ)

Laplacian matrix
L(Φ)

normalized Laplacian
matrix L(Φ)

A(Φ) R(Φ) = D−1/2A(Φ)D−1/2 L(Φ) = D − A(Φ)
L(Φ) = D−1/2L(Φ)D−1/2

= I −R(Φ)

graph in case of a mixed graph or gain graph. Further, I denotes the identity
matrix of appropriate order.

3. Spectral properties of Hermitian Randić matrix of second
kind

In this section, we characterize some spectral properties of Rω(X). We
continue with some known results which are associated to our findings.

Let Mn(C) denote the set of all n× n matrices with complex entries. For
A ∈ Mn(C), the matrix whose entries are absolute values of the correspond-
ing entries of A is denoted by |A|. The maximum of the absolute values of
the eigenvalues of a matrix A is called the spectral radius of A. It is denoted
by ρ(A). Further, the spectrum of A is denoted by Spec(A).

Theorem 3.1 ([28]). A T-gain graph (X,φ) is positive if and only if
(X,φ) ∼ (X,1).
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Theorem 3.2 ([18]). Let (X,φ) be a connected and positive T-gain graph.
Then X is bipartite if and only if (X,−φ) is positive.

Theorem 3.3 ([10]). Let A,B ∈ Mn(C). Suppose A is non-negative and
irreducible, and A ≥ |B|. Let λ := eiθρ(B) be a maximum-modulus eigenvalue
of B. If ρ(A) = ρ(B), then there is a diagonal unitary matrix D ∈ Mn(C)
such that B = eiθDAD−1.

In [12], Kannan et al. studied the normalized Laplacian matrix for gain
graphs. They also characterized some spectral properties for the Randić
matrix of an un-oriented graph.

Lemma 3.4 ([12]). Let X be a connected graph. Then
Spec(R(X))= Spec(−R(X))

if and only if X is bipartite.

Lemma 3.5 ([12]). Let Φ1 and Φ2 be two connected gain graphs. If Φ1 ∼ Φ2,
then Spec(R(Φ1)) = Spec(R(Φ2)).

Lemma 3.6 ([12]). If Φ := (X,φ) is a connected gain graph, then
ρ(R(Φ)) ≤ ρ(|R(Φ)|) = ρ(R(X)).

The following result is an immediate consequence of the preceding lemmas.

Theorem 3.7. Let X be a mixed graph. Then Spec(Rω(X)) = Spec(R(XU))
if and only if (XU ,ω) ∼ (XU ,1).

Proof. If Spec(Rω(X)) = Spec(R(XU)), then by Theorem 3.3
Rω(X) = eiθDζR(XU)D

−1
ζ ,

where Dζ is a diagonal unitary matrix. Hence

D−1
ζ Rω(X)Dζ = eiθR(XU)

or, D−1
ζ D−1/2Hω(X)D−1/2Dζ = eiθD−1/2A(XU)D

−1/2

or, Hω(X) = eiθDζA(XU)D
−1
ζ .

Since both the matrices Hω(X) and A(XU) are Hermitian, θ is either 0 or
π. This gives that either (XU ,ω) ∼ (XU ,1) or (XU ,ω) ∼ (XU ,−1). If
(XU ,ω) ∼ (XU ,1), we are done. If (XU ,ω) ∼ (XU ,−1), then by Lemma 3.5,
we have Spec(Rω(X))=Spec(−R(XU)). Again as

Spec(Rω(X))=Spec(R(XU)),
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we have Spec(R(XU))=Spec(−R(XU)). Thus by Lemma 3.4, XU is bipar-
tite. Now applying Theorem 3.2 for the positive gain graph (XU ,−ω), we
find that (XU ,ω) is positive, and hence (XU ,ω) ∼ (XU ,1). Conversely, if
(XU ,ω) ∼ (XU ,1), then clearly Spec(Rω(X)) = Spec(R(XU)). □
Theorem 3.8. Let X be a mixed graph of order n, where n ≥ 2. If
Spec(Rω(X)) = {λ1, . . . , λn}, then −1 ≤ λk ≤ 1 for each k ∈ {1, . . . , n}.

Proof. Let ρ(Rω(X)) denote the spectral radius of the matrix Rω(X) and let
XU be the underlying graph of the mixed graph X. Then by using Lemma
3.6 and the definition of spectral radius, we have

|λk| ≤ ρ(Rω(X)) ≤ ρ(Rω(XU)) = 1.

□
In order to determine some spectral properties of the matrix Rω(X), we

now provide the following lemma. In what follows, hij always represents the
ij-th entry of Hω(X).

Lemma 3.9. If X be a mixed graph on n vertices, and y := (y1, . . . , yn)
t

∈ Cn, then
y∗Hω(X)y =

∑
i<j, eij∈E(XU )

(|yi + hijyj|2 − (|yi|2 + |yj|2)).

Proof. We have
y∗Hω(X)y =

∑
i<j, eij∈E(XU )

(yihijyj + yihijyj)

=
∑

i<j, eij∈E(XU )

((yihijyj + yihijyj) + yiyi + yjyj − yiyi − yjyj)

=
∑

i<j, eij∈E(XU )

((yihijyj + yiyi) + (yihijyj + yjhijhijyj)− (|yi|2 + |yj |2))

=
∑

i<j, eij∈E(XU )

((yi + hijyj)(yi + hijyj)− (|yi|2 + |yj |2)), as |hij |2 = 1

=
∑

i<j, eij∈E(XU )

(|yi + hijyj |2 − (|yi|2 + |yj |2)). □

Eigenvalue interlacing is a popular technique for generating inequality and
regularity conclusions regarding graph structure in terms of eigenvalues. We
provide an edge version of interlacing properties for Rω(X). First, we present
two basic inequalities in the following lemma. The proofs are straight forward.

Lemma 3.10. Let a, b, and c be three real numbers such that b > 0, c > 0
and b− c > 0.
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(i) If a
b ≤ 1, then a−c

b−c ≤
a
b .

(ii) If |ab | ≤ 1, then a+c
b−c ≥

a
b .

Theorem 3.11. Let X be a mixed graph on n vertices and X−e be the graph
obtained by removing the edge e of X. Let Spec(Rω(X)) = {λ1, . . . , λn} and
Spec(Rω(X − e)) = {θ1, . . . , θn}. Then

λk−1 ≤ θk ≤ λk+1

for each k ∈ {1, . . . , n} with the convention that λ0 = −1 and λn+1 = 1.

Proof. For a complex vector x, let y := D−1/2x, where D is the diagonal
degree matrix of the underlying graph XU . Let yi be the i-th coordinate of
y. By Lemma 3.9, we have

x∗Rω(X)x =
∑

i<j, eij∈E(XU )

(|yi + hijyj|2 − |yi|2 − |yj|2).

Also, x∗x =
n∑

i=1

di|yi|2. By Courant-Fischer Theorem, we have

λk = max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1)}

x∈Cn, x ̸=0

x∗Rω(X)x

x∗x

= max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1)}

x∈Cn, x ̸=0

∑
i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2
. (3.1)

Using min-max version of Courant-Fischer theorem, we can also write Equa-
tion (3.1) as

λk = min
x(k+1),...,x(n)∈Cn

max
x⊥{x(k+1),...,x(n)}

x∈Cn, x ̸=0

∑
i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2
. (3.2)

Without loss of generality, let e be the edge joining the vertex v1 and v2.
After deleting the edge e, the degrees of the vertices v1 and v2 are decreased
by 1. Hence for G− e, the expression

∑
i<j, eij∈E(XU )

(|yi + hijyj|2 − |yi|2 − |yj|2)

becomes
∑

i<j, eij∈E(XU )

(|yi+hijyj|2− |yi|2− |yj|2)− (|y1+h12y2|2− |y1|2− |y2|2)

and
n∑

i=1

di|yi|2 becomes
n∑

i=1

di|yi|2 − |y1|2 − |y2|2. Therefore

θk = max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1)}

x∈Cn, x ̸=0

Υ,
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where Υ =

∑
i<j, eij∈E(XU )

((|yi+hijyj |2−|yi|2−|yj |2)−(|y1+h12y2|2−|y1|2−|y2|2))

n∑
i=1

di|yi|2−|y1|2−|y2|2
.

Let xi and yi be the i-th coordinates of x and y, respectively. Choose x1 and
x2 such that

√
d2x1 = h12

√
d1x2. Then y1 = h12y2, and so

|y1 + h12y2|2 = 2(|y1|2 + |y2|2). Thus for a = |yi + hijyj|2 − |yi|2 − |yj|2,
b =

n∑
i=1

di|yi|2 and c = 2|y1|2 in Lemma 3.10, we have
∑

i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)− 2|y1|2

n∑
i=1

di|yi|2 − 2|y1|2
≤

∑
i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2
.

Note that if x ⊥ (
√
d2e1 − h12

√
d1e2), then

√
d2x1 = h12

√
d1x2, where the

vectors e1, e2 are standard basis vectors of Cn. Thus,

θk ≤ max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1)}

x∈Cn,x ̸=0,
√

d2x1=h12
√

d1x2

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)− 2|y1|2

n∑
i=1

di|yi|2 − 2|y1|2

= max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1),

√
d2e1−h12

√
d1e2}

x∈Cn,x ̸=0

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)− 2|y1|2

n∑
i=1

di|yi|2 − 2|y1|2

≤ max
x(1),...,x(k−1)∈Cn

min
x⊥{x(1),...,x(k−1),

√
d2e1−h12

√
d1e2}

x∈Cn,x ̸=0

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2

≤ max
x(1),...,xk∈Cn

min
x⊥{x(1),...,x(k)}

x∈Cn,x̸=0

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2
= λk+1.

Similarly, from Equation (3.2) we have
θk = min

x(k+1),...,x(n)∈Cn
max

x⊥{x(k+1),...,x(n)}
x∈Cn,x ̸=0∑

i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)− (|y1 + h12y2|2 − |y1|2 − |y2|2)

n∑
i=1

di|yi|2 − |y1|2 − |y2|2

≥ min
x(k+1),...,x(n)∈Cn

max
x⊥{x(k+1),...,x(n)}

x∈Cn,x ̸=0,
√

d2x1=−h12
√

d1x2∑
i<j,eij∈E(XU )

(|yi+hijyj |2−|yi|2−|yj |2)−(|y1+h12y2|2−|y1|2−|y2|2)

n∑
i=1

di|yi|2 − |y1|2 − |y2|2
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= min
x(k+1),...,x(n)∈Cn

max
x⊥{x(k+1),...,x(n),

√
d2e1+h12

√
d1e2}

x∈Cn,x ̸=0∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2) + 2|y1|2

n∑
i=1

di|yi|2 − 2|y1|2
.

Note that |a+b|2 ≤ 2|a|2+2|b|2 for two complex numbers a and b. Therefore,
we have∑

i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2) ≤
∑

i<j, eij∈E(XU )

(|yi|2 + |yj |2) =
n∑

i=1

di|yi|2. (3.3)

Again,∑
i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2) ≥
∑

i<j, eij∈E(XU )

(−|yi|2 − |yj |2) = −
n∑

i=1

di|yi|2. (3.4)

Now, taking a = |yi+ hijyj|2− |yi|2− |yj|2, b =
n∑

i=1

di|yi|2 and c = 2|y1|2, we

find from Equations (3.3) and (3.4) that |ab | ≤ 1. Therefore Lemma 3.10 (ii)
gives ∑

i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2) + 2|y1|2

n∑
i=1

di|yi|2 − 2|y1|2
≥

∑
i<j, eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2
.

Thus

θk ≥ min
x(k+1),...,x(n)∈Cn

max
x⊥{x(k+1),...,x(n),

√
d2e1+h12

√
d1e2}

x∈Cn,x ̸=0

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2

≥ min
x(k),...,x(n)∈Cn

max
x⊥{x(k),...,x(n)}

x∈Cn,x̸=0

∑
i<j,eij∈E(XU )

(|yi + hijyj |2 − |yi|2 − |yj |2)

n∑
i=1

di|yi|2

= λk−1.

Thus, λk−1 ≤ θk ≤ λk+1 with the convention that λ0 = −1 and λn+1 = 1. □
Let SH(X) := (sHke

) be an n×m matrix indexed by the vertices and edges
of a mixed graph X, with |sHke

| = 1 whenever k is incident to e, and

sHke
=

 −sHℓe
if e = ekℓ

−ωsHℓe
if e = −→ekℓ

0 otherwise.
If D is the diagonal degree matrix of the underlying graph

XU , D−1/2SH(X) := (ske) and
(
D−1/2SH(X)

) (
D−1/2SH(X)

)∗
= (αkℓ)n×n,
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then
αkℓ =

∑
e∈E(X)

skesℓe =
∑

e∈E(X)

1√
dkdℓ

sHke
sHℓe

.

Thus αkk =
∑

e∈E(X)

1√
dkdk

sHke
sHke

=
∑

e∈E(X)

1
dk
|sHke

|2 = 1
dk
.dk=1. Now assume

that k ̸= ℓ.
(i) For ekℓ ∈ E(X),

αkℓ = skesle =
1√
dk

sHke

1√
dℓ
sHℓe

=
1√
dkdℓ

(−sHℓe
)sHle

= − 1√
dkdℓ

|sHℓe
|2 = − 1√

dkdℓ
.

(ii) For −→ekℓ ∈ E(X),
αkℓ = skesℓe =

1√
dk

sHke

1√
dℓ
sHℓe

=
1√
dkdℓ

(−ωsHle
)sHℓe

=
−ω√
dkdℓ

|sHℓe
|2 = −ω√

dkdℓ
.

(iii) For −→eℓk ∈ E(X),
αkℓ = skesℓe =

1√
dk

sHke

1√
dℓ
sHℓe

=
1√
dkdℓ

(sHke
)−ωsHke

=
−ω√
dkdℓ

|sHke
|2 = −ω√

dkdℓ
.

Thus, Rω(X) = I −
(
D−1/2SH(X)

) (
D−1/2SH(X)

)∗.
Lemma 3.12 ([26]). A mixed graph X is positive if and only if for any two
vertices vi and vj all paths from vi to vj have the same value.
Theorem 3.13. Let X be a connected mixed graph. If 1 is an eigenvalue of
Rω(X), then X is positive and 1 is a simple eigenvalue of Rω(X).
Proof. Assume that 1 is an eigenvalue of Rω(X) with corresponding eigen-
vector x. If x = (x1, . . . , xn)

t, we have
Rω(X)x = x

or, (I −Rω(X))x = 0

or, (D−1/2SH(X)(D−1/2SH(X))∗)x = 0

or, ⟨D−1/2SH(X)(D−1/2SH(X))∗x,x⟩ = 0

or, ⟨(D−1/2SH(X))∗x, (D−1/2SH(X))∗x⟩ = 0

or, (D−1/2SH(X))∗x = 0.

Thus if e is an edge of X with end vertices vi and vj, we have
((D−1/2SH(X))∗x)e = 0,

and this gives sHie
d
−1/2
i xi + sHje

d
−1/2
j xj = 0.

Note that sHie
sHje

= −hij, and so xi =
√

di
dj
hijxj for any edge incident to

vi and vj. Let W1k := u1u2 . . . uk be any u1uk-path such that u1 = v1 and
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uk = vj. Also, let W1r be the u1ur-section of the path W1k, where 2 ≤ r ≤ k.
For W1r = u1u2 . . . ur−1ur, let h(W1r) = h12 . . . h(r−1)r, the value of W1r.

We have x1 =
√

d1
d2
h12x2 =

√
d1
d3
h12h23x3 = · · · =

√
d1
di
h(W1i)xi. This implies

that each vivj-path has the same value. Hence by Lemma 3.12, X is positive.
Moreover, x = (x1, . . . , xi)

t = (x1,
√

d2
d1
h(W12)x1, . . . ,

√
di
d1
h(W1i)x1)

t, so

x = x1

(
1,

√
d2
d1
h(W12), . . . ,

√
di
d1
h(W1i)

)t

.

Hence 1 is an eigenvalue of Rω(X) with multiplicity 1. □
Yu et al. [24], in their study of Hermitian normalized Laplacian matrix

for mixed networks, established that a graph is bipartite if and only if all of
its eigenvalues are symmetric about 1. The symmetric characteristics of the
Rω(X) eigenvalues can also be determined in a similar manner.

Theorem 3.14. If X is a connected mixed graph, then X is bipartite if and
only if all eigenvalues of Rω(X) are symmetric about 0.

Proof. Because of Rω(X) = I − Lω(X), the proof is analogous to the proof
of Theorem 3.5 in [24]. □
Theorem 3.15 ([24]). If X is a connected mixed graph, then 2 is an eigen-
value of Lω(X) if and only if X is a positive bipartite graph.

Noting that Rω(X) = I − Lω(X), we get the following corollary from
Theorem 3.15.

Corollary 3.16. If X is a connected mixed graph, then −1 is an eigenvalue
of Rω(X) if and only if X is a positive bipartite graph.

Note that if X is a bipartite mixed graph, then the spectrum of Rω(X) is
symmetric about 0. As a result, if X is a bipartite mixed connected graph,
then 1 is an eigenvalue of Rω(X) if and only if X is a positive.

4. Determinant and Characteristic Polynomial of Hermitian
Randić matrix of second kind

In this section, we provide some results similar to Theorem 2.7 in [15] and
Proposition 7.3 in [4] for Hermitian Randić matrix of second kind. Lu et
al. in [16] defined the Hermitian-Randić matrix RH(X) of a mixed graph X.
For this Hermitian matrix, they obtained the determinant and characteristic
polynomial. In [16], detRH(X) is expressed as a summation, in which the
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summation is taken over a specific class of elementary spanning sub-graphs
of X. In the next theorem, we find an analogous expression for detRω(X),
in which the summation is taken over all spanning elementary sub-graphs of
X.

Let X ′ be an elementary sub-graph of a mixed graph X on n vertices. Let
c(X ′) be the number of components of X ′, and r(X ′) = n− c(X ′). Further,
let s(X ′) be the number of cycles of length at least 3 in X ′. For a sub-graph
Y of X, let Q(Y ) =

∏
vi∈V (Y )

1
di

.
Recall that a cycle is called positive or negative according as its value is

positive or negative, respectively. A cycle C is called semi-positive if its value
is either ωQ(C) or ωQ(C). Similarly, it is called semi-negative if its value
is either −ωQ(C) or −ωQ(C). Let lp(X

′), ln(X
′), lsp(X

′) and lsn(X
′) be the

number of positive, negative, semi-positive and semi-negative cycles in X ′,
respectively.

Theorem 4.1. Let Rω(X) be the Hermitian Randić matrix of second kind of
a mixed graph X of order n. Then

det(Rω(X)) =
∑
X ′

(−1)r(X
′)+ln(X

′)+lsn(X
′)2ln(X

′)+lp(X
′)Q(X ′),

where the summation is over all spanning elementary sub-graphs X ′ of X.

Proof. Let X be a mixed graph of order n. We have

det(Rω(X)) =
∑
π∈Sn

sgn(π)Rω
1π(1)R

ω
2π(2) · · ·Rω

nπ(n),

where Sn is the set of all permutations on {1, . . . , n}.
Consider a term sgn(π)Rω

1π(1) · · ·Rω
nπ(n) in the expansion of det(Rω(X)).

If vkvπ(k) is not an edge of X, then Rω
kπ(k) = 0, hence the term vanishes.

Thus, if the term corresponding to a permutation is non-zero, then it is
fixed- point-free and can be expressed uniquely as the composition of disjoint
cycles of length at least 2. Consequently, each non-vanishing term in the
expansion of det(Rω(X)) gives rise to a spanning elementary sub-graph X ′

of X. Note that a spanning elementary sub-graph may correspond to several
non-vanishing terms in the expansion of det(Rω(X)).

Let X ′ be a spanning elementary sub-graph of X that corresponds to a
non-vanishing term in the expansion of det(Rω(X)). Let π(X ′) be the set
of all permutations that correspond to X ′. Clearly, |π(X ′)| = 2s(X

′), and
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sgn(π) = (−1)r(X
′) for π ∈ π(X ′). Thus

detRω(X) =
∑
X ′

(−1)r(X
′)
∑

π∈π(X ′)

Rω
1π(1)R

ω
2π(2) · · ·Rω

nπ(n).

Note that, for each edge component with vertices vk and vℓ, the corre-
sponding factor Rω

kℓR
ω
ℓk has the value 1√

dkdℓ
· 1√

dℓdk
= 1

dkdℓ
or ω√

dkdℓ
· ω√

dℓdk
= 1

dkdℓ
.

Furthermore, if for one direction the value of a mixed cycle is α, then for the
reversed direction its value is α, the conjugate of α. Thus, in the summation
of det(Rω(X)), we have two cases for the cycles having complex values. For
a semi-positive cycle, say C1, we have

ω
∏

vj∈V (C1)
1
dj
+ ω

∏
j∈V (C1)

1
dj

=(ω + ω)
∏

vj∈V (C1)
1
dj

=
∏

vj∈V (C1)
1
dj

,

and for a semi-negative cycle, say C2, we have

−ω
∏

vj∈V (C2)
1
dj
− ω

∏
j∈V (C2)

1
dj

= −(ω + ω)
∏

vj∈V (C2)
1
dj

= −
∏

vj∈V (C2)
1
dj

.

In addition, if a cycle C has the real values
∏

vj∈V (C)
1
dj

or −
∏

vj∈V (C)
1
dj

for
some direction, then it has the same value for the other direction of C as
well.

Let X ′
e be the sub-graph of X ′ consisting of the edge components of X ′.

Recall that Q(X ′
e) =

∏
vi∈V (X ′

e)
1
di

. As a convention, assume that Q(X ′
e) = 1

if X ′
e = ϕ. Let C1, C2, . . . , Cs(X ′) be the cycles of X ′ of a length at least 3,

and for i ∈ {1, . . . , s(X ′)} and α ∈ {1, 2}, define

W α
i =

{
W (Ci) if α = 1

W (Ci) if α = 2.

Thus
detRω(X) =

∑
X ′

(−1)r(X
′)
∑

α∈{1,2}

Q(X ′
e)W

α
1 W

α
2 . . .W α

s(X ′).

Observe that for 1 ≤ k ≤ s(X ′), we have

W α
1 . . .W α

k−1W
1
kW

α
k+1 . . .W

α
s(X ′) +W α

1 . . .W α
k−1W

2
kW

α
k+1 . . .W

α
s(X ′)

=

{
(−1)βkW α

1 . . .W α
k−1Q(Ck)W

α
k+1 . . .W

α
s(X ′) if W (Ck) is not real

(−1)βk2W α
1 . . .W α

k−1Q(Ck)W
α
k+1 . . .W

α
s(X ′) if W (Ck) is real ,

where
βk =

{
1 if Ck is negative or semi-negative cycle
0 otherwise.
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Thus ∑
α∈{1,2}

Q(X ′
e)W

α
1 W

α
2 . . .W α

s(X ′)

= (−1)ln(X
′)+lsn(X

′)2s(X
′)−lsn(X

′)−lsp(X
′)Q(X ′

e)Q(C1) . . . Q(Cs(X ′))

= (−1)ln(X
′)+lsn(X

′)2ln(X
′)+lp(X

′)Q(X ′). □
Let PRω(X, x) : = det(xI−Rω(X)) be the characteristic polynomial of the

matrix Rω(X) of a mixed graph X. Now we compute an expression for the
coefficients of PRω(X, x).
Theorem 4.2. If PRω(X, x) := xn + a1x

n−1 + · · ·+ an, then

(−1)kak =
∑
X ′

(−1)r(X
′)+ln(X

′)+lsn(X
′)2ln(X

′)+lp(X
′)Q(X ′),

where the summation is over all elementary sub-graphs X ′ with order k of X.
Proof. The proof is based on Theorem 4.1, and makes use of the fact that the
summation of the determinants of all principal k × k sub-matrices of Rω(X)
is (−1)kak. □

In the next corollary, we look at how the coefficients of PRω(X, x) change
their shape for different graph structures.
Corollary 4.3. Let PRω(X, x) := xn + a1x

n−1 + · · ·+ an.
(i) If X is a tree, then (−1)kak =

∑
X ′
(−1)r(X

′)Q(X ′), where the summation

is over all elementary sub-graphs X ′ with order k of X.
(ii) If the underlying graph XU of X is δ-regular (δ ̸= 0), then

(−1)kak =
∑
X ′

(−1)r(X
′)+ln(X

′)+lsn(X
′)2ln(X

′)+lp(X
′) 1

δk
,

where the summation is over all elementary sub-graphs X ′ with order k
of X .

The proof of Corollary 4.3 is straightforward due to the absence of cycles
in a tree and the fact that every vertex in a δ-regular graph has degree δ.

In 1999, Bollobás et al. [5] defined the general Randić index R(α)(X) of an
un-oriented graph X as

R(α)(X) =
∑
u∼v

(dudv)
α.

Now we find a bound for eigenvalues of Rω(X) in terms of R(−1)(XU).
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Theorem 4.4. If λ1 is the smallest eigenvalue of Rω(X), then

λ2
1 ≥

2R(−1)(XU)

n(n− 1)
.

Proof. Let the eigenvalues λ1, . . . , λn of Rω(X) satisfy

λ1 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ≤ λn.

We have
n∑

i=1

λi
2 = trace(Rω(X)2) =

n∑
i=1

n∑
j=1

Rω
ijR

ω
ji

=
n∑

i=1

n∑
j=1

Rω
ijR

ω
ij

=
n∑

i=1

n∑
j=1

|Rω
ij|2

=2
∑
i∼j

1

didj
= 2R(−1)(XU).

Also,
n∑

i=1

(λi − λ1) =
n∑

i=1

λi − nλ1 = −nλ1

or,
n∑

i=1

(λi − λ1)
2 +

n∑
p,q=1, p ̸=q

(λp − λ1)(λq − λ1) = (nλ1)
2.

Since
∑

p ̸=q(λp − λ1)(λq − λ1) is non-negative, we have
n∑

i=1

(λi − λ1)
2 ≤ n2λ2

1

or,
n∑

i=1

λ2
i + nλ2

1 ≤ n2λ2
1

or, 2R(−1)(XU) + nλ2
1 ≤ n2λ2

1

or, λ2
1 ≥

2R(−1)(XU)

n(n− 1)
. □
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For an n× n matrix A := (aij), define

γ1(A) = min

{
1

n

n∑
i=1

n∑
j=1

aij ,
1

n

n∑
i=1

aii −
1

n(n− 1)

∑
i ̸=j

aij

}
and

γ2(A) = max

{
1

n

n∑
i=1

n∑
j=1

aij ,
1

n

n∑
i=1

aii −
1

n(n− 1)

∑
i ̸=j

aij

}
.

Lemma 4.5 ([17]). Let A := (aij) be an n × n Hermitian matrix. Let
λ1 and λn be the smallest and largest eigenvalues of A, respectively. Then
λ1 ≤ γ1(A) ≤ γ2(A) ≤ λn.
Theorem 4.6. Let X be a mixed graph, and let λ1 and λn be the smallest
and the largest eigenvalues of Rω(X), respectively. Then

λ1 ≤ − 1

n(n− 1)

∑
i∼j

2√
didj

+
∑
i→j

1√
didj

 ≤ 1

n

∑
i∼j

2√
didj

+
∑
i→j

1√
didj

 ≤ λn.

Proof. We have∑
i ̸=j

Rω
ij =

n∑
i=1

n∑
j=1

Rω
ij =

∑
i∼j

2√
didj

+
∑
i→j

(
ω√
didj

+
ω√
didj

)
=
∑
i∼j

2√
didj

+
∑
i→j

1√
didj

.

Also,
n∑

i=1

Rω
ii = trace(Rω) = 0.

Hence by Lemma 4.5, we have λ1 ≤ γ1 ≤ γ2 ≤ λn, where

γ1 = min

{
1

n

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
, 0− 1

n(n− 1)

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)}

= − 1

n(n− 1)

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
,

and
γ2 = max

{
1

n

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
, 0− 1

n(n− 1)

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)}

=
1

n

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
.

Hence
λ1 ≤

−1

n(n− 1)

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
≤ 1

n

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
≤ λn. □

The following corollary follows easily from Theorem 4.6.
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Corollary 4.7. Let X be a mixed graph. If λ1 and λn are the smallest and
the largest eigenvalues of Rω(X), then

λn − λ1 ≥
1

n− 1

(∑
i∼j

2√
didj

+
∑
i→j

1√
didj

)
.

5. Energy of Hermitian Randić matrix of second kind
Lu et al. in [16] investigated the energy for Hermitian Randić matrix

RH(X) and computed various bounds. We analogously define the energy
ε(Rω(X)) of Rω(X). That is, ε(Rω(X)) is the sum of the absolute val-
ues of the eigenvalues of Rω(X). We find that most of the results on en-
ergy of RH(X) also hold good for the matrix Rω(X) due to the fact that
trace(Rω(X)) = trace(RH(X)) = 0 and

∑n
i=1 λi

2 = 2R(−1)(XU).
Theorem 5.1. Let X be a mixed graph of order n, and λ1, . . . , λn be the
eigenvalues of Rω(X). Then√

2R(−1)(XU) + n(n− 1)(detRω(X))2/n ≤ ε(Rω(X)) ≤
√
2nR(−1)(XU),

where equality holds if |λ1| = · · · = |λn|.
Proof. The proof is similar to the proof of Theorem 3.5 in [16], that can
be obtained using the Cauchy-Schwartz inequality and geometric-arithmetic
inequality. □
Theorem 5.2. Let X be a mixed graph, and λ1, . . . , λn be the eigenvalues of
Rω(X), where λ1 ≤ . . . ≤ λn, and k is the number of negative eigenvalues.
Then

ε(Rω(X)) ≥ 2(n− k)

(
det(Rω(X))∏k

i=1 λi

) 1
n−k

,

where equality holds if all positive eigenvalues are equal.
Proof. Given that the eigenvalues λ1, . . . , λn of Rω(X) satisfy

λ1 ≤ . . . ≤ λk ≤ λk+1 ≤ . . . ≤ λn.
Also, λ1, . . . , λk are negative and λk+1, . . . , λn are positive. As

trace(Rω(X)) = 0, we have ε(Rω(X)) =
n∑

i=1

|λi| = 2
n∑

i=k+1

|λi| = 2
k∑

i=1

|λi|.

Now
|λ1|+ |λ2|+ . . .+ |λk| =|λ1 + λ2 + . . .+ λk|

=λk+1 + . . .+ λn
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≥(n− k)

(
n∏

i=k+1

λi

) 1
n−k

=(n− k)

(
det(Rω(X))∏k

i=1 λi

) 1
n−k

.

Hence

ε(Rω(X)) = 2
k∑

i=1

|λi| ≥ 2(n− k)

(
det(Rω(X))∏k

i=1 λi

) 1
n−k

.

Equality is obtained directly from the equality condition of geometric-
arithmetic inequality. □

Lemma 5.3. If x1, x2, . . . , xn are non-negative and k ≥ 2, then∑n
i=1 x

k
i ≤

(∑n
i=1 x

2
i

)k/2.
Lemma 5.3 can be easily proved using the principle of mathematical induc-

tion and Cauchy-Schwartz inequality.

Theorem 5.4. Let X be a mixed graph. Then ε(Rω(X)) < e
√

2R(−1)(XU ).

Proof. Let the eigenvalues of Rω(X) be λ1, . . . , λn. We have∑n
i=1 λi

2 = 2R(−1)(XU).

Now

ε(Rω(X)) =
n∑

i=1

|λi| <
n∑

i=1

e|λi|

=
n∑

i=1

∑
k≥0

|λi|k

k!

≤
∑
k≥0

1

k!

(
n∑

i=1

|λi|2
)k/2

, using Lemma 5.3

≤
∑
k≥0

1

k!
(2R(−1)(XU))

k/2

=
∑
k≥0

1

k!

(√
2R(−1)(XU)

)k

= e
√

2R(−1)(XU ). □
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Theorem 5.5. Let λ1, . . . , λn be the eigenvalues of Rω(X) and ρ = max
i

|λi|.
Then

ε(Rω(X)) ≤ 1

2

(
ρ(n− 2) +

√
ρ2(n− 2)2 + 16R(−1)(XU)

)
,

where equality holds if |λ1| = · · · = |λn|.

Proof. Suppose λk is the largest negative eigenvalue of Rω(X). Then
λ1 ≤ · · · ≤ λk and λk+1 ≤ . . . ≤ λn. Now

ε(Rω(X))2 =

 k∑
i=1

|λi|+
n∑

j=k+1

|λj |

2

=2

( k∑
i=1

|λi|

)2

+

 n∑
j=k+1

|λj |

2 , as
k∑

i=1

|λi| =
n∑

j=k+1

|λj |

=2

 k∑
i=1

|λi|2 +
n∑

j=k+1

|λj |2 + 2
∑

1≤i<p≤k

|λi||λp|+ 2
∑

(k+1)≤j<q≤n

|λj ||λq|


=2

n∑
i=1

|λi|2 + 4

 ∑
1≤i<p≤k

|λi||λp|+
∑

(k+1)≤j<q≤n

|λj ||λq|

 . (5.1)

We have (|λi| − ρ/2) (|λp| − ρ/2) ≤ ρ2

4 , which implies that

|λi||λp| ≤ ρ
2(|λi|+ |λp|).

Similarly, |λj||λq| ≤ ρ
2(|λj| + |λq|). Note that for both the cases equality can

be obtained when all |λi| are equal.
Hence from Equation (5.1), we have

ε(Rω(X))2 ≤4R(−1)(XU ) + 4 · ρ
2

 ∑
1≤i<p≤k

(|λi|+ |λp|) +
∑

(k+1)≤j<q≤n

(|λj |+ |λq|)


=4R(−1)(XU ) + 2ρ

(k − 1)
k∑

i=1

|λi|+ (n− k − 1)
n∑

j=k+1

|λj |


=4R(−1)(XU ) + 2ρ

(
(k − 1)

ε(Rω(X))

2
+ (n− k − 1)

ε(Rω(X))

2

)
=4R(−1)(XU ) + ρ(n− 2)ε(Rω(X)).

After solving the preceding inequality, we get

ε(Rω(X)) ≤ 1

2

(
ρ(n− 2) +

√
ρ2(n− 2)2 + 16R(−1)(XU)

)
. □
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Theorem 5.6. Let the eigenvalues of Rω(X) be λ1, . . . , λn and σ = min
i
|λi|.

Then

ε(Rω(X)) ≥ 1

2

(
σ(n− 2) +

√
σ2(n− 2)2 + 16R(−1)(XU)

)
,

where equality holds if |λ1| = · · · = |λn|.
Proof. Considering σ = min

i
|λi|, we have (|λi| − σ/2) (|λp| − σ/2) ≥ σ2

4 . It
implies that |λi||λp| ≥ σ

2 (|λi| + |λp|). Similarly, |λj||λq| ≥ σ
2 (|λj| + |λq|).

Equality holds when all |λi| are equal. Now from Equation (5.1), we get the
quadratic inequality ε(Rω(X))2 ≥ 4R(−1)(XU) + σ(n− 2)ε(Rω(X)). Solving
this quadratic inequality, we get the required result. □
Lemma 5.7 (Pólya-Szegö Inequality [3]). If ai and bi are positive real num-
bers for each i ∈ {1, . . . , n}, with M1 = max

1≤i≤n
ai, M2 = max

1≤i≤n
bi, m1 = min

1≤i≤n
ai

and m2 = min
1≤i≤n

bi. Then

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

,

where equality hold if and only if p = n
M1
m1

M1
m1

+
M2
m2

and q = n
M2
m2

M1
m1

+
M2
m2

are integers
and if p of the numbers ai, i ∈ {1, . . . , n} are equal to m1 and q of these
numbers are equal to M1, and if the corresponding numbers bi are equal to
M2 and m2 respectively.
Theorem 5.8. Let λ1, . . . , λn be the eigenvalues of Rω(X), ρ = max

i
|λi| and

σ = min
i
|λi|. Then

ε(Rω(X)) ≥
√

8nρσR(−1)(XU)

ρ+ σ
.

For equality nσ
ρ+σ and nρ

ρ+σ have to be integers, and the graph can have at most
four distinct eigenvalues with absolute values ρ and σ, and number of such
eigenvalues having absolute values σ and ρ are nρ

ρ+σ and nσ
ρ+σ respectively.

Proof. Considering ρ = max
i

|λi| and σ = min
i
|λi|, by Pólya-Szegö Inequality

we have
n∑

i=1

|λi|2
n∑

i=1

12 ≤ 1

4

(√
ρ

σ
+

√
σ

ρ

)2
(

n∑
i=1

|λi|

)2
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or, 2nR(−1)(XU) ≤
1

4

(
ρ+ σ
√
σρ

)2

(ε(Rω(X)))2

or, ε(Rω(X)) ≥
√
8nρσR(−1)(XU)

ρ+ σ
.

For equality, from Lemma 5.7 clearly, nσ
ρ+σ and nρ

ρ+σ have to be integers. Also
there can be at most four distinct eigenvalues having absolute values ρ and
σ. It is also to be noted that number of such eigenvalues having absolute
values σ and ρ are nρ

ρ+σ and nσ
ρ+σ respectively. □

In 1968, N. Ozeki [21] provided an inequality for positive real numbers.
However the result was prone to some errors which was revised in [11].

Lemma 5.9 (Ozeki’s Inequality [11]). If ai and bi are non-negative real num-
bers for each i ∈ {1, . . . , n}, then

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤ n2

3
(M1M2 −m1m2)

2 ,

where M1 = max
1≤i≤n

ai, M2 = max
1≤i≤n

bi, m1 = min
1≤i≤n

ai and m2 = min
1≤i≤n

bi.

Theorem 5.10. Let λ1, . . . , λn be the eigenvalues of Rω(X), ρ = max
i

|λi|
and σ = min

i
|λi|. Then

ε(Rω(X)) ≥
√

6nR(−1)(XU)− n2(ρ− σ)2

3
.

Proof. Considering ρ = max
i

|λi| and σ = min
i
|λi|, by Ozeki’s Inequality we

have
n∑

i=1

|λi|2
n∑

i=1

12 −

(
n∑

i=1

|λi|

)2

≤ n2

3
(ρ− σ)2

or,
√

6nR(−1)(XU)− n2(ρ− σ)2

3
≤ ε(Rω(X)). □

The graph K2 exemplifies the equality conditions in Theorem 5.1 and The-
orems 5.5-5.8. Additionally, we note that the complete graph Kn illustrates
the equality criterion outlined in Theorem 5.8.
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ON SPECTRA OF HERMITIAN RANDIC MATRIX OF SECOND KIND

A. BHARALI, B. BHATTACHARJYA, S. BORAH AND I. J. GOGOI

دوم نوع هرمیتی راندیچ ماتریس طیف های بررسی

گوگوی۴ جیوتی ایدویپ و بورا٣ سومانتا باتاچاریا٢، بیکاش بهارالی١، انکور

هند آسام، دیبروگره، دانشگاه ریاضی، ١,٣,۴گروه

هند آسام، گواهاتی، هندی فناوری مؤسسه ریاضی، ٢گروه

جهت دار یال یک vj و vi رئوس بین که هنگامی باشد. ω = ١+i
√

٣
٢ و مختلط گراف یک X کنید فرض

از باشد، جهت بدون آن ها بین یال اگر و می بریم، به کار را i → j نماد باشد، داشته وجود j به i از
به را دوم نوع هرمیتی راندیچ ماتریس می دهیم. نشان di با را vi رأس درجه می کنیم. استفاده i ∼ j

اگر Rω؛
ij =

١√
didj

داریم باشد، i ∼ j اگر آن: در که می کنیم، تعریف Rω(X) := (Rω
ij) صورت

مقاله، این در است. ٠ برابر حالت ها سایر در و Rω؛
ji =

ω√
didj

و Rω
ij =

ω√
didj

آنگاه باشد، i → j

مثبت بودن، مانند خصوصیاتی و می کنیم بررسی را جدید هرمیتی ماتریس این طیفی ویژگی های برخی
این مشخصه چندجمله ای همچنین می نماییم. مطالعه را مشابه موارد و یال ها درهم تنیدگی دوبخشی بودن،

می آوریم. به دست آن انرژی و ویژه مقادیر برای پایین و بالا کران هایی و کرده محاسبه را ماتریس

گراف. انرژی هرمیتی، راندیچ ماتریس هرمیتی، مجاورت ماتریس مختلط، گراف کلیدی: کلمات
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